
CS162  
Operating Systems and 
Systems Programming 

Lecture 19  
  

File Systems (Con’t),  
MMAP, Buffer Cache

April 7th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 2

Recall: A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”):

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
 λ

Queue Server
Service Rate

 µ=1/Tser

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 3

Recall: A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”):

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
 λ

Queue Server
Service Rate

 µ=1/Tser

Why does response/queueing
delay grow unboundedly even
though the utilization is < 1 ?

100%

Response
Time (ms)

Throughput (Utilization)
 (% total BW)

0

100

200

300

0%

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 4

Components of a File System
File path

Directory
Structure

File Index
Structure

File number
“inumber”

…

Data blocks

“inode”

One file system block  
usually = multiple sectors
Ex: 512 sector, 4K block

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 5

Components of a file system

• Open performs Name Resolution
– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another integer) to user process

• Read, Write, Seek, and Sync operate on handle
– Mapped to file descriptor and to blocks

file name
offset directory

file number
offset

Index 
structure

Storage block

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 6

Directories

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 7

Directory
• Basically a hierarchical structure

• Each directory entry is a collection of
– Files
– Directories

» A link to another entries

• Each has a name and attributes
– Files have data

• Links (hard links) make it a DAG, not just a tree
– Softlinks (aliases) are another name for an entry

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 8

Directory Structure

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs. Search linearly – ok since directories
typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names

– Allows user to specify relative filename instead of absolute path (say
CWD=“/my/book” can resolve “count”)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 9

File

• Named permanent storage
• Contains

– Data
» Blocks on disk somewhere

– Metadata (Attributes)
» Owner, size, last opened, …
» Access rights

•R, W, X
•Owner, Group, Other (in Unix systems)
•Access control list in Windows system

…

Data blocks

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 10

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 11

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Structures

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 12

Our first filesystem: FAT (File Allocation Table)
• The most commonly used filesystem in the world!
• Assume (for now) we have a  

way to translate a path to  
a “file number”

– i.e., a directory structure
• Disk Storage is a collection of Blocks

– Just hold file data (offset o = < B, x >)
• Example: file_read 31, < 2, x >

– Index into FAT with file number
– Follow linked list to block
– Read the block from disk  

into memory

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 13

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• File offset (o = < B, x >)
• Follow list to get block #
• Unused blocks ⬄ Marked free (no

ordering, must scan to find)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

free

31:

File number

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 14

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• File offset (o = < B, x >)
• Follow list to get block #
• Unused blocks ⬄ Marked free (no

ordering, must scan to find)
• Ex: file_write(31, < 3, y >)

– Grab free block
– Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

memory

FAT Properties

File 31, Block 3

free

31:

File number

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 15

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• Grow file by allocating free blocks  

and linking them in
• Ex: Create file, write, write

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

File 63, Block 1

File 63, Block 063:

free
31:

File 1 number

File 2 number

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 16

File 31, Block 3

• FAT32 (32 instead of 12 bits) used in Windows, USB drives,  
SD cards, …

• Where is FAT stored?
– On Disk, on boot cache in memory, 

second (backup) copy on disk
• What happens when you format a disk?

– Zero the blocks, Mark FAT entries “free”
• What happens when you  

quick format a disk?
– Mark all entries in FAT as free

• Simple
– Can implement in  

device firmware

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 17

• Time to find block (large files) ??

• Block layout for file ???

• Sequential Access ???

• Random Access ???

• Fragmentation ???
– MSDOS defrag tool

• Small files ???

• Big files ???

FAT Assessment – Issues

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

File 63, Block 1

File 63, Block 063:

31:

File #1

File #2

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 18

What about FAT directories?

• Directory is a file containing <file_name: file_number> mappings
– Free space for new/deleted entries
– In FAT: file attributes are kept in directory (!!!)
– Each directory is a linked list of entries

• Where do you find root directory (“/”)?
– At well-defined place on disk
– For FAT, this is at block 2 (there are no blocks 0 or 1)
– Remaining directories are accessed via their file_number

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 19

Many Huge FAT Security Holes!

• FAT has no access rights
– No way, even in principle, to track ownership of data

• FAT has no header in the file blocks
– No way to enforce control over data, since all processes

have access of FAT table
– Just follow pointer to disk blocks

• Just gives an index into the FAT to read data
– (file number = block number)
– Could start in middle of file or access deleted data

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 20

Characteristics of Files

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 21

Unix File System (1/2)

• Original inode format appeared in BSD 4.1
– Berkeley Standard Distribution Unix
– Part of your heritage [if you are at Berkley]!
– Similar structure for Linux Ext2/3

• File Number is index into inode arrays
• Multi-level index structure

– Great for little and large files
– Asymmetric tree with fixed sized blocks

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 22

Unix File System (2/2)

• Metadata associated with the file
– Rather than in the directory that points to it

• UNIX Fast File System (FFS) BSD 4.2 Locality Heuristics:
– Block group placement
– Reserve space

• Scalable directory structure

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 23

Inode Structure

• inode metadata

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 24

File Attributes

• inode metadata

User
Group
9 basic access control bits
 - UGO x RWX
Setuid bit
 - execute at owner permissions  
 rather than user
Setgid bit
 - execute at group’s permissions

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 25

Data Storage

• Small files: 12 pointers direct to data blocks

Direct pointers

4kB blocks ⇒ sufficient for
files up to 48KB

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 26

Data Storage

• Large files: 1,2,3 level indirect pointers

Indirect pointers
 - point to a disk block
 containing only pointers
 - 4 kB blocks => 1024 ptrs
 => 4 MB @ level 2
 => 4 GB @ level 3
 => 4 TB @ level 4 48 KB

+4 MB

+4 GB

+4 TB

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 27

UNIX BSD 4.2 (1984) (1/2)

• Same as BSD 4.1 (same file header and triply indirect blocks), except
incorporated ideas from Cray Operating System:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned later) 

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 28

UNIX BSD 4.2 (1984) (2/2)

• Problem: When create a file, don’t know how big it will become (in
UNIX, most writes are by appending)
– How much contiguous space do you allocate for a file?
– In BSD 4.2, just find some range of free blocks

» Put each new file at the front of different range
» To expand a file, you first try successive blocks in bitmap, then

choose new range of blocks
– Also in BSD 4.2: store files from same directory near each other  

• Fast File System (FFS)
– Allocation and placement policies for BSD 4.2

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 29

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In meantime, disk has
continued turning: missed next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track: give time for processing

to overlap rotation
» Can be done by OS or in modern drives by the disk controller

– Solution 2: Read ahead: read next block right after first, even if application hasn’t
asked for it yet

» This can be done either by OS (read ahead)
» By disk itself (track buffers) - many disk controllers have internal RAM that allows

them to read a complete track
• Modern disks + controllers do many things “under the covers”

– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 30

Where are inodes Stored?

• In early UNIX and DOS/Windows’ FAT file system, headers stored
in special array in outermost cylinders

• Header not stored anywhere near the data blocks
– To read a small file, seek to get header, seek back to data

• Fixed size, set when disk is formatted
– At formatting time, a fixed number of inodes are created
– Each is given a unique number, called an “inumber”

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 31

Where are inodes Stored?
• Later versions of UNIX moved the header information to be  

closer to the data blocks
– Often, inode for file stored in same “cylinder group” as parent directory

of the file (makes an ls of that directory run fast)
• Pros:

– UNIX BSD 4.2 puts bits of file header array on many cylinders
– For small directories, can fit all data, file headers, etc. in same cylinder ⇒

no seeks!
– File headers much smaller than whole block (a few hundred bytes), so

multiple headers fetched from disk at same time
– Reliability: whatever happens to the disk, you can find many of the files

(even if directories disconnected)
• Part of the Fast File System (FFS)

– General optimization to avoid seeks

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 32

4.2 BSD Locality: Block Groups
• File system volume is divided into a set of block groups

– Close set of tracks
• Data blocks, metadata, and free  

space interleaved within block group
– Avoid huge seeks between  

user data and system structure
• Put directory and its files in  

common block group

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 33

4.2 BSD Locality: Block Groups
• First-Free allocation of new file blocks

– To expand file, first try successive  
blocks in bitmap, then  
choose new range of blocks

– Few little holes at start, big  
sequential runs at end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the Block Group

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 34

UNIX 4.2 BSD FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space at end

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 35

UNIX 4.2 BSD FFS
• Pros

– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data
– No defragmentation necessary!

• Cons
– Inefficient for tiny files (a 1 byte file requires both an inode and a data

block)
– Inefficient encoding when file is mostly contiguous on disk
– Need to reserve 10-20% of free space to prevent fragmentation

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 36

Linux Example: Ext2/3 Disk Layout
• Disk divided into block groups

– Provides locality
– Each group has two block-sized

bitmaps (free blocks/inodes)
– Block sizes settable  

at format time:  
1K, 2K, 4K, 8K…

• Actual inode structure similar to
4.2 BSD

– with 12 direct pointers
• Ext3: Ext2 with Journaling

– Several degrees of protection
with comparable overhead

• Example: create a file1.dat  
under /dir1/ in Ext3

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 37

A bit more on directories
• Stored in files, can be read, but typically don’t

– System calls to access directories
– open / creat traverse the structure
– mkdir /rmdir add/remove entries
– link / unlink (rm)

» Link existing file to a directory
• Not in FAT !

» Forms a DAG
• When can file be deleted?

– Maintain ref-count of links to the file
– Delete after the last reference is gone

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent
*entry, struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

/usr/lib/foo

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 38

Links

• Hard link
– Sets another directory entry to contain the file number for

the file
– Creates another name (path) for the file
– Each is “first class”

• Soft link or Symbolic Link or Shortcut
– Directory entry contains the path and name of the file
– Map one name to another name

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 39

Large Directories: B-Trees (dirhash)

in FreeBSD, NetBSD, OpenBSD

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 40

NTFS

• New Technology File System (NTFS)
– Default on Microsoft Windows systems

• Variable length extents
– Rather than fixed blocks

• Everything (almost) is a sequence of <attribute:value> pairs
– Meta-data and data

• Mix direct and indirect freely

• Directories organized in B-tree structure by default

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 41

NTFS
• Master File Table

– Database with Flexible 1KB entries for metadata/data
– Variable-sized attribute records (data or metadata)
– Extend with variable depth tree (non-resident)

• Extents – variable length  
contiguous regions

– Block pointers cover  
runs of blocks

– Similar approach in  
Linux (ext4)

– File create can provide 
 hint as to size of file

• Journaling for reliability
– Discussed later

http://ntfs.com/ntfs-mft.htm

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 42

NTFS Small File

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

data attribute

Attribute list

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 43

NTFS Medium File

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 44

NTFS Multiple Indirect Blocks

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 45

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 46

Memory Mapped Files

• Traditional I/O involves explicit transfers between buffers in
process address space to/from regions of a file

– This involves multiple copies into caches in memory, plus system
calls

• What if we could “map” the file directly into an empty region of
our address space

– Implicitly “page it in” when we read it
– Write it and “eventually” page it out

• Executable files are treated this way when we exec the
process!!

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

Operating System

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

Operating System

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address
page#

frame#

offset

Operating System

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

Operating System

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

page fault

Operating System

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

page fault

Operating System

exception

Page Fault Handler

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

page fault

Operating System

exception

Page Fault Handler

load page from disk

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

page fault

Operating System

exception

Page Fault Handler
update PT entry

Process

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

page fault

Operating System

exception

Page Fault Handler

Process

scheduler

retry

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address

Operating System

Process

frame#

offset

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset

Process

File

Operating System

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset

Process

File

mmap() file to region of VAS

Operating System

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

Read File
contents

from memory!

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 49

mmap() system call

• May map a specific region or let the system find one for you
– Tricky to know where the holes are

• Used both for manipulating files and for sharing between processes

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 50

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {
 int myfd;
 char *mfile;

 printf("Data at: %16lx\n", (long unsigned int) &something);
 printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
 printf("Stack at: %16lx\n", (long unsigned int) &mfile);

 /* Open the file */
 myfd = open(argv[1], O_RDWR | O_CREAT);
 if (myfd < 0) { perror("open failed!");exit(1); }

 /* map the file */
 mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
 if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

 printf("mmap at : %16lx\n", (long unsigned int) mfile);

 puts(mfile);
 strcpy(mfile+20,"Let's write over it");
 close(myfd);
 return 0;
}

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 51

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {
 int myfd;
 char *mfile;

 printf("Data at: %16lx\n", (long unsigned int) &something);
 printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
 printf("Stack at: %16lx\n", (long unsigned int) &mfile);

 /* Open the file */
 myfd = open(argv[1], O_RDWR | O_CREAT);
 if (myfd < 0) { perror("open failed!");exit(1); }

 /* map the file */
 mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
 if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

 printf("mmap at : %16lx\n", (long unsigned int) mfile);

 puts(mfile);
 strcpy(mfile+20,"Let's write over it");
 close(myfd);
 return 0;
}

$ cat test
This is line one
This is line two
This is line three
This is line four
$./mmap test
Data at: 105d63058
Heap at : 7f8a33c04b70
Stack at: 7fff59e9db10
mmap at : 105d97000

$ cat test
This is line one
ThiLet's write over its line three
This is line four

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

• Also: anonymous memory between parents and children
– no file backing – just swap space

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 53

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from paths→inodes
– Disk blocks: Mapping from block address→disk content

• Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Replacement policy? LRU

– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to accommodate a

host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system, thereby flushing the
cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 54

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to the buffer

cache vs virtual memory?
– Too much memory to the file system cache ⇒ won’t be able to run

many applications at once
– Too little memory to file system cache ⇒ many applications may run

slowly (disk caching not effective)
– Solution: adjust boundary dynamically so that the disk access rates for

paging and file access are balanced
• Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is sequential by
prefetching subsequent disk blocks ahead of current read request (if they
are not already in memory)

– Elevator algorithm can efficiently interleave groups of prefetches from
concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among concurrent file

requests

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 55

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent out to disk

– Instead, write() copies data from user space buffer to kernel buffer
(in cache)

» Enabled by presence of buffer cache: can leave written file blocks in cache
for a while

» If some other application tries to read data before written to disk, file
system will read from cache

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value for a file
» Some files need never get written to disk! (e..g temporary scratch files

written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file has been written

out? (lose pointer to inode!)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 56

Important “ilities”
• Availability: the probability that the system can accept and process

requests
– Often measured in “nines” of probability. So, a 99.9% probability is

considered “3-nines of availability”
– Key idea here is independence of failures

• Durability: the ability of a system to recover data despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on pyramids was very

durable, but could not be accessed until discovery of Rosetta Stone
• Reliability: the ability of a system or component to perform its

required functions under stated conditions for a specified period of
time (IEEE definition)

– Usually stronger than simply availability: means that the system is not
only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes, other

problems

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 57

File System Summary (1/2)
• File System:

– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems
– Linked or tree structure stored in files

• Multilevel Indexed Scheme
– inode contains file info, direct pointers to blocks, indirect blocks,

doubly indirect, etc..
– NTFS: variable extents not fixed blocks, tiny files data is in header

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 58

File System Summary (2/2)
• 4.2 BSD Multilevel index files

– Inode contains ptrs to actual blocks, indirect blocks, double indirect
blocks, etc.

– Optimizations for sequential access: start new files in open ranges
of free blocks, rotational optimization

• File layout driven by freespace management
– Integrate freespace, inode table, file blocks and dirs into block group

• Deep interactions between mem management, file system, sharing
–mmap(): map file or anonymous segment to memory

• Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)

