CSI62 Operating Systems and Systems Programming Lecture 14

Caching and TLBs (Finished), Demand Paging

March 12th, 2020 Prof. John Kubiatowicz http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course taught by John Kubiatowicz at Berkeley, with few minor updates/changes. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide, in which case a full list of references is provided on the last slide.

Recall: Making it real: X86 Memory model with segmentation (16/32-bit)

Kubiatowicz CS162 ©UCB Spring 2020

Recall: In Machine Structures (eg. 61C) ...

Caching is the key to memory system performance

HitRate = $90\% = AMAT = (0.9 \times 1) + (0.1 \times 101) = 11.1$ ns

HitRate = $99\% = AMAT = (0.99 \times 1) + (0.01 \times 101) = 2.01$ ns

Recall: The Memory Hierarchy

Recall: How to make Address Translation Fast?

- Cache results of recent translations !
 - Different from a traditional cache
 - Cache Page Table Entries using Virtual Page # as the key

Kubiatowicz CS162 ©UCB Spring 2020

Translation Look-Aside Buffer

- TLB is a cache of translations:
 - Record recent Virtual Page # to Physical Frame # translation
- If present, get the physical address from TLB without reading any of the page tables !!!
 - Even if the translation involved multiple levels
 - Caches the end-to-end result
- Was invented by Sir Maurice Wilkes prior to caches
 - People realized "if it's good for page tables, why not the rest of the data in memory?"
- On a *TLB miss*, the page tables may be cached, so only go to memory when both miss
 - Ultimately invokes page table walk

Caching Applied to Address Translation

- Question is one of page locality: does it exist?
 - Instruction accesses spend a lot of time on the same page (since accesses sequential)
 - Stack accesses have definite locality of reference
 - Data accesses have less page locality, but still some...
- Can we have a TLB hierarchy?
 - Sure: multiple levels at different sizes/speeds

What kind of Cache for TLB?

- Remember all those cache design parameters and trade-offs?
 - Amount of Data = N * L * K
 - Tag is portion of address that identifies line (w/o line offset)
 - Write Policy (write-thru, write-back), Eviction Policy (LRU, ...)

Kubiatowicz CS162 ©UCB Spring 2020

How might organization of TLB differ from that of a conventional instruction or data cache?

• Let's do some review ...

A Summary on Sources of Cache Misses

- Compulsory (cold start or process migration, first reference): first access to a block
 - "Cold" fact of life: not a whole lot you can do about it
 - Note: If you are going to run "billions" of instruction, Compulsory Misses are insignificant
- Capacity
 - Cache cannot contain all blocks access by the program
 - Solution: increase cache size
- Conflict (collision):
 - Multiple memory locations mapped to the same cache location
 - Solution I: increase cache size
 - Solution 2: increase associativity
- Coherence (Invalidation): other process (e.g., I/O) updates memory

How is a Block found in a Cache?

Data Select

- Block is minimum quantum of caching
 - Data select field used to select data (byte) within block
 - Many caching applications don't have data select field
- Index Used to Lookup Candidates in Cache
 - Index identifies the set
- Tag used to identify actual copy
 - If no candidates match, then declare cache miss

Review: Direct Mapped Cache

- Direct Mapped 2^N byte cache: - The uppermost (32 - N) bits are always the Cache Tag
 - The lowest M bits are the Byte Select (Block Size = 2^{M})
 - Example: I KB Direct Mapped Cache with 32 B Blocks
 - Index chooses potential block
 - Tag checked to verify block
 - $-_{31}$ Byte select chooses byte within block

Review: Set Associative Cache

- N-way set associative: N entries per Cache Index
 - N direct mapped caches operates in parallel
- Example: Two-way set associative cache
 - Cache Index selects a "set" from the cache
 - Two tags in the set are compared to input in parallel
 - $_{\overline{31}}$ Data is selected based on the tag result

Review: Fully Associative Cache

• Fully Associative: Every block can hold any line

Address does not include a cache index

- Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks
 - We need N 27-bit comparators
 - Still have byte select to choose from within block 31

Kubiatowicz CS162 ©UCB Spring 2020

Where does a Block Get Placed in a Cache?

• Example: Block 12 placed in 8 block cache

Direct mapped: block 12 can go only into block 4 (12 mod 8)

Block 01234567 no.

Where does a Block Get Placed in a Cache?

• Example: Block 12 placed in 8 block cache

Direct mapped:

block 12 can go only into block 4

Set associative:

block 12 can go anywhere in set 0 (12 mod 4)

Kubiatowicz CSI62 ©UCB Spring 2020

Where does a Block Get Placed in a Cache?

• Example: Block 12 placed in 8 block cache

Direct mapped:

block 12 can go only into block 4 (12 mod 8)

block 12 can go anywhere in set 0 (12 mod 4)

Block 01234567

no.

0

Fully associative:

block 12 can go anywhere

Kubiatowicz CS162 ©UCB Spring 2020

2

3

Set Set Set Set

1

Which block should be replaced on a miss?

- Easy for Direct Mapped: Only one possibility
- Set Associative or Fully Associative:

– Random

- LRU (Least Recently Used)

• Miss rates for a workload:

	2-	way	4-w	/ay	8-w	/ay
Size	LRU I	<u>Random</u>	lru f	<u>Random</u>	lru f	<u>Random</u>
I6 KB	5.2%	5.7%	4.7%	5.3%	4.4%	5.0%
64 KB	1.9%	2.0%	I.5%	I.7%	1.4%	1.5%
256 KB	1.15%	1.17%	1.13%	1.13%	1.12%	1.12%

Review: What happens on a write?

- Write through: The information is written to both the block in the cache and to the block in the lower-level memory
- Write back: The information is written only to the block in the cache
 - Modified cache block is written to main memory only when it is replaced
 - Question is block clean or dirty?
- Pros and Cons of each?
 - WT:

» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered

-WB:

» PRO: repeated writes not sent to DRAM processor not held up on writes

» CON: More complex

Read miss may require writeback of dirty data

Impact of caches on Operating Systems

- Dealing with cache effects
 - Maintaining the correctness of various caches
 - E.g., TLB consistency:
 - » With PT across context switches ?
 - » Across updates to the PT ?
- Process scheduling
 - Which and how many processes are active ? Priorities ?
 - Large memory footprints versus small ones ?
 - Shared pages mapped into VAS of multiple processes ?
- Impact of thread scheduling on cache performance
 - Rapid interleaving of threads (small quantum) may degrade cache performance

» Increase average memory access time (AMAT) !!!

• Designing operating system data structures for cache performance

What TLB Organization Makes Sense?

- Needs to be really fast
 - Critical path of memory access
 - » In simplest view: before the cache
 - » Thus, this adds to access time (reducing cache speed)
 - Seems to argue for Direct Mapped or Low Associativity
- However, needs to have very few conflicts!
 - With TLB, the Miss Time extremely high! (PT traversal)
 - Cost of Conflict (Miss Time) is high
 - Hit Time dictated by clock cycle
- Thrashing: continuous conflicts between accesses
 - What if use low order bits of page as index into TLB?
 - » First page of code, data, stack may map to same entry
 - » Need 3-way associativity at least?
 - What if use high order bits as index?
 - » TLB mostly unused for small programs

TLB organization: include protection

- How big does TLB actually have to be?
 - -Usually small: 128-512 entries (larger now)
 - -Not very big, can support higher associativity
- Small TLBs usually organized as fully-associative cache
 - Lookup is by Virtual Address
 - Returns Physical Address + other info
- What happens when fully-associative is too slow?
 - -Put a small (4-16 entry) direct-mapped cache in front
 - Called a "TLB Slice"
- Example for MIPS R3000:

Virtual Address	Physical Address	Dirty	Ref	Valid	Access	ASID
0xFA00	0x0003	Y	N	Υ	R/W	34
0x0040	0x0010	Ν	Υ	Υ	R	0
0x0041	0x0011	Ν	Υ	Υ	R	0

- Machines with TLBs go one step further: they overlap TLB lookup with cache access.
 - Works because offset available early

3/12/20

Kubiatowicz CS162 ©UCB Spring 2020

Overlapping TLB & Cache Access (1/2)

- Main idea:
 - Offset in virtual address exactly covers the "cache index" and "byte select"
 - Thus can select the cached byte(s) in parallel to perform address translation

virtual address	Virtual Page #	Offset	
physical address	tag / page #	index	byte

Overlapping TLB & Cache Access

• Here is how this might work with a 4K, direct-mapped cache:

Example TLB Sizes: Pentium-M TLBs (2003)

- Four different TLBs
 - Instruction TLB for 4K pages
 - » 128 entries, 4-way set associative
 - Instruction TLB for large pages
 - » 2 entries, fully associative
 - Data TLB for 4K pages
 - » 128 entries, 4-way set associative
 - Data TLB for large pages
 - » 8 entries, 4-way set associative
- All TLBs use LRU replacement policy
- Why different TLBs for instruction, data, and page sizes?

Intel Nahelem (2008)

- LI DTLB
 - 64 entries for 4 K pages and
 - 32 entries for 2/4 M pages,
- LI ITLB
 - 128 entries for 4 K pages using 4-way associativity and
 - 14 fully associative entries for 2/4 MiB pages
- unified 512-entry L2TLB for 4 KiB pages, 4-way associative.

3/12/20

Current Example: Memory Hierarchy

- Caches (all 64 B line size)
 - LI I-Cache: 32 KiB/core, 8-way set assoc.
 - L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy
 - L2 Cache: I MiB/core, I6-way set assoc., Inclusive, Write-back policy, I4 cycles latency
 - L3 Cache: I.375 MiB/core, II-way set assoc., shared across cores, Non-inclusive victim cache, Write-back policy, 50-70 cycles latency
- TLB
 - LI ITLB, I 28 entries; 8-way set assoc. for 4 KB pages
 - » 8 entries per thread; fully associative, for 2 MiB / 4 MiB page
 - LI DTLB 64 entries; 4-way set associative for 4 KB pages
 - » 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
 - » 4 entries; 4-way associative, IG page translations:
 - L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
 - » 16 entries; 4-way set associative, 1 GiB page translations:

What happens to TLB on Context Switch?

- Need to do something, since TLBs map virtual addresses to physical addresses
 - Address Space just changed, so TLB entries no longer valid!
- Options?
 - Invalidate TLB: simple but might be expensive
 - » What if switching frequently between processes?
 - Include ProcessID in TLB
 - » This is an architectural solution: needs hardware
- What if translation tables change?
 - For example, to move page from memory to disk or vice versa...
 - Must invalidate TLB entry!
 - » Otherwise, might think that page is still in memory!
 - Called "TLB Consistency"

Putting Everything Together: Address Translation

Virtual Address:

|--|

Physical Address:

Physical

Memory:

Putting Everything Together: Address Translation

Kubiatowicz CSI62 ©UCB Spring 2020

3/12/20

Recall: Two Critical Issues in Address Translation

- How to translate addresses fast enough?
 - Every instruction fetch
 - Plus every load / store
 - EVERY MEMORY REFERENCE !
 - More than one translation for EVERY instruction
- Next: What to do if the translation fails?
 - Page fault! This is a synchronous exception!

Recall: User→Kernel: (Exceptions: Traps & Interrupts)

- A system call instruction causes a synchronous exception (or "trap")

 In fact, often called a software "trap" instruction
- Other sources of Synchronous Exceptions ("Trap"):
 - Divide by zero, Illegal instruction, Bus error (bad address, e.g. unaligned access)
 - Segmentation Fault (address out of range)
 - Page Fault (for illusion of infinite-sized memory)
- Interrupts are Asynchronous Exceptions:
 - Examples: timer, disk ready, network, etc....
 - Interrupts can be disabled, traps cannot!
- On system call, exception, or interrupt:
 - Hardware enters kernel mode with interrupts disabled
 - Saves PC, then jumps to appropriate handler in kernel
 - Some processors (e.g. x86) also save registers, changes stack
- Handler does any required state preservation not done by CPU:
 - Might save registers, other CPU state, and switches to kernel stack

Precise Exceptions

- Precise ⇒ state of the machine is preserved as if program executed up to the offending instruction
 - All previous instructions completed
 - Offending instruction and all following instructions act as if they have not even started
 - Same system code will work on different implementations
 - Difficult in the presence of pipelining, out-of-order execution, ...
- Imprecise \Rightarrow system software has to figure out what is where and put it all back together
- Performance goals may lead designers to forsake precise interrupts
 - system software developers, user, markets etc. usually wish they had not done this
- Modern techniques for out-of-order execution and branch prediction help implement precise interrupts

Page Fault is a Synchronous Exception

- The Virtual-to-Physical Translation fails
 - PTE marked invalid (at whatever level of page table), Privilege-Level Violation, Access violation
- Causes a Fault / Trap
 - Not an interrupt because synchronous to instruction execution!
 - May occur on instruction fetch or data access
 - Protection violations typically terminate the instruction in a way that is restartable (more later)
- Page Faults engage operating system to fix the situation and retry the instruction
 - Allocate an additional stack page, or
 - Make the page accessible Copy on Write,
 - Bring page in from secondary storage demand paging
- Protection violations that cannot be resolved ⇒ terminate process (possibly "dumping core" image for debugging)
- Fundamental inversion of the hardware / software boundary

Operating System

physical address

Operating System

physical address

Operating System

Operating System

3/12/20

physical address

PT

physical address

scheduler

Inversion of the Hardware / Software Boundary

- In order for an instruction to complete ...
- It requires the intervention of operating system software
- Receive the page fault, remedy the situation
 - Load the page, create the page, copy-on-write
 - Update the PTE entry so the translation will succeed
- Restart (or resume) the instruction
 - This is one of the huge simplifications in RISC instructions sets
 - Can be very complex when instruction modify state (x86)

Demand Paging as Caching, ...

- What ''block size''? I page (e.g, 4 KB)
- What "organization" ie. direct-mapped, set-assoc., fully-associative?
 - Any page in any frame of memory, i.e., fully associative: arbitrary virtual \rightarrow physical mapping
- How do we locate a page?

- First check TLB, then page-table traversal

- What is page replacement policy? (i.e. LRU, Random...)
 - This requires more explanation... (kinda LRU)
- What happens on a miss?
 - Go to lower level to fill miss (i.e. disk)
- What happens on a write? (write-through, write back)

- Definitely write-back - need dirty bit!

Demand Paging

- Modern programs require a lot of physical memory – Memory per system growing faster than 25%-30%/year
- But they don't use all their memory all of the time
 - 90-10 rule: programs spend 90% of their time in 10% of their code
 - Wasteful to require all of user's code to be in memory
- Solution: use main memory as "cache" for disk

- Disk is larger than physical memory \Rightarrow
 - In-use virtual memory can be bigger than physical memory
 - Combined memory of running processes much larger than physical memory
 - » More programs fit into memory, allowing more concurrency
- Principle: Transparent Level of Indirection (page table)
 - Supports flexible placement of physical data
 - » Data could be on disk or somewhere across network
 - Variable location of data transparent to user program
 - » Performance issue, not correctness issue
Review: What is in a PTE?

- What is in a Page Table Entry (or PTE)?
 - Pointer to next-level page table or to actual page
 - Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
 - 2-level page tabler (10, 10, 12-bit offset)
 - Intermediate page tables called "Directories"

Origins of Paging

Recall: The Memory Hierarchy

Very Different Situation Today

Kubiatowicz CSI62 ©UCB Spring 2020

A Picture on one machine

Processes: 407 total, 2 running, 405 sleeping, 2135 threads Load Avg: 1.26, 1.26, 0.98 CPU usage: 1.35% user, 1.59% sys, 97.5% idle SharedLibs: 292M resident, 54M data, 43M linkedit. MemRegions: 155071 total, 4489M resident, 124M private, 1891M shared. PhysMem: 13G used (3518M wired), 2718M unused. VM: 1819G vsize, 1372M framework vsize, 68020510(0) swapins, 71200340(0) swapouts. Networks: packets: 40629441/21G in, 21395374/7747M out. Disks: 17026780/555G read, 15757470/638G written.

PID	COMMAND	%CPU	TIME	#TH	#WQ	#PORTS	MEM	PURG	CMPRS	PGRP	PPID	STATE
90498	bash	0.0	00:00.41	1	0	21	1080K	0B	564K	90498	90497	sleeping
90497	login	0.0	00:00.10	2	1	31	1236K	0B	1220K	90497	90496	sleeping
90496	Terminal	0.5	01:43.28	6	1	378-	103M-	16M	13M	90496	1	sleeping
89197	siriknowledg	0.0	00:00.83	2	2	45	2664K	0B	1528K	89197	1	sleeping
89193	com.apple.DF	0.0	00:17.34	2	1	68	2688K	0B	1700K	89193	1	sleeping
82655	LookupViewSe	0.0	00:10.75	3	1	169	13M	0B	8064K	82655	1	sleeping
82453	PAH_Extensio	0.0	00:25.89	3	1	235	15M	0B	7996K	82453	1	sleeping
75819	tzlinkd	0.0	00:00.01	2	2	14	452K	0B	444K	75819	1	sleeping
75787	MTLCompilerS	0.0	00:00.10	2	2	24	9032K	0B	9020K	75787	1	sleeping
75776	secd	0.0	00:00.78	2	2	36	3208K	0B	2328K	75776	1	sleeping
75098	DiskUnmountW	0.0	00:00.48	2	2	34	1420K	0B	728K	75098	1	sleeping
75093	MTLCompilerS	0.0	00:00.06	2	2	21	5924K	0B	5912K	75093	1	sleeping
74938	ssh-agent	0.0	00:00.00	1	0	21	908K	0B	892K	74938	1	sleeping
74063	Google Chrom	0.0	10:48.49	15	1	678	192M	0B	51M	54320	54320	sleeping

- Memory stays about 75% used, 25% for dynamics
- A lot of it is shared 1.9 GB

Kubiatowicz CSI62 ©UCB Spring 2020

22:10:39

Many Uses of "Demand Paging" ...

- Extend the stack
 - Allocate a page and zero it
- Extend the heap (sbrk of old, today mmap)
- Process Fork
 - Create a copy of the page table
 - Entries refer to parent pages NO-WRITE
 - Shared read-only pages remain shared
 - Copy page on write
- Exec
 - Only bring in parts of the binary in active use
 Do this on demand
- MMAP to explicitly share region (or to access a file as RAM)

Classic: Loading an executable into memory

- .exe ٠
 - lives on disk in the file system
 - contains contents of code & data segments, relocation entries and symbols
 - OS loads it into memory, initializes registers (and initial stack pointer)
 - program sets up stack and heap upon initialization:
 crt0 (C runtime init)

Kubiatowicz CSI62 ©UCB Spring 2020

Create Virtual Address Space of the Process

- Utilized pages in the VAS are backed by a page block on disk
 - Called the backing store or swap file
 - Typically in an optimized block store, but can think of it like a file

Kubiatowicz CSI62 ©UCB Spring 2020

Create Virtual Address Space of the Process

- User Page table maps entire VAS
- All the utilized regions are backed on disk

 swapped into and out of memory as needed
- For every process

Create Virtual Address Space of the Process

- User Page table maps entire VAS
 - Resident pages to the frame in memory they occupy
 - The portion of it that the HW needs to access must be resident in memory

Provide Backing Store for VAS

- User Page table maps entire VAS
- Resident pages mapped to memory frames
- For all other pages, OS must record where to find them on disk

- FindBlock(PID, page#) → disk_block
 - Some OSs utilize spare space in PTE for paged blocks
 - Like the PT, but purely software
- Where to store it?
 - In memory can be compact representation if swap storage is contiguous on disk
 - Could use hash table (like Inverted PT)
- Usually want backing store for resident pages too
- May map code segment directly to on-disk image
 Saves a copy of code to swap file
- May share code segment with multiple instances of the program

Provide Backing Store for VAS

On page Fault ...

On page Fault ... find & start load

On page Fault ... schedule other P or T

On page Fault ... update PTE

Eventually reschedule faulting thread

Summary: Steps in Handling a Page Fault

3/12/20

Demand Paging Mechanisms

- PTE makes demand paging implementatable
 - Valid \Rightarrow Page in memory, PTE points at physical page
 - Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when necessary
- Suppose user references page with invalid PTE?
 - Memory Management Unit (MMU) traps to OS
 - » Resulting trap is a "Page Fault"
 - What does OS do on a Page Fault?:
 - » Choose an old page to replace
 - » If old page modified (''D=I''), write contents back to disk
 - » Change its PTE and any cached TLB to be invalid
 - » Load new page into memory from disk
 - » Update page table entry, invalidate TLB for new entry
 - » Continue thread from original faulting location
 - TLB for new page will be loaded when thread continued!
 - While pulling pages off disk for one process, OS runs another process from ready queue
 - » Suspended process sits on wait queue

Some questions we need to answer!

- During a page fault, where does the OS get a free frame?
 - Keeps a free list
 - Unix runs a ''reaper'' if memory gets too full
 - » Schedule dirty pages to be written back on disk
 - » Zero (clean) pages which haven't been accessed in a while
 - As a last resort, evict a dirty page first
- How can we organize these mechanisms?
 - Work on the replacement policy
- How many page frames/process?
 - Like thread scheduling, need to ''schedule'' memory resources:
 - » Utilization? fairness? priority?
 - Allocation of disk paging bandwidth

Cache Behavior under WS model

- Amortized by fraction of time the Working Set is active
- Transitions from one WS to the next
- Capacity, Conflict, Compulsory misses
- Applicable to memory caches and pages. Others ?

Another model of Locality: Zipf

P access(rank) = 1/rank

Rank

- Likelihood of accessing item of rank r is α 1/r a
- Although rare to access items below the top few, there are so many that it yields a "heavy tailed" distribution
- Substantial value from even a tiny cache
- Substantial misses from even a very large cache

Kubiatowicz CSI62 ©UCB Spring 2020

Demand Paging Cost Model

- Since Demand Paging like caching, can compute average access time! (''Effective Access Time'')
 - EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
 - EAT = Hit Time + Miss Rate x Miss Penalty
- Example:
 - Memory access time = 200 nanoseconds
 - Average page-fault service time = 8 milliseconds
 - Suppose p = Probability of miss, I -p = Probably of hit
 - Then, we can compute EAT as follows:

EAT =
$$200$$
ns + p x 8 ms

- If one access out of 1,000 causes a page fault, then EAT = 8.2 μs :
 - This is a slowdown by a factor of 40!
- What if want slowdown by less than 10%?
 - − 200ns x I.I < EAT \Rightarrow p < 2.5 x I0⁻⁶
 - This is about I page fault in 400,000!

What Factors Lead to Misses in Page Cache?

• Compulsory Misses:

- Pages that have never been paged into memory before
- How might we remove these misses?
 - » Prefetching: loading them into memory before needed
 - » Need to predict future somehow! More later

• Capacity Misses:

- Not enough memory. Must somehow increase available memory size.
- Can we do this?
 - » One option: Increase amount of DRAM (not quick fix!)
 - » Another option: If multiple processes in memory: adjust percentage of memory allocated to each one!

• Conflict Misses:

 Technically, conflict misses don't exist in virtual memory, since it is a "fullyassociative" cache

• Policy Misses:

- Caused when pages were in memory, but kicked out prematurely because of the replacement policy
- How to fix? Better replacement policy

Page Replacement Policies

- Why do we care about Replacement Policy?
 - Replacement is an issue with any cache
 - Particularly important with pages
 - » The cost of being wrong is high: must go to disk
 - » Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)

- Throw out oldest page. Be fair let every page live in memory for same amount of time.
- Bad throws out heavily used pages instead of infrequently used

• RANDOM:

- Pick random page for every replacement
- Typical solution for TLB's. Simple hardware
- Pretty unpredictable makes it hard to make real-time guarantees
- MIN (Minimum):
 - Replace page that won't be used for the longest time
 - Great (provably optimal), but can't really know future...
 - But past is a good predictor of the future ...

Replacement Policies (Con't)

- LRU (Least Recently Used):
 - Replace page that hasn't been used for the longest time
 - Programs have locality, so if something not used for a while, unlikely to be used in the near future.
 - Seems like LRU should be a good approximation to MIN.
- How to implement LRU? Use a list!

Head
$$\longrightarrow$$
 Page 6 \longrightarrow Page 7 \longrightarrow Page 1 \longrightarrow Page 2

- On each use, remove page from list and place at head
- LRU page is at tail
- Problems with this scheme for paging?
 - Need to know immediately when each page used so that can change position in list...
 - Many instructions for each hardware access
- In practice, people approximate LRU (more later)

Example: FIFO (strawman)

- Suppose we have 3 page frames, 4 virtual pages, and following reference stream:
 A B C A B D A D B C B
- Consider FIFO Page replacement:

Ref: Page:	А	В	С	A	В	D	A	D	В	С	В
Ι	A					D				С	
2		В					A				
3			С						В		

- FIFO: 7 faults
- When referencing D, replacing A is bad choice, since need A again right away

Example: MIN / LRU

- Suppose we have the same reference stream:
 A B C A B D A D B C B
- Consider MIN Page replacement:

- MIN: 5 faults
 - Where will D be brought in? Look for page not referenced farthest in future
- What will LRU do?
 - Same decisions as MIN here, but won't always be true!

Kubiatowicz CSI62 ©UCB Spring 2020

Is LRU guaranteed to perform well?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

Ref:	A	В	С	D	A	В	С	D	A	В	С	D
Ρασρ												
	A			D			С			В		
2		В			A			D			С	
3			С			В			A			D

- Every reference is a page fault!

• Fairly contrived example of working set of N+1 on N frames

When will LRU perform badly?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

Ref:	A	В	С	D	A	В	С	D	A	В	С	D
Ρασοι												
	А			D			С			В		
2		В			A			D			С	
3			С			В			A			D

- Every reference is a page fault!
- MIN Does much better:

Why it works in Practice: Working Set Model

 As a program executes it transitions through a sequence of "working sets" consisting of varying sized subsets of the address space

Graph of Page Faults Versus The Number of Frames

- One desirable property: When you add memory the miss rate drops (stack property)
 - Does this always happen?
 - Seems like it should, right?
- No: Bélády's anomaly
 - Certain replacement algorithms (FIFO) don't have this obvious property!

Adding Memory Doesn't Always Help Fault Rate

- Does adding memory reduce number of page faults? Yes for LRU and MIN
 - Not necessarily for FIFO! (Called Bélády's anomaly)

- After adding memory:
 With FIFO, contents can be completely different
 In contrast, with LRU or MIN, contents of memory with X pages are a subset of contents with X+1 Page

Summary (1/2)

- The Principle of Locality:
 - Program likely to access a relatively small portion of the address space at any instant of time.
 - » Temporal Locality: Locality in Time
 - » Spatial Locality: Locality in Space
- Three (+1) Major Categories of Cache Misses:
 - Compulsory Misses: sad facts of life. Example: cold start misses.
 - Conflict Misses: increase cache size and/or associativity
 - Capacity Misses: increase cache size
 - Coherence Misses: Caused by external processors or I/O devices
- Cache Organizations:
 - Direct Mapped: single block per set
 - Set associative: more than one block per set
 - Fully associative: all entries equivalent

Summary (2/2)

- 'Translation Lookaside Buffer'' (TLB)
 - Small number of PTEs and optional process IDs (< 512)
 - Fully Associative (Since conflict misses expensive)
 - On TLB miss, page table must be traversed and if located PTE is invalid, cause Page Fault
 - On change in page table, TLB entries must be invalidated
 - TLB is logically in front of cache (need to overlap with cache access)
- Precise Exception specifies a single instruction for which:

 All previous instructions have completed (committed state)
 No following instructions nor actual instruction have started
- Can manage caches in hardware or software or both

 Goal is highest hit rate, even if it means more complex cache
 management