
CS162  
Operating Systems and 
Systems Programming 

Lecture 5  
 

Concurrency and Mutual Exclusion

February 4th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: Fork, Wait, and (optional) Exec

• Return value from Fork: integer
– When > 0: return value is pid of new child (Running in Parent)
– When = 0: Running in new Child process
– When < 0: Error! Must handle somehow

• Wait() system call: wait for next child to exit
– Return value is PID of terminating child
– Argument is pointer to integer variable to hold exit status

• Exec() family of calls: replace process with new executable

 cpid = fork();
 if (cpid > 0) { // Parent Process
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 tcpid = wait(&status);
 printf("[%d] bye %d\n", mypid, tcpid);
 } else if (cpid == 0) { // Child Process
 mypid = getpid();
 printf("[%d] child\n", mypid);
 execl(filename,(char *)0); // Opt: start new program
 } else { // Error! }

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

 computePI() {
 while(TRUE) {
 ComputeNextDigit();
 yield();
 }
 }

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Recall: Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

 newThread = PickNewThread();
 switch(curThread, newThread);
 ThreadHouseKeeping(); /* Do any cleanup */

 }
• How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack pointer
– Maintain isolation for each thread

yield

ComputePI

Stack grow
thrun_new_thread

kernel_yield
Trap to OS

switch

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 5

• Consider the following code
blocks:
 proc A() {

 B();
 }
 proc B() {
 while(TRUE) {
 yield();
 }
 }

• Suppose we have 2 threads:
– Threads S and T

Thread S

S
t
a
c
k

gr
ow

th A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to Thread
T's (and vice versa)

Recall: Multithreaded Stack Switching

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Goals for Today

• Finish discussion of Threads
• Concurrency and need for Synchronization Operations
• Basic Synchronization through Locks
• Initial Lock Implementations

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 7

run_new_thread

kernel_read
Trap to OS

switch

What happens when thread blocks on I/O?

• What happens when a thread requests a block of data from the
file system?
– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

Stack grow
th

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 8

External Events

• What happens if thread never does any I/O, never waits, and
never yields control?
– Could the ComputePI program grab all resources and never

release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!

• Answer: utilize external events
– Interrupts: signals from hardware or software that stop the

running code and jump to kernel
– Timer: like an alarm clock that goes off every some milliseconds

• If we make sure that external events occur frequently enough,
can ensure dispatcher runs

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 9

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor
– Interrupt identity specified with ID line
– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software

• CPU can disable all interrupts with internal flag
• Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority EncoderT
im

er

Int Disable

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 10

...
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

...

PC
 sa

ve
d

Disa
ble

 A
ll I

nt
s

Ker
ne

l M
od

e

Restore PC

Enable all Ints

User M
ode

Raise priority
(set mask)

Reenable All Ints
Save registers
Dispatch to Handler

…
Transfer Network
Packet from
hardware  
to Kernel Buffers

…
Restore registers
Clear current Int
Disable All Ints
Restore priority

(clear Mask)
RTI

“I
nt

er
ru

pt
 H

an
dl

er
”

Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

Ex
te

rn
al

 In
te

rr
up

t

Pipeline Flush
...

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

...

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 11

Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem
– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
 

TimerInterrupt() {  
 DoPeriodicHouseKeeping();  
 run_new_thread();  
}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch
Stack grow

th

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 12

Hardware context switch support in x86

• Syscall/Intr (U ! K)
– PL 3 ! 0;
– TSS " EFLAGS, CS:EIP;
– SS:SP " k-thread stack (TSS PL 0);
– push (old) SS:ESP onto (new) k-stack
– push (old) eflags, cs:eip, <err>
– CS:EIP " <k target handler>

• Then
– Handler then saves other regs, etc
– Does all its works, possibly choosing other threads,

changing PTBR (CR3)

– kernel thread has set up user GPRs

• iret (K ! U)
– PL 0 ! 3;
– Eflags, CS:EIP " popped off k-stack
– SS:SP " user thread stack (TSS PL 3);

pg 2,942 of 4,922 of x86 reference manual Pintos: tss.c, intr-stubs.S

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Pintos: Kernel Crossing on Syscall or Interrupt

user
code

user
stack

PTBR

TCB

kernel
code

kernel
thread
stack

PTBR

cs:eip
ss:esp

cs:eip

TCB

sy
sc

al
l
/

in
te

rr
up

t

cs:eip
ss:esp

PTBR

TCB

cs:eip

sa
ve

s

ss:esp

PTBR

TCB

cs:eip

cs:eip
ss:esp

ss:esp

ir
et

cs:eip
ss:esp

PTBR

TCBpr
oc

es
si
ng

re
ad

y
to

 r
es

um
e

…

cs:eip
ss:esp

Time

ss:esp

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 14

Pintos: Context Switch – Scheduling

user
code

user
stack

cs:eip
ss:esp

PTBR

TCB

kernel
code

kernel
thread
stack

PTBR

TCB

cs:eip
ss:esp

cs:eip
ss:esp

sy
sc

al
l
/

in
te

rr
up

t

cs:eip
ss:esp

PTBR

TCB

cs:eip

sa
ve

s

ss:esp

ir
et

cs:eip
ss:esp

PTBR’

TCBpr
oc

es
si
ng

re
ad

y
to

 r
es

um
e

…

Sc
he

du
le

switch kernel threads

PTBR’

TCB

cs:eip’

cs:eip
ss:esp’

user’
stack

ss:esp’

Pintos: switch.S

Time

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 15

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that creates a new
thread and places it on ready queue 

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate 

• Implementation
– Sanity check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable)

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 16

How do we initialize TCB and Stack?
• Initialize Register fields of TCB
– Stack pointer made to point at stack
– PC return address ⇒ OS (asm) routine ThreadRoot()
– Two arg registers (say rdi and rsi for x86) initialized to fcnPtr and
fcnArgPtr, respectively

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)
– Think of stack frame as just before body of ThreadRoot() really gets

started
ThreadRoot stub

Initial Stack

Stack grow
th

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 17

How does Thread get started?

• Need to construct a new kernel thread that is ready to run when
switch goes to it
• Note that switch doesn’t know any difference between new or

preexisting thread!

St
ac

k
gr

ow
th

A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 18

How does a thread get started?

• How do we make a new thread?
– Setup TCB/kernel thread to point at new user stack and ThreadRoot code
– Put pointers to start function and args in registers
– This depends heavily on the calling convention (i.e. RISC-V vs x86)

• Eventually, run_new_thread() will select this TCB and return into beginning of
ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)

yield

run_new_thread

switch

Other Thread

ThreadRoot stub
New Thread

SetupNewThread(tNew) {
 …
 TCB[tNew].regs.sp = newStackPtr;
 TCB[tNew].regs.retpc =
&ThreadRoot;
 TCB[tNew].regs.r0 = fcnPtr  
 TCB[tNew].regs.r1 = fcnArgPtr
}

ThreadRoot

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 19

What does ThreadRoot() look like?

• ThreadRoot() is the root for the thread routine:
 ThreadRoot(fcnPTR,fcnArgPtr) {
 DoStartupHousekeeping();
 UserModeSwitch(); /* enter user mode */
 Call fcnPtr(fcnArgPtr);
 ThreadFinish();
 }

• Startup Housekeeping
– Includes things like recording  

start time of thread
– Other statistics

• Stack will grow and shrink with  
execution of thread
• Final return from thread returns into ThreadRoot()  

which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack grow
th

Thread Code  
*fcnPtr()

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 20

Administrivia
• anything?

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 21

Kernel-Supported Threads
• Each thread has a thread control block
– CPU registers, including PC, pointer to stack
– Scheduling info: priority, etc.
– Pointer to Process control block

• OS scheduler uses TCBs, not PCBs

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Kernel-Supported User Threads

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 23

User-level Multithreading: pthreads

• int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

– thread is created executing start_routine with arg as its sole
argument. (return is implicit call to pthread_exit)

• void pthread_exit(void *value_ptr);

– terminates and makes value_ptr available to any successful join
• int pthread_join(pthread_t thread, void **value_ptr);

– suspends execution of the calling thread until the
target thread terminates.
– On return with a non-NULL value_ptr the value passed

to pthread_exit() by the terminating thread is made available in
the location referenced by value_ptr.

man pthread
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 24

Little
Example

H
ow

 t
o

te
ll

if
 s

om
et

hi
ng

 is
 d

on
e?

Re
al
ly
 d

on
e?

O
K

to
 r

ec
la
im

 it
s

re
so

ur
ce

s?

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 25

Fork-Join Pattern

• Main thread creates (forks) collection of sub-threads passing
them args to work on, joins with them, collecting results.

create

exit

join

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Thread Abstraction

• Illusion: Infinite number of processors

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 27

Thread Abstraction

• Illusion: Infinite number of processors
• Reality: Threads execute with variable speed
– Programs must be designed to work with any schedule

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Programmer vs. Processor View

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Programmer vs. Processor View

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Programmer vs. Processor View

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Possible Executions

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Per Thread Descriptor  
(Kernel Supported Threads)

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter (PC), pointer to stack

(SP)
– Scheduling info: state, priority, CPU time
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process (PCB) – user threads
– … (add stuff as you find a need)

• OS Keeps track of TCBs in “kernel memory”
– In Array, or Linked List, or …
– I/O state (file descriptors, network connections, etc)

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 33

Multithreaded Processes

• Process Control Block (PCBs) points to multiple Thread Control
Blocks (TCBs):

• Switching threads within a block is a simple thread switch
• Switching threads across blocks requires changes to memory and I/O

address tables

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 34

Multiprocessing vs Multiprogramming
• Remember Definitions:
– Multiprocessing ≡ Multiple CPUs
– Multiprogramming ≡ Multiple Jobs or Processes
– Multithreading ≡ Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and interleaving: FIFO,

Random, …
– Dispatcher can choose to run each thread to completion or time-slice

in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 35

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way, programs must work

under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic ⇒ Input state determines results
– Reproducible ⇒ Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that bugs can be
intermittent
– Sometimes called “Heisenbugs”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 36

Heisenberg

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 37

Interactions Complicate Debugging
• Is any program truly independent?
– Every process shares the file system, OS resources, network, etc
– Extreme example: buggy device driver causes thread A to crash

“independent thread” B
• You probably don’t realize how much you depend on reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C program unless
you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find
– Example: Memory layout of kernel+user programs

» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 38

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives, so
computers must cooperate
– By analogy, the non-reproducibility/non-determinism of people is a

notable problem for “carefully laid plans”
• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 39

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
 con = AcceptCon();
 ProcessFork(ServiceWebPage(),con);
 }

• What are some disadvantages of this technique?

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 40

Threaded Web Server
• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
 connection = AcceptCon();
 ThreadFork(ServiceWebPage(),connection);
 }

• Looks almost the same, but has many advantages:
– Can share file caches kept in memory, results of CGI scripts, other

things
– Threads are much cheaper to create than processes, so this has a lower

per-request overhead
• Question: would a user-level (say one-to-many) thread package

make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg / Slash-dot effects?

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 41

Thread Pools
• Problem with previous version: Unbounded Threads
– When web-site becomes too popular – throughput sinks

• Instead, allocate a bounded “pool” of worker threads, representing
the maximum level of multiprogramming

master() {  
 allocThreads(worker,queue);  
 while(TRUE) {  
 con=AcceptCon();  
 Enqueue(queue,con);  
 wakeUp(queue);  
 }  
}

worker(queue) {  
 while(TRUE) {  
 con=Dequeue(queue);  
 if (con==null)  
 sleepOn(queue);  
 else  
 ServiceWebPage(con);  
 }  
}

Master
Thread

Thread Pool

queue

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 42

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 43

ATM bank server example
• Suppose we wanted to implement a server process to handle

requests from an ATM network:
BankServer() {  
 while (TRUE) {  
 ReceiveRequest(&op, &acctId, &amount); 
 ProcessRequest(op, acctId, amount); 
 }  
}

 ProcessRequest(op, acctId, amount) {  
 if (op == deposit) Deposit(acctId, amount); 
 else if …  
}

 Deposit(acctId, amount) {  
 acct = GetAccount(acctId); /* may use disk I/O */  
 acct->balance += amount;  
 StoreAccount(acct); /* Involves disk I/O */  
}

• How could we speed this up?
– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 44

Event Driven Version of ATM server
• Suppose we only had one CPU
– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-driven style

• Example
BankServer() {  

 while(TRUE) {  
 event = WaitForNextEvent();  
 if (event == ATMRequest)  
 StartOnRequest();  
 else if (event == AcctAvail)  
 ContinueRequest();  
 else if (event == AcctStored)  
 FinishRequest();  
 }  
 }
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces which could be

blocking?
– This technique is used for graphical programming

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 45

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without

“deconstructing” code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
 Deposit(acctId, amount) {  
 acct = GetAccount(actId); /* May use disk I/O */  
 acct->balance += amount;  
 StoreAccount(acct); /* Involves disk I/O */  
 }

• Unfortunately, shared state can get corrupted: 
Thread 1 Thread 2  

load r1, acct->balance  
 load r1, acct->balance  
 add r1, amount2  
 store r1, acct->balance  
 add r1, amount1  
 store r1, acct->balance  

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 46

Problem is at the Lowest Level
• Most of the time, threads are working on separate data, so

scheduling doesn’t matter :
Thread A Thread B

x = 1; y = 2;
• However, what about (Initially, y = 12):

Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
–What are the possible values of x?

• Or, what are the possible values of x below?
Thread A Thread B

x = 1; x = 2;
– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010 → scheduling order ABABABBA yields
3!

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 47

Atomic Operations

• To understand a concurrent program, we need to know what the
underlying indivisible operations are!

• Atomic Operation: an operation that always runs to completion or
not at all
– It is indivisible: it cannot be stopped in the middle and state cannot be

modified by someone else in the middle
– Fundamental building block – if no atomic operations, then have no

way for threads to work together
• On most machines, memory references and assignments (i.e. loads

and stores) of words are atomic
– Consequently – weird example that produces “3” on previous slide

can’t happen
• Many instructions are not atomic
– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole array

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 48

Another Concurrent Program Example
• Two threads, A and B, compete with each other
– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0; 
while (i < 10) while (i > -10)  
 i = i + 1; i = i – 1;  
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but incrementing
and decrementing are not atomic
• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What if both threads have their own CPU running at same speed? Is

it guaranteed that it goes on forever?

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Hand Simulation Multiprocessor Example

• Inner loop looks like this:
Thread A Thread B

 r1=0 load r1, M[i]
 r1=0 load r1, M[i]
 r1=1 add r1, r1, 1
 r1=-1 sub r1, r1, 1
 M[i]=1 store r1, M[i]
 M[i]=-1 store r1, M[i]  
• Hand Simulation:
– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor? With Hyperthreads?
– Yes! Unlikely, but if you are depending on it not happening, it will and

your system will break…

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 50

• Threaded programs must work for all interleavings of thread
instruction sequences
– Cooperating threads inherently non-deterministic and non-reproducible
– Really hard to debug unless carefully designed!

• Example: Therac-25
– Machine for radiation therapy

» Software control of electron  
accelerator and electron beam/ 
Xray production

» Software control of dosage
– Software errors caused the  

death of several patients
» A series of race conditions on  

shared variables and poor  
software design

» “They determined that data entry speed during editing was the key factor
in producing the error condition: If the prescription data was edited at a
fast pace, the overdose occurred.”

Correctness Requirements

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 51

Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between problems in

OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 52

Definitions

• Synchronization: using atomic operations to ensure cooperation
between threads
– For now, only loads and stores are atomic
– We are going to show that its hard to build anything useful with only

reads and writes

• Mutual Exclusion: ensuring that only one thread does a particular
thing at a time
– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can execute at
once. Only one thread at a time will get into this section of code
– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of describing the

same thing

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 53

More Definitions
• Lock: prevents someone from doing something
– Lock before entering critical section and  

before accessing shared data
– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the

refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

#$@%@#$@

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 54

Too Much Milk: Correctness Properties

• Need to be careful about correctness of concurrent programs,
since non-deterministic
– Impulse is to start coding first, then when it doesn’t work, pull

hair out
– Instead, think first, then code
– Always write down behavior first

• What are the correctness properties for the “Too much milk”
problem???
– Never more than one person buys
– Someone buys if needed

• Restrict ourselves to use only atomic load and store
operations as building blocks

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 55

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):
 if (noMilk) {  
 if (noNote) { 
 leave Note; 
 buy milk; 
 remove note; 
 } 

}

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 56

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

 Thread A Thread B
if (noMilk) {  

if (noMilk) {  
 if (noNote) {

 if (noNote) {  
 leave Note;

 buy Milk;
 remove Note;

 }
 }
 leave Note;
 buy Milk;
 remove Note;  

 }  
}

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 57

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):
 if (noMilk) {  
 if (noNote) { 
 leave Note; 
 buy milk; 
 remove note; 
 } 

}
• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before

buying milk!
• Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 58

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough
– Let’s try to fix this by placing note first

• Another try at previous solution:

 leave Note;
if (noMilk) {  

 if (noNote) { 
 buy milk; 
 } 

}
remove Note;  

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 59

Too Much Milk Solution #2
• How about labeled notes?
– Now we can leave note before checking

• Algorithm looks like this:
Thread A Thread B

 leave note A; leave note B;  
if (noNote B) { if (noNoteA) {  
 if (noMilk) { if (noMilk) {  
 buy Milk; buy Milk;  
 } }  
} } 
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk
– Context switches at exactly the wrong times can lead each to think

that the other is going to buy
• Really insidious:

– Extremely unlikely this would happen, but will at worse possible time
– Probably something like this in UNIX

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
 leave note A; leave note B;  

while (note B) {\\X if (noNote A) {\\Y  
 do nothing; if (noMilk) {  
} buy milk; 
if (noMilk) { }  
 buy milk; }  
} remove note B; 
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 62

Case 1

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happenedbefore
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “leave note A” happens before “if (noNote A)”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 63

leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

Case 1

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happenedbefore

• “leave note A” happens before “if (noNote A)”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 64

leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

Case 1

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

Wait for note
B to be
removed

happenedbefore

• “leave note A” happens before “if (noNote A)”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 65

Case 2

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happened

before
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “if (noNote A)” happens before “leave note A”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 66

Case 2

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happened

before
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “if (noNote A)” happens before “leave note A”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 67

Case 2

leave note B;  
if (noNote A) {\\Y
 if (noMilk) {  
 buy milk;
 }  
}  
remove note B;

happened

before
leave note A;  
while (note B) {\\X
 do nothing;  
};

if (noMilk) {
 buy milk; }  
}  
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for note
B to be
removed

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 68

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for each

thread:
 if (noMilk) {  
 buy milk;  
 }

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way
– Have hardware provide higher-level primitives than atomic load & store
– Build even higher-level programming abstractions on this hardware support

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 69

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock

– lock.Acquire() – wait until lock is free, then grab
– lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the

lock and both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

milklock.Acquire();
if (nomilk)
 buy milk;
milklock.Release();

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 70

How to Implement Locks?
• Lock: prevents someone from doing something
– Lock before entering critical section and  

before accessing shared data
– Unlock when leaving, after accessing shared data
–Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
–What about putting a task to sleep?

» What is the interface between the hardware and scheduler?
– Complexity?

» Done in the Intel 432
» Each feature makes HW more complex and slow

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 71

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }  
 LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

 LockAcquire();  
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 72

Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  
// Enable interrupts?  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Release() {  
disable interrupts;  
if (anyone on wait queue) {  

take thread off wait queue  
Place on ready queue;  

} else {  
value = FREE;  

}  
enable interrupts;  

}  
 

• Key idea: maintain a lock variable and impose mutual exclusion
only during operations on that variable

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 73

Hardware

Higher-
level  
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations
– Everything is pretty painful if only atomic primitives are load and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

2/4/20 Kubiatowicz CS162 ©UCB Spring 2020 74

Summary

• Concurrent threads are a very useful abstraction
– Allow transparent overlapping of computation and I/O
– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing shared
data
– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become completely

inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various

synchronization primitives

