CS162
Operating Systems and
Systems Programming

Lecture 3

Processes (con’t), Fork, System Calls

January 28th, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: Four Fundamental OS Concepts

Thread: Execution Context
— Fully describes program state
— Program Counter; Registers, Execution Flags, Stack

Address space (with or w/o translation)
— Set of memory addresses accessible to program (for read or write)

— May be distinct from memory space of the physical machine
(in which case programs operate in a virtual address space)

* Process: an instance of a running program
— Protected Address Space + One or more Threads

Dual mode operation / Protection
— Only the “system™ has the abllity to access certain resources

— Combined with translation, isolates programs from each other
and the OS from programs

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

DXFFF...
Executable
Program Source O5
5 I |
g— data o § stack l
S g ¢ <
instructions =M hea T S
P (©)
2
foo.c a.out data
* Create OS"PCB", address space, stack and heap e
* Load instruction and data segments of executable 0x000. ..
file into memory
e “Transfer control to program” PC: —
* Provide services to program registers
* While protecting OS and program Processor

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: Protected Address Space

* Program operates in an address space that is distinct from
the physical memory space of the machine

~ ©
& o
(] L
S S
;o o 0x000...
S S
(% N9
g—— &
Processor N $ Memory
>| translator | |
Registers
N\ y ” H
Page Table
' [<Frame Addr|
OxFFF...

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: give the illusion of multiple processors?

vcPU1| vcPu2 |vePu3| vepPul JvcpPu2
Shared Memory Time >

* Assume a single processor. How do we provide the illusion of
multiple processors?

- Multiplex in time!
- Multiple “virtual CPUs"
» Each virtual "CPU" needs a structure to hold:
- Program Counter (PC), Stack Pointer (SP)
- Registers (Integer, Floating point, others...?)
- How switch from one virtual CPU to the next?
- Save PC, SP, and registers in current state block
- Load PC, SP, and registers from new state block
* What triggers switch?
- Timer, voluntary yield, I/0, other things
1128120 Kubiatowicz CS 162 ©UCB Spring 2020 5

Recall: The Process

» Definition: execution environment with restricted rights

— Address Space with One or More Threads
» Page table per process!

— Owns memory (mapped pages)

— Owns file descriptors, file system context, ...

— Encapsulates one or more threads sharing process resources
* Application program executes as a process

— Complex applications can fork/exec child processes [later]
* Why processes!

— Protected from each other. OS Protected from them.

— Execute concurrently [trade-offs with threads? later]

— Basic unit OS deals with

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: Single and Multithreaded Processes
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —» ; <«— thread
single-threaded process multithreaded process

* Threads encapsulate concurrency:“Active’” component

* Address spaces encapsulate protection:“Passive’” part
— Keeps buggy program from trashing the system

* Why have multiple threads per address space?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: Simple address translation with Base and Bound

e 0000... 0000, .
> Static Data code
heap Addresses translated Static Data
on-the-fly heap
stack
0100...
Base Address
0010... 1000... |-\ code 1000...
Program 00 I 0 .. Static Data
address i
eap
Bound
0100 1100...
» Can the program touch O%?
« Can it touch other programs? FFFF. ..

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 8

Simple B&B: User => Kernel

code

Static Data

liiiii\ lIIIIl
N

heap

sysmode
Base
Bound
uPC

PC

regs

e How to return
to system!?

1/28/20

0 1000..
code

1000 ... 0000... Static Data
1100... FFFF..[. heap
XXXX...

1 100..
0000 1234]

3000..
OOFF... |

3080...

FFF...

Kubiatowicz CS162 ©UCB Spring 2020

0000...

Simple B&B: Interrupt

.ﬁ .
N

sysmode
Base
Bound
uPC
PC
regs
* How to save

registers and set
up system stack?

1/28/20

1000 ...

1100 ...
0000 1234

IntrpVectori]

OOFF...

Kubiatowicz CS162 ©UCB Spring 2020

code

Static Data

heap

code

Static Data

heap

Simple B&B: Switch User Process

Sy
=

code \RTU

Static data

sysmode
/IOOO... N code
Base p000. Static Data
1100 ...
Bound / FFFF... heap
0000 1234 7
uPC A
regs ,’
PC (0001 0124
O0OFF...
NI -
e How to save
registers and set

up system stack?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Simple B&B:“resume”

||iiiiiiil llIIIIIII
N

0000...

code RTU

Static Data

heap

= ™ sysmode | O 1000..
1000 ... code
— Base [SOO0NN 0000... i D
Bound FFFF... heap
0000 1234 -
uPC [XxxXX XxXxx
regs 1100...
PC (000 0248 E—
OOFF... ;
\ y - 000...
 How to save
registers and set
U % 3080..
p system stack
FFF..

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 12

Is Branch and Bound a
Good-Enough Protection Mechanism?

NO: Too simplistic for real systems
Inflexible/MVasteful:

— Must dedicate physical memory for potential future use

— (Think stack and heap!)

Fragmentation:

— Kernel has to somehow fit whole processes into contiguous block of
memory

— After a while, memory becomes fragmented!

Sharing:

— Very hard to share any data between Processes or between Process and
Kernel

— Need to communicate indirectly through the kernel...

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Better: x86 — segments and stacks

code

Static Data

Processor Registers

Static Data

Start address, length
and access rights
associated with each
segment

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Alternative: Page Table Mapping (More soon!)

Prog 2

Virtual Virtual
Address Address
Space 1 Space 2

f \

OS heap &
Stacks

Physical Address Space

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Translation Map 1 Translation Map 2

1/28/20

What’s

beneath the lllusion?

f[ece

Activity Monitor (All Processes)

B v CPU Memory Energy Disk Network Q-
Process Name % CPU v~ CPUTime Threads Idle Wake Ups PID User
Google Chrome Helper 99.9 24:47:28.67 22 1 15980
VBoxHeadless 13.7 6:14:03.13 29 1,504 589264Fuller
com.docker.hyperkit 4.0 4:31:39.95 16 235 16 culler
WindowServer 2.1 3:32:31.55 10 13 _windowserver
B Activity Monitor 1.9 21:37.17 5 culler
launchd 1.8 44:05.76 3 root
kernel_task 1.6 5:25:42.39 581 root
hidd 1.6 1:14:43.51 7 _hidd
screencapture 0.7 0.29 2 culler
sysmond 0.4 14:51.88 3 root
Google Chrome Helper 0.4 37:39.30 23 culler
@ Microsoft PowerPoint 0.3 13:04.93 15 culler
systemstats 0.2 24:01.33 4 [0] 54 root
VBoxSVC 0.1 5:06.27 13 5 58902 culler
G Google Chrome 0.1 3:24:33.44 40 0 15954 culler
iconservicesagent 0.1 33.62 2 1 47014 culler
A Screen Shot 0.1 0.19 5 0 68335 culler
Google Chrome Helper 0.1 8:19.43 23 3 64322 culler
Google Chrome Helper 0.1 15:31.92 23 4 66129 culler
Google Chrome Helper 0.1 7:56.86 21 3 60534 culler
scep_daemon 0 49137 root
Q System Center Endpoint Prot... 1 14:10.06 & 3 47120 culler
powerd 1 7:41.46 2 0 57 root
Google Chrome Helper bl 47:32.67 21 3 19876 culler
Google Chrome Helper N 13:19.58 20 3 63420 culler
com.docker.vpnkit 0.1 3:52.03 122 23 16786 culler
Google Chrome Helper 0.1 3:41.15 21 3 64744 culler
0.1 8:22.79 20 3 52146 culler
0.1 4:58.09 20 3 16045 culler
0.1 3:09.51 20 3 65057 culler
0.0 1:30.87 20 2 59308 culler
0.0 12.20 31 3 16784 culler
Ggfgle Chrome Helper 0.0 10:15.75 21 2 16235 culler
System: 7.07% CPU LOAD Threads: 2587
User: 3.88% Processes: 434
Idle: 89.05%

Kubiatowicz CS162 ©UCB Spring 2020

1/28/20

Today: How does the Operating System create the Process
Abstraction?

 \What data structures are used?

* What machine structures are employed?
— Focus on x86, since will use In projects (and everywhere)

Kubiatowicz CS162 ©UCB Spring 2020

Starting Point: Single Threaded Process

* Process: OS abstraction of what is needed to code data files

run a single program

registers stack

|, Sequential program execution stream
» Sequential stream of execution (thread)
» State of CPU registers

2. Protected resources thread ——> ;
» Contents of Address Space
» I/O state (more on this later)

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 |8

Running Many Programs

* We have the basic mechanism to

— switch between user processes and the kernel,

— the kernel can switch among user processes,

— Protect OS from user processes and processes from each other
e Questions !

— How do we represent each process in the kernel?

— How do we decide which user process to run?

— How do we pack up the process and set it aside!

— How do we get a stack and heap for the kernel?

— Aren’t we wasting are lot of memory?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Multiplexing Processes: The Process Control Block

* Kernel represents each process as a process
control block (PCB)

— Status (running, ready, blocked, ...)

— Register state (when not ready)

— Process ID (PID), User, Executable, Priority, ...
— Execution time, ...

— Memory space, translation, ...

* Kernel Scheduler maintains a data structure
containing the PCBs

— Give out CPU to different processes
— This is a Policy Decision

e (Give out non-CPU resources

1/28/20

— Memory/IO
— Another policy decision

Kubiatowicz CS162 ©UCB Spring 2020

process state

process number

program counter

reqgisters

memory limits

list of open files

Process
Control
Block

20

1/28/20

Context Switch

process P,

axecuting J / l
T

> idle

sxecuting | '\
4

operating system process P,

interrupt or system call

save state into PCB,

reload state from PCB,

/--

interrupt or system call

save state into PCB;

reload state from PCB,

>idle

> idle

Kubiatowicz CS162 ©UCB Spring 2020

2

Lifecycle of a process / thread

e T ~~ Scheduler dispatches proc/thread to run:
/. existin roc context switch fto it .
L ow ”g g : B terminated
.. forks” a new
“e_proc .-
—) exit syscall

Create OS repr. of proc '_/ or abort
* Descriptor

interrupt, syscall,
* Address space PT. SY

* Thread(s) sleep, blocking call

. completion
Queue for scheduling P

* OS juggles many process/threads using kernel data structures

* Proc’s may create other process (fork/exec)
— All starts with init process at boot

Pintos: process.c

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Scheduling: All About Queues

[
o

—

ready queue

I/O queue R

child

executes

interrupt

OCcurs

i

CPU
I/O request [«
time _slice
expired
fork a
child
V\(ait for an
interrupt

« PCBs move from queue to queue

 Scheduling: which order to remove from queue

— Much more on this soon

1/28/20

Kubiatowicz CS162 ©UCB Spring 2020

23

Scheduler

A

if (readyProcesses (PCBs)) {
nextPCB = selectProcess (PCBs) ;
run(nextPCB) ;

} else {
run_idle process();

}

* Scheduling: Mechanism for deciding which processes/threads receive
the CPU

* Lots of different scheduling policies provide ...
— Fairness or
— Realtime guarantees or
— Latency optimization or ..

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 24

Simultaneous MultiThreading/Hyperthreading

a) superscalar 6) multiprocessor B) Hyper-

o Harndwar-e Schedullng T@Chnlque architecture architecture Threading

- Superscalar processors can
execute multiple instructions
that are independent.

- Hyperthreading duplicates
register state to make a
second "thread,” allowing
more instructions to run.

Time {CPU cycles)

<€

™

Thread 0 W Thread 1

- Can schedule each thread

as if were separate CPU Colored blocks show

. instructions executed
- But, sub-linear speedup!

* Original technique called "Simultaneous Multithreading”
- http://www.cs.washington.edu/research/smt/index.html
neno SPARC, Pentium 4/Xeon{ Hyperthreading”), Power 5 25

http://www.cs.washington.edu/research/smt/index.html

Also Recall: The World Is Parallel

* Intel Skylake (2017)
— 28 Cores
— Each core has two hyperthreads!
— S0: 54 Program Counters(PCs)

* Scheduling here means:

— Pick which core
— Pick which thread

* Space of possible scheduling
much more Interesting

— Can afford to dedicate certain cores | 1 | 5 &
to housekeeping tasks iR A Ctrl

— Or, can devote cores to services
(e.g. Filesystem)

ADPLL, FIVR power Delivery Subsys

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Administrivia: Getting started

Homework O Due Monday!

— Get familiar with the tools
— configure your VM, submit via git

— Practice finding out information:
» How to use GDB? How to understand output of unix tools?
» We don't assume that you already know everything!
» Learn to use “man” (command line),“help” (in gdb, etc), google

HW I released today
Group sign up form
HW/GHW Schedule/Deadlines

THIS Monday is Drop Deadline!

* Given the assignments, this is a highly rewarding but time consuming
course

* If you are not serious about putting in the time, please drop early

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 27

1/28/20

Recall: User/Kernel (Privileged) Mode

Limited HWV access Full HW access

Kubiatowicz CS162 ©UCB Spring 2020

28

Three types of Kernel Mode Transfer

e Syscall
— Process requests a system service, e.g., exit
— Like a function call, but “outside™ the process
— Does not have the address of the system function to call
— Like a Remote Procedure Call (RPC) — for later
— Marshall the syscall id and args in registers and exec syscall
* Interrupt
— External asynchronous event triggers context switch
— eg. Timer, /O device
— Independent of user process
* [rap or Exception
— Internal synchronous event in process triggers context switch
— e.g, Protection violation (segmentation fault), Divide by zero, ...

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

29

Implementing Safe Kernel Mode Transfers

* Important aspects:
— Controlled transfer into kernel (e.g., syscall table)

— Separate kernel stack

 Carefully constructed kernel code packs up the user process state and
sets It aside
— Detalls depend on the machine architecture

* Should be impossible for buggy or malicious user program to cause
the kernel to corrupt itself

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 30

1/28/20

Interrupt Vector

interrupt number (i)

v

11

"

Kubiatowicz CS162 ©UCB Spring 2020

Address and properties of
each interrupt handler

intrpHandler i () {

}...

31

Need for Separate Kernel Stacks

* Kernel needs space to work
* Cannot put anything on the user stack (Why?)

* [wo-stack model

— OS thread has interrupt stack (located in kernel memory) plus
User stack (located in user memory)

— Syscall handler copies user args to kernel space before invoking
specific function (e.g., open)

running ready to run waiting for I/O
main main main
User Stack proci procl procf
proc2 proc2 proc2
E E E syscall
N\
user CPU user CPU
state state
Kernel Stack > syscall
handler
I/O driver
; top half

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

Before

User-level Registers Kernel
Process
code: SS: ESP code:
CS:EIP
while(..) { other pusha
X=x+1; registers:
v y-2; EAX, EBX, }
}
Exception
stack: Stack

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 33

1/28/20

During

User-level
Process

code:

foo () {
while(...) {
X=Xx+1;
y=y-2;
}

}

stack:

Registers

SS: ESP

CS: EIP

EFLAGS

other
registers:
EAX, EBX,

Kubiatowicz CS162 ©UCB Spring 2020

Kernel

code:

handler() {
pusha

Exception
Stack

5SS

ESP

EFLAGS

CS

EIP

error

34

1/28/20

Kernel System Call Handler

Vector through well-defined syscall entry points!
— Table mapping system call number to handler
Locate arguments
— In registers or on user (!) stack
Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks
Validate arguments
— Protect kernel from errors in user code
Copy results back

— Into user memory

Kubiatowicz CS162 ©UCB Spring 2020

35

Hardware support: Interrupt Control

* Interrupt processing not visible to the user process:
— Occurs between instructions, restarted transparently
— No change to process state
— What can be observed even with perfect interrupt processing?

* Interrupt Handler invoked with interrupts ‘disabled’
— Re-enabled upon completion
— Non-blocking (run to completion, no waits)

— Pack up in a queue and pass off to an OS thread for hard work
» wake up an existing OS thread

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

36

1/28/20

Putting it together: web server

Request

y 2]

- =

: ///i ;

Client

Reply
(retrieved by web server)

Web Server

Kubiatowicz CS162 ©UCB Spring 2020

37

Putting it together: web server

4. parse request

9. format| reply

Server
request reply
buffer buffer
| .network | 3. kernel 10. network A
socket e socket 5.file 8. kernel
syscall | read write Syscall| read copy
O @
Kernel .t RTU/ |. kernel copy RTU
from user buffer v
to network buffer,
interrupt 62 interrupt
.copy arriving | 2.format outgoing 6. disk disk data
packet (DMA) packet and DMA request .(DMA)
Hardware
Network v
interface Disk interface
\ 4
Request Reply

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

38

1/28/20

Meta-Question

Process is an instance of a program executing.
— The fundamental OS responsibility

Processes do their work by processing and calling file system
operations

Are their any operations on processes themselves!

exit ?

Kubiatowicz CS162 ©UCB Spring 2020

39

pid.c

#include <stdlib.h>
#include <stdio.h>

#include <string.h>
#include <unistd.h> 05

2
oxv*c“vz.

#include <sys/types.h>
int main(int argc, char *argv[])

{

}

1/28/20

pid t pid = getpid(); /* get current processes PID */
printf("My pid: %d\n", pid);

exit (0);

Kubiatowicz CS162 ©UCB Spring 2020

40

1/28/20

Can a process create a process !

* Yes

 Fork creates a copy of process
* What about the program you want to run?

Kubiatowicz CS162 ©UCB Spring 2020

41

OS Run-Time Library

. .
OS

1/28/20

login

libc FONIE17

OS library

Kubiatowicz CS162 ©UCB Spring 2020

42

A Narrow Waist

Word Processing
Compilers Web Browsers

Email

Web Servers

atabases Application / Service

Portable OS Library
User

System
Portable OS Kernel

Software Platform support, Device Drivers

Hardware x86 PowerPC ARM

PCI
Ethernet (1Gbs/10Gbs) 802.11 a/g/n/fac SCSI Graphics Thunderbolt

Kubiatowicz CS162 ©UCB Spring 2020 43

1/28/20

POSIX/Unix

* Portable Operating System Interface [X]

* Defines “Unix”, derived from AT&T Unix
— Created to bring order to many Unix-derived OSs

* Interface for application programmers (mostly)

Kubiatowicz CS162 ©UCB Spring 2020

44

System Calls

Application:
fd = open(pathname);

Library:
File *open(pathname) {
asm code .. syscall # into ax
put args into registers bx,
special trap instruction
Operating System:
get args from regs
dispatch to system func
process, schedule,
complete, resume process

get results from regs

}i

Continue with results

Pintos: userprog/syscall.c, lib/user/syscall.c

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 45

SYSCALLs

(of over 300)

| % eax| Name “ Source | % ebx | Yo ecx | % edx “ % esi “ % edi |
1 [[sys_exit [kernel/exit.c [int I I I I |
2	sys_fork “arch/i386/kerne1/process.c IM pt_regs	-	i “- “-											
3	sys_read		w		unsigned int	char *	‘m		- ”-					
4		sys_write		w		unsigned int		const char *		&et		- ”-		
5		syS_0pen		M;m		c0nst char *		int		int		-		-
6		sys_close ”MM		unsigned int		-		-		-		-		
7		sys_waitpid		kernel/exit.c	[pid_t		unsigned int *		int		-		-	
[8 I[sys_creat	[fs/open.c [[const char * [[int I I -													
9		sys_link		fs/namei.c		const char *		const char *		-		-		-
10		sys_unlink		fs/namei.c		const char *		-		-		-		-
11		sys_execve		arch/i386/kemel/process.c		wpt_reg§		-		-		-		-
12		sys_chdir		M[.m		const char *		—		-		-		-
13		sys_time		kernel/time.c		int *		-		-		-		-
14		sys_mknod		m		const char *		int		dev t		-		—
15		sys_chm0d		Mm		const char *		mode t		—		—		-
16		sys_lchown ”MM		const char *		uid t		gid t		—		-		
[18 [[sys_stat ([fs/stat.c [[char * [[struct _old kernel stat *	- I -													
19		sys_lseek		w		unsigned int		off t		unsigned int		—		—
20 Jlsys getpid lkernel/sched ¢ I I B [I														
21		sys_mount ”fS/Jpﬂ		char *		char *		char *		—		—		
22		sys_oldumount ”fS/JpL.C		char *		—		-		_		_		
23 sys_setuid |[kernel/sys.c (luid_t [I I - |
[24 |[sys_getuid |[kernel/sched.c I I I - - |
25 |[sys_stime |[kernel/time.c [lint * - I I I |
26 Sys_ptrace ||arch/i386/kernel/ptrace < |long long long long -

27 sys_alarm kernel/sched.c unsigned int - - - -

28 sys_fstat fs/stat.c unsigned int struct _old kernel stat* |- - -

29 Sys_pause arch/i386/kernel/sys i386.c||- - - - -

30 sys_utime fs/open.c char * struct utimbuf * - - -

Kubiatowicz CS162 ©UCB Spring 2020

Pintos: syscall-nr.h
46

1/28/20

Recall: Kernel System Call Handler

Locate arguments
— In registers or on user(!) stack

Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks

Validate arguments
— Protect kernel from errors in user code

Copy results back

— Into user memory

Kubiatowicz CS162 ©UCB Spring 2020

47

1/28/20

Process Management

eexit — terminate a process
e fork — copy the current process

* exec — change the program being run by the
current process

e wait — walt for a process to finish

e kill —send a signal (interrupt-like notification) to
another process

e sigaction — set handlers for signals

Kubiatowicz CS162 ©UCB Spring 2020 48

Creating Processes

* pid_t fork(); -- copy the current process
— New process has different pid

* Return value from fork(): pid (like an integer)
— When > 0:
» Running in (original) Parent process
» return value is pid of new child
— When = 0O:
» Running in new Child process
— When < 0:
» Errorl Must handle somehow
» Running in original process

 State of original process duplicated in both Parent and Child!

— Address Space (Memory), File Descriptors (covered later), etc. ..

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

49

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t cpid, mypid;

pid t pid = getpid(); /* get current processes PID */

printf ("Parent pid: %d\n", pid);

cpid = fork();

if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

} else {
perror ("Fork failed");

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 50

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {

pid_t cpid, mypid;

pid_t pid = getpid(); /* get current processes PID */

printf ("Parent pid: %d\n", pid);

s crid = fork();

if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

} else {
perror ("Fork failed");

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 51

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
pid_t cpid, mypid;
pid_t pid = getpid(); /* get current processes PID */
printf ("Parent pid: %d\n", pid);
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%2d]\n", mypid, cpid);
} else if (cpid == 0) { /* Child Process */
- mypid = getpid();
printf("[%d] child\n", mypid);
} else {
perror ("Fork failed");

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 52

1/28/20

fork race.c

int i;
cpid = fork();
if (cpid > 0) {
for (i = 0; i < 10; i++) {
printf ("Parent: %d\n", 1i);
// sleep(l);
}
} else if (cpid == 0) {
for (i = 0; 1 > -10; i--) {
printf("Child: %d\n", 1i);
// sleep(l);
}

What does this print?
Would adding the calls to sleep matter?

Kubiatowicz CS162 ©UCB Spring 2020

53

1/28/20

Fork *“race”

int i;

cpid = fork();

if (cpid > 0) {
for (i = 0; i

< 10; i++) {

printf ("Parent: %d\n", i);

// sleep(l);

}
} else if (cpid
for (i = 0; i

> -10; i--) {

printf("Child: %d\n", i);

// sleep(l);
}

Time

—

Kubiatowicz CS162 ©UCB Spring 2020

1/28/20

Process Management

e fork — copy the current process

* exec — change the program being run by the
current process

ewait — walt for a process to finish

ekill —send a signal (interrupt-like
notification) to another process

e sigaction — set handlers for signals

Kubiatowicz CS162 ©UCB Spring 2020 55

fork2.c — parent waits for child to finish

int status;
pid_t tcpid;

cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 56

1/28/20

Process Management

e fork — copy the current process

® exec — change the program being run by the
current process

e wait — walt for a process to finish

e kill —send a signal (interrupt-like
notification) to another process

e sigaction — set handlers for signals

Kubiatowicz CS162 ©UCB Spring 2020

57

1/28/20

Process Management

fork
pid = fork();
if (pid ==0)
exec(...);

else

wait(pid); \

exec main (){

NV

wait

child
pid = fork();
if (pid ==0)
exec(...);
else
wait(pid);
parent
pid = fork();
if (pid ==0)
exec(...);
else
wait(pid);

A

Kubiatowicz CS162 ©UCB Spring 2020

58

1/28/20

fork3.c

cpid = fork();

if (cpid > 0) { /* Parent Process */
tcpid = wait(&status);
} else if (cpid == 0) { /* Child Process */

char *args[] = {“1s”, “-1", NULL};

execv(“/bin/1ls”, args);

/* execv doesn’t return when it works.
So, if we got here, it failed! */

perror (“execv”);

exit(1l);

Kubiatowicz CS162 ©UCB Spring 2020 59

Shell

* Ashellis a job control system

— Allows programmer to create and manage a set of programs
to do some task

— Windows, MacOS, Linux all have shells

* Example:to compile a C program
cc —c sourcefilel .c
cc —c sourcefile?.c

In —o program sourcefile |.o sourcefile2.o

/program

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Process Management

e fork — copy the current process

® exec — change the program being run by the
current process

e wait — walt for a process to finish

ekill —send a signal (interrupt-like
notification) to another process

e sigaction — set handlers for signals

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 6l

inf loop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal callback handler(int signum) ({
printf (“Caught signal!\n”);
exit(1l);
}
int main() {
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset (&sa.sa_mask);
sa.sa_handler = signal callback_ handler;

sigaction(SIGINT, &sa, NULL);
while (1) {}

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020

62

1/28/20

Common POSIX Signals

SIGINT — control-C
SIGTERM — default for kill shell command
SIGSTP — control-Z (default action: stop process)

SIGKILL, SIGSTOP — terminate/stop process
— Can't be changed or disabled with sigaction
— Why!

Kubiatowicz CS162 ©UCB Spring 2020

63

1/28/20

Summary

Process consists of two pieces
|, Address Space (Memory & Protection)
2. One or more threads (Concurrency)
Represented in kernel as
— Process object (resources associated with process)
— Kernel vs User stack
Variety of process management syscalls
— fork, exec, walt, kill, sigaction
Scheduling: Threads move between queues

Kubiatowicz CS162 ©UCB Spring 2020

64

