CS162
Operating Systems and
Systems Programming
Lecture 21

Filesystem Transactions (Con't), End-to-End Argument, Distributed Decision Making

April 16th, 2020 Prof. John Kubiatowicz http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course taught by John Kubiatowicz at Berkeley, with few minor updates/changes. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide, in which case a full list of references is provided on the last slide.

Recall: The ACID properties of Transactions

- Atomicity: all actions in the transaction happen, or none happen
- Consistency: transactions maintain data integrity, e.g.,
 - Balance cannot be negative
 - Cannot reschedule meeting on February 30
- Isolation: execution of one transaction is isolated from that of all others; no problems from concurrency
- **Durability:** if a transaction commits, its effects persist despite crashes

Concept of a log

- One simple action is atomic write/append a basic item
- Use that to seal the commitment to a whole series of actions

Journaling File Systems

- Instead of modifying data structures on disk directly, write changes to a journal/log
 - Intention list: set of changes we intend to make
 - Log/Journal is append-only
 - Single commit record commits transaction
- Once changes are in the log, it is safe to apply changes to data structures on disk
 - Recovery can read log to see what changes were intended
 - Can take our time making the changes
 - » As long as new requests consult the log first
- Once changes are copied, safe to remove log
- But, . . .
 - If the last atomic action is not done ... poof ... all gone
- Basic assumption:
 - Updates to sectors are atomic and ordered
 - Not necessarily true unless very careful, but key assumption

Example: Creating a File

- Find free data block(s)
- Find free inode entry
- Find dirent insertion point
- Write map (i.e., mark used)
- Write inode entry to point to block(s)
- Write dirent to point to inode

Ex: Creating a file (as a transaction)

Find free data block(s)

Log: in non-volatile storage (Flash or on Disk)

"Redo Log" - Replay Transactions

Crash During Logging – Recover

Upon recovery scan the log

Detect transaction start with no commit

Discard log entries

• Disk remains unchanged

done

Free space map Data blocks Inode table Directory entries head start

Log: in non-volatile storage (Flash or on Disk)

pending

tail

Recovery After Commit

• Scan log, find start

Log: in non-volatile storage (Flash or on Disk)

Journaling Summary

Why go through all this trouble?

- Updates atomic, even if we crash:
 - Update either gets fully applied or discarded
 - All physical operations treated as a logical unit

Isn't this expensive?

- Yes! We're now writing all data twice (once to log, once to actual data blocks in target file)
- Modern filesystems offer an option to journal metadata updates only
 - Record modifications to file system data structures
 - But apply updates to a file's contents directly

Societal Scale Information Systems

The world is a large distributed system

- Microprocessors in everything

- Vast infrastructure behind

Internet Connectivity

Scalable, Reliable, Secure Services

Databases
Information Collection
Remote Storage
Online Games
Commerce

. . .

Sensor Nets

Centralized vs Distributed Systems

Client/Server Model

- Centralized System: System in which major functions are performed by a single physical computer

 — Originally, everything on single computer

 - Later: client/server model

Centralized vs Distributed Systems

Peer-to-Peer Model

- Centralized System: System in which major functions are performed by a single physical computer
 - Originally, everything on single computer
 - Later: client/server model
- Distributed System: physically separate computers working together on some task
 - Early model: multiple servers working together
 - » Probably in the same room or building
 - » Often called a "cluster"
 - Later models: peer-to-peer/wide-spread collaboration

Distributed Systems: Motivation/Issues/Promise

- Why do we want distributed systems?
 - Cheaper and easier to build lots of simple computers
 - Easier to add power incrementally
 - Users can have complete control over some components
 - Collaboration: much easier for users to collaborate through network resources (such as network file systems)
- The *promise* of distributed systems:
 - Higher availability: one machine goes down, use another
 - Better durability: store data in multiple locations
 - More security: each piece easier to make secure

Distributed Systems: Reality

- Reality has been disappointing
 - Worse availability: depend on every machine being up
 - » Lamport: "A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable."
 - Worse reliability: can lose data if any machine crashes
 - Worse security: anyone in world can break into system
- Coordination is more difficult
 - Must coordinate multiple copies of shared state information (using only a network)
 - What would be easy in a centralized system becomes a lot more difficult

- Many new variants of problems arise as a result of distribution
- Can you trust the other members of a distributed application enough to even perform a protocol correctly?
- Corollary of Lamport's quote: "A distributed system is one where you can't do work because some computer you didn't even know existed is successfully coordinating an attack on my system!"

Leslie Lamport

Distributed Systems: Goals/Requirements

- Transparency: the ability of the system to mask its complexity behind a simple interface
- Possible transparencies:
 - Location: Can't tell where resources are located
 - Migration: Resources may move without the user knowing
 - Replication: Can't tell how many copies of resource exist
 - Concurrency: Can't tell how many users there are
 - Parallelism: System may speed up large jobs by splitting them into smaller pieces
 - Fault Tolerance: System may hide various things that go wrong
- Transparency and collaboration require some way for different processors to communicate with one another

How do entities communicate? A Protocol!

- A protocol is an agreement on how to communicate, including:
 - Syntax: how a communication is specified & structured
 - » Format, order messages are sent and received
 - Semantics: what a communication means
 - » Actions taken when transmitting, receiving, or when a timer expires
- Described formally by a state machine
 - Often represented as a message transaction diagram
 - Can be a partitioned state machine: two parties synchronizing duplicate substate machines between them
 - Stability in the face of failures!

Examples of Protocols in Human Interactions

Telephone

- 1. (Pick up / open up the phone)
- 2. Listen for a dial tone / see that you have service
- 3. Dial
- 4. Should hear ringing ...
- 5. Callee: "Hello?"
- 6. Caller: "Hi, it's John...." ← Or: "Hi, it's me" (← what's *that* about?)
- 7. Caller: "Hey, do you think ... blah blah blah ..." pause
- 1. Callee: "Yeah, blah blah blah ..." pause
- 2. Caller: Bye
- 3. Callee: Bye
- 4. Hang up

Global Communication: The Problem

- Many different applications
 - email, web, P2P, etc.
- Many different network styles and technologies
 - Wireless vs. wired vs. optical, etc.
- How do we organize this mess?
 - Re-implement every application for every technology?

Global Communication: The Problem

- Many different applications
 - email, web, P2P, etc.
- Many different network styles and technologies
 - Wireless vs. wired vs. optical, etc.
- How do we organize this mess?
 - Re-implement every application for every technology?

Global Communication: The Problem

- Many different applications
 - email, web, P2P, etc.
- Many different network styles and technologies
 - Wireless vs. wired vs. optical, etc.
- How do we organize this mess?
 - Re-implement every application for every technology?
- No! But how does the Internet design avoid this?

Solution: Intermediate Layers

- Introduce intermediate layers that provide set of abstractions for various network functionality & technologies
 - A new app/media implemented only once
 - Variation on "add another level of indirection"
- Goal: Reliable communication channels on which to build distributed applications

The Internet *Hourglass*

There is just one network-layer protocol, IP.

The "narrow waist" facilitates interoperability.

Implications of Hourglass

Single Internet-layer module (IP):

- Allows arbitrary networks to interoperate
 - Any network technology that supports IP can exchange packets
- Allows applications to function on all networks
 - Applications that can run on IP can use any network
- Supports simultaneous innovations above and below IP
 - But changing IP itself, i.e., IPv6, very involved

Drawbacks of Layering

- Layer N may duplicate layer N-1 functionality
 - E.g., error recovery to retransmit lost data
- Layers may need same information
 - E.g., timestamps, maximum transmission unit size
- Layering can hurt performance
 - E.g., hiding details about what is really going on
- Some layers are not always cleanly separated
 - Inter-layer dependencies for performance reasons
 - Some dependencies in standards (header checksums)
- Headers start to get really big
 - Sometimes header bytes >> actual content

End-To-End Argument

- Hugely influential paper: "End-to-End Arguments in System Design" by Saltzer, Reed, and Clark ('84)
- "Sacred Text" of the Internet
 - Endless disputes about what it means
 - Everyone cites it as supporting their position
- Simple Message: Some types of network functionality can only be correctly implemented end-to-end
 - Reliability, security, etc.
- Because of this, end hosts:
 - Can satisfy the requirement without network's help
 - Will/must do so, since can't rely on network's help
- Therefore don't go out of your way to implement them in the network

Example: Reliable File Transfer

- Solution I: make each step reliable, and then concatenate them
- Solution 2: end-to-end check and try again if necessary

Discussion

- Solution I is incomplete
 - What happens if memory is corrupted?
 - Receiver has to do the check anyway!
- Solution 2 is complete
 - Full functionality can be entirely implemented at application layer with no need for reliability from lower layers
- Is there any need to implement reliability at lower layers?
 - Well, it could be more efficient

End-to-End Principle

Implementing complex functionality in the network:

- Doesn't reduce host implementation complexity
- Does increase network complexity
- Probably imposes delay and overhead on all applications, even if they don't need functionality
- However, implementing in network can enhance performance in some cases
 - e.g., very lossy link

Conservative Interpretation of E2E

 Don't implement a function at the lower levels of the system unless it can be completely implemented at this level

 Or: Unless you can relieve the burden from hosts, don't bother

Moderate Interpretation

- Think twice before implementing functionality in the network
- If hosts can implement functionality correctly, implement it in a lower layer only as a performance enhancement
- But do so only if it does not impose burden on applications that do not require that functionality
- This is the interpretation we are using
- Is this still valid?
 - What about Denial of Service?
 - What about Privacy against Intrusion?
 - Perhaps there are things that must be in the network???

Distributed Applications

- How do you actually program a distributed application?
 - Need to synchronize multiple threads, running on different machines
 - » No shared memory, so cannot use test&set

- One Abstraction: send/receive messages
 - » Already atomic: no receiver gets portion of a message and two receivers cannot get same message
- Interface:
 - Mailbox (mbox): temporary holding area for messages
 - » Includes both destination location and queue
 - Send (message, mbox)
 - » Send message to remote mailbox identified by mbox
 - Receive (buffer, mbox)
 - » Wait until mbox has message, copy into buffer, and return
 - » If threads sleeping on this mbox, wake up one of them

Using Messages: Send/Receive behavior

- When should send (message, mbox) return?
 - When receiver gets message? (i.e. ack received)
 - When message is safely buffered on destination?
 - Right away, if message is buffered on source node?
- Actually two questions here:
 - When can the sender be sure that receiver actually received the message?
 - When can sender reuse the memory containing message?
- Mailbox provides I-way communication from TI→T2
 - TI→buffer→T2
 - Very similar to producer/consumer
 - \gg Send = V, Receive = P
 - » However, can't tell if sender/receiver is local or not!

Messaging for Producer-Consumer Style

Using send/receive for producer-consumer style:

```
Producer:
   int msg1[1000];
   while(1) {
      prepare message;
      send(msg1, mbox);
   }

Consumer:
   int buffer[1000];
   while(1) {
      receive(buffer, mbox);
      process message;
   }

   Receive
   Message
```

- No need for producer/consumer to keep track of space in mailbox: handled by send/receive
 - Next time: will discuss fact that this is one of the roles the window in TCP: window is size of buffer on far end
 - Restricts sender to forward only what will fit in buffer

Messaging for Request/Response communication

- What about two-way communication?
 - Request/Response
 - » Read a file stored on a remote machine
 - » Request a web page from a remote web server
 - Also called: client-server
 - » Client ≡ requester, Server ≡ responder
 - » Server provides "service" (file storage) to the client

```
Example: File service
                                              Request
     Client: (requesting the file)
        char response[1000];
                                              File
        send("read rutabaga", server mbox);
        receive (response, client mbo\overline{x});
                                               Get
                                                Response
     Server: (responding with the file)
        char command[1000], answer[1000];
        receive (command, server mbox);
                                           Receive
        decode command;
                                            Request
        read file into answer;
        send(answer, client mbox);
                                           Send
                                           Response
```

Distributed Consensus Making

- Consensus problem
 - All nodes propose a value
 - Some nodes might crash and stop responding
 - Eventually, all remaining nodes decide on the same value from set of proposed values
- Distributed Decision Making
 - Choose between "true" and "false"
 - Or Choose between "commit" and "abort"
- Equally important (but often forgotten!): make it durable!
 - How do we make sure that decisions cannot be forgotten?
 - » This is the "D" of "ACID" in a regular database
 - In a global-scale system?
 - » What about erasure coding or massive replication?
 - » Like BlockChain applications!

General's Paradox

- General's paradox:
 - Constraints of problem:
 - » Two generals, on separate mountains
 - » Can only communicate via messengers
 - » Messengers can be captured
 - Problem: need to coordinate attack
 - » If they attack at different times, they all die
 - » If they attack at same time, they win
 - Named after Custer, who died at Little Big Horn because he arrived a couple of days too early

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

Two-Phase Commit

- Since we can't solve the General's Paradox (i.e. simultaneous action), let's solve a related problem
- Distributed transaction: Two or more machines agree to do something, or not do it, atomically
 - No constraints on time, just that it will eventually happen!
- Two-Phase Commit protocol: Developed by Turing award winner Jim Gray
 - (first Berkeley CS PhD, 1969)
 - Many important DataBase breakthroughs also from Jim Gray

Jim Gray

2PC Algorithm

- One coordinator
- N workers (replicas)
- High level algorithm description:
 - Coordinator asks all workers if they can commit
 - If all workers reply "VOTE-COMMIT", then coordinator broadcasts
 "GLOBAL-COMMIT"

Otherwise coordinator broadcasts "GLOBAL-ABORT"

- Workers obey the GLOBAL messages
- Use a persistent, stable log on each machine to keep track of what you are doing
 - If a machine crashes, when it wakes up it first checks its log to recover state of world at time of crash

Two-Phase Commit: Setup

- One machine (coordinator) initiates the protocol
- It asks every machine to vote on transaction
- Two possible votes:
 - Commit
 - Abort
- Commit transaction only if unanimous approval

Two-Phase Commit: Preparing

Agree to Commit

- Machine has guaranteed that it will accept transaction
- Must be recorded in log so machine will remember this decision if it fails and restarts

Agree to Abort

- Machine has guaranteed that it will never accept this transaction
- Must be recorded in log so machine will remember this decision if it fails and restarts

Two-Phase Commit: Finishing

Commit Transaction

- Coordinator learns all machines have agreed to commit
- Record decision to commit in local log
- Apply transaction, inform voters

Abort Transaction

- Coordinator learns at least on machine has voted to abort
- Record decision to abort in local log
- Do not apply transaction, inform voters

Two-Phase Commit: Finishing

Commit Transaction

- Coordinator learns all machines have agreed to commit
- Record decision to commit in local log
- Apply transaction, inform voters

Abort Transaction

- machine exactive is in the exactive in the exactive is a second of the exactive is a s Coordinator learns at least on machin
- Record decision to abort in loc
- voted to about 1500 per 1500 p Do not apply transaction

Detailed Algorithm

Coordinator Algorithm

Coordinator sends **VOTE-REQ** to all workers

- If receive VOTE-COMMIT from all N workers, send GLOBAL-COMMIT to all workers
- If doesn't receive VOTE-COMMIT from all N workers, send GLOBAL-ABORT to all workers

Worker Algorithm

- Wait for VOTE-REQ from coordinator
- If ready, send VOTE-COMMIT to coordinator
- If not ready, send VOTE-ABORT to coordinator
 - And immediately abort

- If receive GLOBAL-COMMIT then commit
- If receive GLOBAL-ABORT then abort

State Machine of Coordinator

Coordinator implements simple state machine:

State Machine of Workers

Dealing with Worker Failures

- Failure only affects states in which the coordinator is waiting for messages
- Coordinator only waits for votes in "WAIT" state
- In WAIT, if doesn't receive N votes, it times out and sends
 GLOBAL-ABORT

Dealing with Coordinator Failure

- Worker waits for VOTE-REQ in INIT
 - Worker can time out and abort (coordinator handles it)
- Worker waits for GLOBAL-* message in READY
 - If coordinator fails, workers must BLOCK waiting for coordinator to recover and send GLOBAL_* message

Durability

- All nodes use stable storage to store current state
 - stable storage is non-volatile storage (e.g. backed by disk) that guarantees atomic writes.
 - E.g.: SSD, NVRAM
- Upon recovery, it can restore state and resume:
 - Coordinator aborts in INIT, WAIT, or ABORT
 - Coordinator commits in COMMIT
 - Worker aborts in INIT, ABORT
 - Worker commits in COMMIT
 - Worker "asks" Coordinator in READY

Blocking for Coordinator to Recover

- A worker waiting for global decision can ask fellow workers about their state
 - If another worker is in ABORT or COMMIT state then coordinator must have sent GLOBAL-*
 - » Thus, worker can safely abort or commit, respectively

 If all workers are in ready, need to BLOCK (don't know if coordinator wanted to abort or commit)

Distributed Decision Making Discussion (1/2)

- Why is distributed decision making desirable?
 - Fault Tolerance!
 - A group of machines can come to a decision even if one or more of them fail during the process
 - » Simple failure mode called "failstop" (different modes later)
 - After decision made, result recorded in multiple places

Distributed Decision Making Discussion (2/2)

- Undesirable feature of Two-Phase Commit: Blocking
 - One machine can be stalled until another site recovers:
 - » Site B writes "prepared to commit" record to its log, sends a "yes" vote to the coordinator (site A) and crashes
 - » Site A crashes
 - » Site B wakes up, check its log, and realizes that it has voted "yes" on the update. It sends a message to site A asking what happened. At this point, B cannot decide to abort, because update may have committed
 - » B is blocked until A comes back
 - A blocked site holds resources (locks on updated items, pages pinned in memory, etc) until learns fate of update

Alternatives to 2PC

- Three-Phase Commit: One more phase, allows nodes to fail or block and still make progress.
- PAXOS: An alternative used by Google and others that does not have 2PC blocking problem
 - Develop by Leslie Lamport (Turing Award Winner)
 - No fixed leader, can choose new leader on fly, deal with failure
 - Some think this is extremely complex!
- RAFT: PAXOS alternative from John Osterhout (Stanford)
 - Simpler to describe complete protocol
- What happens if one or more of the nodes is malicious?
 - Malicious: attempting to compromise the decision making

Byzantine General's Problem

- Byazantine General's Problem (n players):
 - One General and n-1 Lieutenants
 - Some number of these (f) can be insane or malicious
- The commanding general must send an order to his n-1 lieutenants such that the following Integrity Constraints apply:
 - ICI: All loyal lieutenants obey the same order
 - IC2: If the commanding general is loyal, then all loyal lieutenants obey the order he sends

Byzantine General's Problem (con't)

- Impossibility Results:
 - Cannot solve Byzantine General's Problem with n=3 because one malicious player can mess up things

- With f faults, need n > 3f to solve problem
- Various algorithms exist to solve problem
 - Original algorithm has #messages exponential in n
 - Newer algorithms have message complexity O(n2)
 - » One from MIT, for instance (Castro and Liskov, 1999)
- Use of BFT (Byzantine Fault Tolerance) algorithm

 Allow multiple machines to make a coordinated decision even if some subset of them (< n/3) are malicious

Request

Distributed

Decision

- BlockChain: a chain of blocks connected by hashes to root block
 - The Hash Pointers are unforgeable (assumption)
 - The Chain has no branches except perhaps for heads
 - Blocks are considered "authentic" part of chain when they have authenticity info in them
- How is the head chosen?
 - Some consensus algorithm
 - In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by solving hard problem
 - » This is the job of "miners" who try to find "nonce" info that makes hash over block have specified number of zero bits in it
 - » The result is a "Proof of Work" (POW)
 - » Selected blocks above (green) have POW in them and can be included in chains
 - Longest chain wins

Summary (1/2)

- Protocol: Agreement between two parties as to how information is to be transmitted
- E2E argument encourages us to keep Internet communication simple
 - If higher layer can implement functionality correctly, implement it in a lower layer only if:
 - » it improves the performance significantly for application that need that functionality, and
 - » it does not impose burden on applications that do not require that functionality
- Two-phase commit: distributed decision making
 - First, make sure everyone guarantees that they will commit if asked (prepare)
 - Next, ask everyone to commit

Summary (2/2)

- Byzantine General's Problem: distributed decision making with malicious failures
 - One general, n-1 lieutenants: some number of them may be malicious (often "f" of them)
 - All non-malicious lieutenants must come to same decision
 - If general not malicious, lieutenants must follow general
 - Only solvable if n ≥ 3f+1
- BlockChain protocols
 - Could be used for distributed decision making