
CS162  
Operating Systems and 
Systems Programming 

Lecture 6  
 

Synchronization:  
Locks and Semaphores

February 11th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: How does a thread get started?

• How do we make a new thread?
– Setup TCB/kernel thread to point at new user stack and ThreadRoot code
– Put pointers to start function and args in registers
– This depends heavily on the calling convention (i.e. RISC-V vs x86)

• Eventually, run_new_thread() will select this TCB and return into beginning of
ThreadRoot()

St
ac

k
gr

ow
th

A

B(while)

yield

run_new_thread

switch

Other Thread

ThreadRoot stub

New Thread

SetupNewThread(tNew) {
 …
 TCB[tNew].regs.sp = newStackPtr;
 TCB[tNew].regs.retpc =
&ThreadRoot;
 TCB[tNew].regs.r0 = fcnPtr  
 TCB[tNew].regs.r1 = fcnArgPtr
}

ThreadRoot

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: What does ThreadRoot() look like?

• ThreadRoot() is the root for the thread routine:
 ThreadRoot(fcnPTR,fcnArgPtr) {
 DoStartupHousekeeping();
 UserModeSwitch(); /* enter user mode */
 Call fcnPtr(fcnArgPtr);
 ThreadFinish();
 }

• Startup Housekeeping
– Includes things like recording  

start time of thread
– Other statistics

• Stack will grow and shrink with  
execution of thread

• Final return from thread returns into ThreadRoot()  
which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack grow
th

Thread Code  
*fcnPtr()

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Recall: Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing ≡ Multiple CPUs
– Multiprogramming ≡ Multiple Jobs or Processes
– Multithreading ≡ Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and interleaving: FIFO,

Random, …
– Dispatcher can choose to run each thread to completion or time-slice

in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Recall: Process

Memory

I/O State
(e.g., file,
socket
contexts)

CPU state
(PC, SP,
registers..)

Sequential
stream of
instructions

A(int tmp) {
 if (tmp<2)
 B();
 printf(tmp);
}
B() {
 C();
}
C() {
 A(2);
}
A(1);
…

(Unix) Process

Resources
Stack

Stored in
OS

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Recall: Processes vs. Threads
Process 1

CPU
sched. OS

CPU
(1 core)

1 thread at
a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead:
– Same process: low
– Different proc.: high

• Protection
– Same proc: low
– Different proc: high

• Sharing overhead
– Same proc: med
– Different proc: high
– Note that sharing always

involves at least a context
switch!

CPU
state

CPU
state

CPU
state

CPU
state

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 7

Recall: Processes vs. Threads (Multi-Core)
Process 1

CPU
sched. OS

Core 
1

4 threads at
a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…
CPU
state

CPU
state

CPU
state

CPU
state

Core 
2

Core 
3

Core 
4

• Switch overhead:
– Same process: low
– Different proc.: med

• Protection
– Same proc: low
– Different proc: med

• Sharing overhead
– Same proc: low
– Different proc: med
– May not need to switch at

all!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 8

Recall: Hyper-Threading
Process 1

CPU
sched. OS

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead
between hardware-
threads: very-low (done
in hardware)

• Contention for ALUs/
FPUs may hurt
performance

Core 1

CPU
Core 2 Core 3 Core 4

8 threads at a
time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 9

Kernel versus User-Mode Threads

• We have been talking about kernel threads
– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different things  

• Downside of kernel threads: a bit expensive
– Need to make a crossing into kernel mode to schedule  

• Lighter weight option: User level Threads

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 10

User-Mode Threads
• Lighter weight option:

– User program provides scheduler and  
thread package

– May have several user threads per kernel  
thread

– User threads may be scheduled  
non-preemptively relative to each other  
(only switch on yield())

– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 11

Some Threading Models

Simple One-to-One
Threading Model
(PINTOS!)

Many-to-One Many-to-Many

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 12

Classification

• Most operating systems have either
– One or many address spaces
– One or many threads per address space

Mach, OS/2, Linux
Windows 10

Win NT to XP, Solaris, HP-
UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f a
dd

r
sp

ac
es

:

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Recall: ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 14

Recall: ATM bank server example
• Suppose we wanted to implement a server process to handle

requests from an ATM network:
BankServer() {  
 while (TRUE) {  
 ReceiveRequest(&op, &acctId, &amount); 
 ProcessRequest(op, acctId, amount); 
 }  
}

 ProcessRequest(op, acctId, amount) {  
 if (op == deposit) Deposit(acctId, amount); 
 else if …  
}

 Deposit(acctId, amount) {  
 acct = GetAccount(acctId); /* may use disk I/O */  
 acct->balance += amount;  
 StoreAccount(acct); /* Involves disk I/O */  
}

• How could we speed this up?
– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 15

Recall: Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without

“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
 Deposit(acctId, amount) {  
 acct = GetAccount(actId); /* May use disk I/O */  
 acct->balance += amount;  
 StoreAccount(acct); /* Involves disk I/O */  
 }

• Unfortunately, shared state can get corrupted: 
Thread 1 Thread 2  

load r1, acct->balance  
 load r1, acct->balance  
 add r1, amount2  
 store r1, acct->balance  
 add r1, amount1  
 store r1, acct->balance  

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 16

Administrivia
• Anything?

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 17

Recall: Atomic Operations

• To understand a concurrent program, we need to know what the
underlying indivisible operations are!

• Atomic Operation: an operation that always runs to completion or
not at all

– It is indivisible: it cannot be stopped in the middle and state cannot be
modified by someone else in the middle

– Fundamental building block – if no atomic operations, then have no
way for threads to work together

• On most machines, memory references and assignments (i.e. loads
and stores) of words are atomic

• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole array

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 18

Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between problems in

OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 19

Definitions

• Synchronization: using atomic operations to ensure cooperation
between threads

– For now, only loads and stores are atomic
– We are going to show that its hard to build anything useful with only

reads and writes

• Mutual Exclusion: ensuring that only one thread does a particular
thing at a time

– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can execute at
once. Only one thread at a time will get into this section of code

– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of describing the

same thing

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 20

More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and  
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the

refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

#$@%@#$@

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 21

Too Much Milk: Correctness Properties

• Need to be careful about correctness of concurrent programs,
since non-deterministic

– Impulse is to start coding first, then when it doesn’t work, pull
hair out

– Instead, think first, then code
– Always write down behavior first

• What are the correctness properties for the “Too much milk”
problem???

– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and store
operations as building blocks

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):
 if (noMilk) {  
 if (noNote) { 
 leave Note; 
 buy milk; 
 remove note; 
 } 

}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

 Thread A Thread B
if (noMilk) {  

if (noMilk) {  
 if (noNote) {

 if (noNote) {  
 leave Note;

 buy Milk;
 remove Note;

 }
 }
 leave Note;
 buy Milk;
 remove Note;  

 }  
}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 24

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):
 if (noMilk) {  
 if (noNote) { 
 leave Note; 
 buy milk; 
 remove note; 
 } 

}
• Result?

– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before

buying milk!
• Solution makes problem worse since fails intermittently

– Makes it really hard to debug…
– Must work despite what the dispatcher does!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 25

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

 leave Note;
if (noMilk) {  

 if (noNote) { 
 buy milk; 
 } 

}
remove Note;  

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
 leave note A; leave note B;  

if (noNote B) { if (noNoteA) {  
 if (noMilk) { if (noMilk) {  
 buy Milk; buy Milk;  
 } }  
} } 
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead each to think
that the other is going to buy

• Really insidious:
– Extremely unlikely this would happen, but will at worse possible time
– Probably something like this in UNIX

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 27

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
 leave note A; leave note B;  

while (note B) {\\X if (noNote A) {\\Y  
 do nothing; if (noMilk) {  
} buy milk; 
if (noMilk) { }  
 buy milk; }  
} remove note B; 
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Case 1

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happenedbefore
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “leave note A” happens before “if (noNote A)”

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 30

leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

Case 1

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happenedbefore

• “leave note A” happens before “if (noNote A)”

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 31

leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

Case 1

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

Wait for note
B to be
removed

happenedbefore

• “leave note A” happens before “if (noNote A)”

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Case 2

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happened

before
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “if (noNote A)” happens before “leave note A”

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 33

Case 2

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happened

before
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “if (noNote A)” happens before “leave note A”

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 34

Case 2

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happened

before
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for note
B to be
removed

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 35

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for each

thread:
 if (noMilk) {  
 buy milk;  
 }

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide higher-level primitives than atomic load & store
– Build even higher-level programming abstractions on this hardware support

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 36

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock

– lock.Acquire() – wait until lock is free, then grab
– lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the

lock and both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

milklock.Acquire();
if (nomilk)
 buy milk;
milklock.Release();

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 37

Hardware

Higher-
level  
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 38

How to Implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and  
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
– What about putting a task to sleep?

» What is the interface between the hardware and scheduler?
– Complexity?

» Done in the Intel 432
» Each feature makes HW more complex and slow

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 39

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }  
 LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

 LockAcquire();  
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 40

Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  
// Enable interrupts?  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Release() {  
disable interrupts;  
if (anyone on wait queue) {  

take thread off wait queue  
Place on ready queue;  

} else {  
value = FREE;  

}  
enable interrupts;  

}  
 

• Key idea: maintain a lock variable and impose mutual exclusion
only during operations on that variable

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 41

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section (inside
Acquire()) is very short

– User of lock can take as long as they like in their own critical section:
doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  
// Enable interrupts?  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Critical
Section

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 42

Interrupt Re-enable in Going to Sleep

• What about re-enabling ints when going to sleep?
Acquire() {  

disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 43

Interrupt Re-enable in Going to Sleep

• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Enable Position

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 44

Interrupt Re-enable in Going to Sleep

• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Enable Position

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 45

Interrupt Re-enable in Going to Sleep

• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Enable Position

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 46

Interrupt Re-enable in Going to Sleep

• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread still thinks it

needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Enable Position

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 47

`

• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread still thinks it

needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

• Want to put it after sleep(). But – how?

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Enable Position

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 48

How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire and  

re-enables interrupts
 Thread A Thread B

 .  
.  

disable ints  
sleep

sleep return  
enable ints

.  

.  

.
disable int  

sleep
sleep return  
enable ints  

.  

.

context 
switch

context 
switch

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Atomic Read-Modify-Write Instructions
• Problems with previous solution:

– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and would be very
time consuming

• Alternative: atomic instruction sequences
– These instructions read a value and write a new value atomically
– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence protocol)

– Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 50

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */ 

 result = M[address]; // return result from “address” and  
 M[address] = 1; // set value at “address” to 1  
 return result;  
}

• swap (&address, register) { /* x86 */  
 temp = M[address]; // swap register’s value to  
 M[address] = register; // value at “address”  
 register = temp;  
}

• compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) { // If memory still == reg1,  
 M[address] = reg2; // then put reg2 => memory  
 return success;  
 } else { // Otherwise do not change memory  
 return failure;  
 }  
}

• load-linked&store-conditional(&address) { /* R4000, alpha */ 
 loop:  
 ll r1, M[address];  
 movi r2, 1; // Can do arbitrary computation  
 sc r2, M[address];  
 beqz r2, loop;  
}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 51

• compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) {  
 M[address] = reg2;  
 return success;  
 } else {  
 return failure;  
 }  
}

Here is an atomic add to linked-list function:
 addToQueue(&object) {  
 do { // repeat until no conflict  
 ld r1, M[root] // Get ptr to current head  
 st r1, M[object] // Save link in new object  
 } until (compare&swap(&root,r1,object));  
}

Using of Compare&Swap for queues

root next next

next
New

Object

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 52

Implementing Locks with test&set
• Another flawed, but simple solution:

int value = 0; // Free

Acquire() {  
while (test&set(value)); // while busy  

}
Release() {  

value = 0;  
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It

returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets value=1 (no change)  

It returns 1, so while loop continues.
– When we set value = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting
– For multiprocessors: every test&set() is a write, which makes value

ping-pong around in cache (using lots of network BW)

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 53

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient as thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock (no one

wins!)
– Priority Inversion: If busy-waiting thread has higher priority than thread

holding lock ⇒ no progress!
• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may wait for an

arbitrary long time!
– Thus even if busy-waiting was OK for locks, definitely not ok for other

primitives
– Homework/exam solutions should avoid busy-waiting!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 54

Multiprocessor Spin Locks: test&test&set
• A better solution for multiprocessors:

int mylock = 0; // Free
 Acquire() {
 do {
 while(mylock); // Wait until might be free  

 } while(test&set(&mylock)); // exit if get lock
 }

 Release() {  
 mylock = 0; 
 }

• Simple explanation:
– Wait until lock might be free (only reading – stays in cache)
– Then, try to grab lock with test&set
– Repeat if fail to actually get lock

• Issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

» However, it does not impact other processors!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 55

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {  
// Short busy-wait time  
while (test&set(guard));  
if anyone on wait queue {  

take thread off wait queue  
Place on ready queue;  

} else {  
value = FREE;  

}  
guard = 0;  

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time  
while (test&set(guard));  
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;  

} else {  
value = BUSY;  
guard = 0;  

}  
}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 56

Recall: Locks using Interrupts vs. test&set
Compare to “disable interrupt” solution

Basically we replaced:
– disable interrupts ! while (test&set(guard));
– enable interrupts ! guard = 0;

int value = FREE;

Acquire() {  
 disable interrupts;  
 if (value == BUSY) { 
 put thread on wait queue; 
 Go to sleep(); 
 // Enable interrupts? 
 } else { 
 value = BUSY;  
 }  
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if (anyone on wait queue) { 
 take thread off wait queue 
 Place on ready queue; 
 } else { 
 value = FREE;  
 }  
 enable interrupts;  
}  
 

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 57

Recap: Locks using interrupts
int value = 0;
Acquire() {
 // Short busy-wait time  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() && Enab Ints  
 } else {  
 value = 1;  
 enable interrupts;  
 }  
}

Release() {  
 // Short busy-wait time  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Acquire() {
 disable interrupts;  
}

Release() {  
 enable interrupts;  
}

If one thread in critical
section, no other
activity (including OS)
can run!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 58

Recap: Locks using test & set
int guard = 0;
int value = 0;
Acquire() {
 // Short busy-wait time  
 while(test&set(guard));  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep()& guard = 0;  
 } else {  
 value = 1;  
 guard = 0;  
 }  
}

Release() {  
 // Short busy-wait time  
 while (test&set(guard));  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 guard = 0;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

int value = 0;
Acquire() {
 while(test&set(value));  
}

Release() {  
 value = 0;  
}

Threads waiting to
enter critical section
busy-wait

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 59

Higher-level Primitives than Locks
• Goal of last couple of lectures:

– What is right abstraction for synchronizing threads that share
memory?

– Want as high a level primitive as possible
• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find bugs,
since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s  
(10 years after started), systems running UNIX would crash every
week or so – concurrency bugs

• Synchronization is a way of coordinating multiple concurrent
activities that are using shared state

– This lecture and the next presents some ways of structured sharing

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Semaphores

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value and
supports the following two operations:

– P(): an atomic operation that waits for semaphore to become positive,
then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore by 1, waking

up a waiting P, if any
» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Value=2Value=1Value=0

Semaphores Like Integers Except
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write value, except

to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from V – even if

they both happen at same time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 62

Semaphores Like Integers Except

• Semaphores are like integers, except
– No negative values
– Only operations allowed are P and V – can’t read or write value, except

to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from V – even if

they both happen at same time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=0Value=2Value=2Value=1Value=0Value=1Value=0

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 63

Two Uses of Semaphores
Mutual Exclusion (initial value = 1)
• Also called “Binary Semaphore”.
• Can be used for mutual exclusion:

 semaphore.P();  
 // Critical section goes here  
 semaphore.V();

Scheduling Constraints (initial value = 0)
• Allow thread 1 to wait for a signal from thread 2

– thread 2 schedules thread 1 when a given event occurs
• Example: suppose you had to implement ThreadJoin which must

wait for thread to terminate:
Initial value of semaphore = 0
 ThreadJoin {  
 semaphore.P();  
 }

 ThreadFinish {  
 semaphore.V();  
 }

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Producer-Consumer with a Bounded Buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep, so
put a fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of Cokes in machine
– Consumer can’t take Cokes out if machine is empty

Producer ConsumerBuffer

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 65

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full (scheduling
constraint)

– Producer must wait for consumer to empty buffers, if all full (scheduling
constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the machine and

somebody comes up and tries to stick their money into the machine
• General rule of thumb:  

Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 66

Full Solution to Bounded Buffer
 Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;  
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine
 
Producer(item) {  
 emptySlots.P(); // Wait until space  
 mutex.P(); // Wait until machine free  
 Enqueue(item);  
 mutex.V();  
 fullSlots.V(); // Tell consumers there is  
 // more coke  
}

 Consumer() {  
 fullSlots.P(); // Check if there’s a coke  
 mutex.P(); // Wait until machine free  
 item = Dequeue();  
 mutex.V();  
 emptySlots.V(); // tell producer need more  
 return item;  
}  

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 67

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might  

affect scheduling efficiency
• What if we have 2 producers  

or 2 consumers?
– Do we need to change anything?

Decrease # of
empty slots

Increase # of
occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

 Producer(item) {  
 mutex.P();  
 emptySlots.P();  
 Enqueue(item);  
 mutex.V();  
 fullSlots.V();  
}  
Consumer() {  
 fullSlots.P();  
 mutex.P();  
 item = Dequeue();  
 mutex.V();  
 emptySlots.V();  
 return item;  
}  

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 68

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up; just think of trying to do the

bounded buffer with only loads and stores
– Problem is that semaphores are dual purpose:

» They are used for both mutex and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer gives deadlock

is not immediately obvious. How do you prove correctness to
someone?

• Cleaner idea: Use locks for mutual exclusion and condition variables
for scheduling constraints

• Definition: Monitor : a lock and zero or more condition variables
for managing concurrent access to shared data

– Some languages like Java provide this natively
– Most others use actual locks and condition variables

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 69

 Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something inside a
critical section

– Key idea: make it possible to go to sleep inside critical section by atomically
releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 70

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue

Lock lock;  
Queue queue;

AddToQueue(item) {  
lock.Acquire(); // Lock shared data  
queue.enqueue(item); // Add item  
lock.Release(); // Release Lock  

}  

RemoveFromQueue() {  
lock.Acquire(); // Lock shared data  
item = queue.dequeue();// Get next item or null  
lock.Release(); // Release Lock  
return(item); // Might return null  

}

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 71

Condition Variables
• How do we change the RemoveFromQueue() routine to wait until

something is on the queue?
– Could do this by keeping a count of the number of things on the queue

(with semaphores), but error prone
• Condition Variable: a queue of threads waiting for something inside a

critical section
– Key idea: allow sleeping inside critical section by atomically releasing lock

at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep. Re-acquire

lock later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!
– In Birrell paper, he says can perform signal() outside of lock – IGNORE

HIM (this is only an optimization)

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 72

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Lock lock;  
Condition dataready;  
Queue queue;

AddToQueue(item) {  
lock.Acquire(); // Get Lock  
queue.enqueue(item); // Add item  
dataready.signal(); // Signal any waiters  
lock.Release(); // Release Lock  

}  

RemoveFromQueue() {  
lock.Acquire(); // Get Lock  
while (queue.isEmpty()) {  

dataready.wait(&lock); // If nothing, sleep  
}  
item = queue.dequeue(); // Get next item  
lock.Release(); // Release Lock  
return(item);  

}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 73

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:
 while (queue.isEmpty()) {  
 dataready.wait(&lock); // If nothing, sleep  
 }  
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {  
 dataready.wait(&lock); // If nothing, sleep  
 }  
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter ; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits critical section

or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 74

Summary (1/2)
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various synchronization

primitives
• Talked about hardware atomicity primitives:

– Disabling of Interrupts, test&set, swap, compare&swap,  
load-locked & store-conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 75

Summary (2/2)
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

