CSl62
Operating Systems and
Systems Programming

Lecture 20

Filesystems (Con’t)
Reliability, Transactions

April [4th, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: Multilevel Indexed Files (Original 4.1 BSD)

* Sample file in multilevel
iIndexed format:
— 10 direct ptrs, K blocks

— How many accesses for
block #23? (assume file
header accessed on open)!?

» Two: One for indirect block,
one for data

— How about block #57
» One: One for data
— Block #340?

» Three: double indirect block,
indirect block, and data

e UNIX 4.] Pros and cons

— Pros: Simple (more or less)

mode

owners (2)

timestamps (3)

:
size block count

direct blocks 7 :

— [——ldata] -
single indirect —{ s 7’| data
double indirect i data | >|_: > &—>{ data
triple indirect L‘ >?_@
L&—»{ data

Files can easily expand (up to aCFoint)
heap an

Small files particularly c

— Cons: Lots of seeks (lead to 4.2 Fast File System Optimizations)

o Ext2/3 (Linux):
— |2 direct ptrs, triply-indirect blocks,
settable block size (4K is common)

easy

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

Recall: Buffer Cache

* Kernel must copy disk blocks to main memory to access their
contents and write them back if modified

— Could be data blocks, inodes, directory contents, etc.
— Possibly dirty (modified and not written back)

» Key |Idea: Exploit locality by caching disk data in memory
— Name translations: Mapping from paths—inodes

— Disk blocks: Mapping from block address—disk content

 Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations

— Can contain "“dirty” blocks (blocks yet on disk)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

File System Buffer Cache

Data blocks . ockaromo—DISK
PCB . iRe“d'"g
[iNodes i
file el g | :
desc = i
oy \Writing
Dir Data blocks !
Free bitmap :
secis [T | I I
State freel T T Freel T T T T T T T T T T] |

* OS5 implements a cache of disk blocks for efficient access to

data, directories, inodes, freemap
4/14/20 Kubiatowicz CS162 © UCB Spring 2020 4

File System Buffer Cache: open

isk
Data blocks . oo OIS
1
. . : Block Group 1
1Readin
PCB 1 g Block Group 2
1 |
_— . 1 <
iNodes |
file k:—‘/' j_| 1
desc U= i
— riting

Dir Data blocks

Free bitmap

Blocks :. :-

State free T T T TN T T T T T T T T T T 1]

* {load block of directory; search for map}+ ;

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 5

File System Buffer Cache: open

Data blocks . socecroupo - DISK
PCB . i Read'ng Block Group 2
[iNodes i
f||e k:—‘/' > :
desc 11/ i
- 'Writing
Dir Data blocks !
<+ame>:inumt€>er
Free bitmap :
secs [T [[
State freel | | [dir | | | | | | | | | Lrd] |

* {load block of directory; search for map}+ ; Load inode ;

* Create reference via open file descriptor
4/14120 Kubiatowicz CS162 © UCB Spring 2020 6

File System Buffer Cache: Read!?

Data blocks . ockaromo—DISK
PCB . i Read'ng Block Group 2
[iNodes i
f||e k:—‘/' > :
desc 11/ i
- 'Writing
Dir Data blocks !
<+ame>:inumt€>er
Free bitmap :
Memory
secis [T [[T
State freel | | [dir] | | | | | | | | Inode | | |

* From inode, traverse index structure to find data block: load

data block; copy all or part to read data buffer
4/14/20 Kubiatowicz CS162 © UCB Spring 2020 7

File System Buffer Cache:Write!

Free bitmap

Da'ra blocks | Block Group 0 DlSk

|

. . : Block Group 1

PCB : Read'ng Block Group 2
. N :
iNodes |
f||e k:"‘/' ¢ !
desc 11/ i

| I ° o
= :Wr'mng
Dir Data blocks !
<+ame>:inumt€>er

:
I
|

Blocks | | B]

State freel | | [dir] | | | | | | | | fnode | [|

* Process similar to read, but may allocate new blocks (update free map),
blocks need to be written back to disk; inode?

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 8

File System Buffer Cache: Eviction?

Data blocks . ockaromo—DISK
1
. . : Block Group 1
PCB : Read'ng Block Group 2
| 1
1 iNodes i
file T > 1
desc 11/ i
- 'Writing
|
Dir Data blocks !
<+ame>:inumt€>er
1
Free bitmap :
1
Memory
socis [T[] 10
State freel T T Tdr I T T T Hirty T T T Inode]] |

* Blocks being written back to disc go through a transient state

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 9

4/14/20

Buffer Cache Discussion

Implemented entirely in OS software
— Unlike memory caches and TLB

Blocks go through transitional states between free and in-use
— Being read from disk, being written to disk
— Other processes can run, etc.

Blocks are used for a variety of purposes
— Inodes, data for dirs and files, freemap
— OS maintains pointers into them

Termination — e.g,, process exit — open, read, write

Replacement — what to do when it fills up?

Kubiatowicz CS162 © UCB Spring 2020

File System Caching

* Replacement policy! LRU
— Can afford overhead full LRU implementation
— Advantages:
» Works very well for name translation

» Works well in general as long as memory is big enough to accommodate a
host's working set of files.

— Disadvantages:
» Fails when some application scans through file system, thereby flushing the
cache with data used only once

» Example: find . —-exec grep foo {} \;
* Other Replacement Policies!
— Some systems allow applications to request other policies

— Example,'Use Once”:
» File system can discard blocks as soon as they are used

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 Il

File System Caching (con’t)

» Cache Size: How much memory should the OS allocate to the buffer
cache vs virtual memory!?

— Too much memory to the file system cache = won't be able to run
many applications at once
— Too little memory to file system cache = many applications may run
slowly (disk caching not effective)
— Solution: adjust boundary dynamically so that the disk access rates for
paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early

— Key Idea: explort fact that most common file access is sequential by
prefetching subsequent disk blocks ahead of current read request (if they
are not already in memory)

— Elevator algorithm can efficiently interleave groups of prefetches from
concurrent applications

— How much to prefetch?
» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among concurrent file
requests

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 12

Delayed Writes

* Delayed Writes:Writes to files not immediately sent to disk
— So, Buffer Cache is a write-back cache
write () coples data from user space buffer to kernel buffer

— Enabled by presence of buffer cache: can leave written file blocks in cache
for a while

— Other apps read data from cache instead of disk

— Cache is transparent to user programs

Flushed to disk periodically
— In Linux: kernel threads flush buffer cache very 30 sec. in default setup

* Disk scheduler can efficiently order lots of requests
— Elevator Algorithm can rearrange writes to avoid random seeks

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 13

4/14/20

Delayed Writes

Delay block allocation: May be able to allocate multiple blocks at
same time for file, keep them contiguous

Some files never actually make it all the way to disk
— Many short-lived files

But what if system crashes before buffer cache block is flushed to
disk?

And what If this was for a directory file!
— Lose pointer to inode

file systems need recovery mechanisms

Kubiatowicz CS162 © UCB Spring 2020 |4

Important “ilities”

* Avallabllity: the probability that the system can accept and process
requests

— Often measured in “nines” of probability. So,a 99.9% probability is
considered "“3-nines of availability”

— Key idea here is independence of failures

* Durablility: the ablility of a system to recover data despite faults
— This idea is fault tolerance applied to data

— Doesn't necessarily imply availability: information on pyramids was very
durable, but could not be accesseJ until discovery OWE ﬁosetta Stone
* Reliabllity: the ability of a system or component to perform its
required functions under stated conditions for a specified period of
time (IEEE definition)

— Usually stronger than simply availability: means that the system is not
only “up’, but also working correctly

— Includes availability, security, fault tolerance/durability

— Must make sure data survives system crashes, disk crashes, other
problems

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 |5

How to Make File System Durable!?

* Disk blocks contain Reed-Solomon error correcting codes
(ECC) to deal with small defects in disk drive

— Can allow recovery of data from small media defects

e Make sure writes survive In short term

— Erther abandon delayed writes or

— Use special, battery-backed RAM (called non-volatile RAM or
NVRAM) for dirty blocks in buffer cache

* Make sure that data survives in long term

— Need to replicate!l More than one copy of datal

— Important element: independence of failure
» Could put copies on one disk, but if disk head falls...
» Could put copies on different disks, but if server falils. ..
» Could put copies on different servers, but if bullding Is struck

by lightning. ...

» Could put coplies on servers In different continents. ..

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 16

RAID: Redundant Arrays of Inexpensive Disks

* Classified by David Patterson, Garth A. Gibson, and Randy
Katz here at UCB in 1987

— Classic paper was first to evaluate multiple schemes

* Data stored on multiple disks (redundancy)

— Berkeley researchers were looking for alternatives to big
expensive disks

— Redundancy necessary because cheap disks were more error
prone

* Either in software or hardware
— In hardware case, done by disk controller; file system may not even
know that there Is more than one disk in use

* Initially, five levels of RAID (more now)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 |7

RAID I:Disk Mirroring/Shadowing

<—_recovery

group
 Each disk is fully duplicated onto rits “shadow”
— For high I/O rate, high availability environments
— Most expensive solution: 100% capacity overhead
* Bandwidth sacrificed on write:
— Logical write = two physical writes
— Highest bandwidth when disk heads and rotation fully synchronized
(hard to do exactly)
* Reads may be optimized
— Can have two independent reads to same data
* Recovery:
— Disk faillure = replace disk and copy data to new disk

— Hot Spare: idle disk already attached to system to be used for
immediate replacement

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 18

RAID 5+: High I/O Rate Parity

* Data stripped across

multiple disks

' DO DI D2
— Successive blocks D3 PO

stored on successive

(non-parity) disks D4 | |D5 6 Pl D7

— Increased bandwidth

over single disk D8 D9 DIO| [DIlI

* Parity block (in green)

constructed by XORing pi2| p3 3l Ipi4

DI5

data bocks in stripe

— PO=D0®D | ®D2@®D?3 P4 | |DI6 Y| |pi18| |pi9

— Can destrc;(any one
disk and still
reconstruct data D20| |D2lI D22 D23 P5

— Suppose Disk 3 falls,

then can reconstruct: Disk | Disk2 Disk3 Disk4 Disk5
D2=D0®D | ®&D3®PO

* (Can spread information widely across internet for durability
— RAID algorithms work over geographic scale

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

Stripe
nit

Increasing
Logical
Disk
Addresses

Allow more disks to fail!

In general: RAIDX is an “erasure code”
— Must have ability to know which disks are bad
— Treat missing disk as an “Erasure”
Today, Disks so big that: RAID 5 not sufficient!
— Time to repair disk sooooo long, another disk might fail in process!
— "RAID 6" —allow 2 disks in replication stripe to fall
But — must do something more complex that just XORing together blocks!
— Already used up the simple XOR operation across disks
Simple option: Check out EVENODD code in readings
— WIill generate one additional check disks to support RAID 6
More general option for general erasure code: Reed-Solomon codes
— Based on polynomials in GF(2¥) (l.e. k-bit symbols)

» Gailois Field is finite version of real numbers
— Data as coefficients (), code space as values of polynomial:
» P(x)=aptax!+...a_ xm
» Coded: P(0)P(1),PQ2)....P(n-1)
— Can recover polynomial (I.e. data) as long as get any m of n; allows n-m failures!

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 20

Higher Durability/Reliability through Geographic Replication

Highly durable — hard to destroy all copies
Highly available for reads

— Simple replication: read any copy
— Erasure coded: read m of n

Low avallability for writes
— Can't write if any one replica is not up
— Or — need relaxed consistency model

Reliability? — availability, security, durability, fault-tolerance

Replica/Frag #|

Replica/Frag #2

Replica/Frag #n

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 21

File System Reliability: (Difference from Block-level reliability)

* What can happen If disk loses power or software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

* Having RAID doesn’t necessarily protect against all such failures

— No protection against writing bad state
— What if one disk of RAID group not written?

* File system needs durability (as a minimum!)

— Data previously stored can be retrieved (maybe after some recovery
step), regardless of failure

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 22

Storage Reliability Problem

* Single logical file operation can involve updates to multiple physical
disk blocks

— Inode, Indirect block, data block, bitmap, ...

— With sector remapping, single update to physical disk block can require
multiple (even lower level) updates to sectors

* At a physical level, operations complete one at a time
— Want concurrent operations for performance

* How do we guarantee consistency regardless of when crash occurs!

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 23

Threats to Reliability

* Interrupted Operation

— Crash or power failure in the middle of a series of related updates may
leave stored data in an inconsistent state

— Example: transfer funds from one bank account to another

— What if transfer is interrupted after withdrawal and before deposit!

* | oss of stored data

— Failure of non-volatile storage media may cause previously stored data
to disappear or be corrupted

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 24

Reliability Approach #1: Careful Ordering

* Sequence operations in a specific order
— Careful design to allow sequence to be interrupted safely

* Post-crash recovery
— Read data structures to see if there were any operations in progress
— Clean up/finish as needed

* Approach taken by
— FAT and FFS (fsck) to protect filesystem structure/metadata
— Many app-level recovery schemes (e.g.,VWord, emacs autosaves)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 25

FFS: Create a File

Normal operation: Recovery:

* Allocate data block * Scan inode table

* Write data block * If any unlinked files (not in any

e Allocate inode directory), delete or put in lost &
found dir

4/14/20

Write inode block

Update bitmap of free blocks
and Iinodes

* Compare free block bitmap
against inode trees

* Scan directories for missing

Update directory with file update/access times

name — Inode number

Update modify time for

directory Time proportional to disk size

Kubiatowicz CS162 © UCB Spring 2020 26

Reliability Approach #2: Copy on Write File Layout

* Jo update file system, write a new version of the file system
containing the update

— Never update In place
— Reuse existing unchanged disk blocks

* Seems expensive! But
— Updates can be batched

— Almost all disk writes can occur in parallel
* Approach taken in network file server appliances

— NetApp's Write Anywhere File Layout (WAFL)
— /FS (Sun/Oracle) and OpenZFS

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

27

COW with Smaller-Radix Blocks

old version new version

\ \

= e~
S/
/L

-

* |f file represented as a tree of blocks, just need to
update the leading fringe

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 28

ZFS and OpenZFS
* Variable sized blocks: 512 B — 128 KB

* Symmetric tree
— Know If it is large or small when we make the copy

* Store version number with pointers
— Can create new version by adding blocks and new pointers

 Buffers a collection of writes before creating a new version with
them

* Free space represented as tree of extents in each block group

— Delay updates to freespace (in log) and do them all when block group
s activated

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 29

More General Reliability Solutions

» Use Transactions for atomic updates
— Ensure that multiple related updates are performed atomically

— I.e, If a crash occurs in the middle, the state of the systems reflects
either all or none of the updates

— Most modern file systems use transactions internally to update
filesystem structures and metadata

— Many applications implement their own transactions

* Provide Redundancy for media failures
— Redundant representation on media (Error Correcting Codes)
— Replication across media (e.g.,, RAID disk array)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

Transactions

» Closely related to critical sections for manipulating shared data
structures

* They extend concept of atomic update from memory to stable
storage

— Atomically update multiple persistent data structures

* Many ad-hoc approaches

— FFS carefully ordered the sequence of updates so that if a crash
occurred while manipulating directory or inodes the disk scan on reboot
would detect and recover the error (fsck)

— Applications use temporary files and rename

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 31

4/14/20

Key Concept: Transaction

* An atomic sequence of actions (reads/writes) on a storage
system (or database)

* That takes it from one consistent state to another

.] transaction .
consistent state | J consistent state 2

Kubiatowicz CS162 © UCB Spring 2020

32

Typical Structure

* Begin a transaction — get transaction id

* Do a bunch of updates
— If any fail along the way, roll-back
— Or if any conflicts with other transactions, roll-back

e Commit the transaction

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

33

“Classic” Example: Transaction

BEGIN; ——-BEGIN TRANSACTION
UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch name FROM accounts
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob';

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch name FROM accounts

WHERE name = 'Bob');

COMMIT; ——COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 34

4/14/20

The ACID properties of Transactions

Atomicity: all actions in the transaction happen, or none happen

Consistency: transactions maintain data integrity, e.g,,
— Balance cannot be negative

— Cannot reschedule meeting on February 30

Isolation: execution of one transaction Is isolated from that of all
others; no problems from concurrency

Durability: if a transaction commits, its effects persist despite
crashes

Kubiatowicz CS162 © UCB Spring 2020

35

Concept of a log

* One simple action Is atomic — write/append a basic item
o Use that to seal the commitment to a whole series of actions

< (8
B X[>
+- +-
< t f~ = += 2
= s = c|l
2 o oo <] I 3 <
Q S Q o| © o
< Q S O Q| O a8
o o S o Ql O [
c S| ©
- £ £ £ +
S o 2L
+- c o :. et £
L q— L * cam || oo E
= & - e ala| | S
v =) Ny ™ wlo | |V
- i || -t
-
+ Q + | +=
Q o 1=
O o O alla

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

36

Transactional File Systems

Better reliability through use of log
— All changes are treated as transactions

— A transaction is committed once 1t Is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

— Aﬁlthlough File system may not be updated immediately, data preserved in
the log

Difference between “Log Structured” and “Journaled”
— In a Log Structured filesystem, data stays in log form
— In a Journaled filesystem, Log used for recovery

Journaling File System

— Applies updates to system metadata using transactions (using logs, etc.)

— Updates to non-directory files (i.e., user stuff) can be done in place
(without logs), full logging optional

— BEx: NTFS, Apple HFSH, Linux XFS, JFS, ext3, ext4
Full Logging File System

— All updates to disk are done in transactions

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 37

Journaling File Systems

Instead of modifying data structures on disk directly, write changes to a
journal/log

— Intention list: set of changes we intend to make
— Log/|ournal is append-only
— Single commit record commits transaction

Once changes are in the log, it is safe to apply changes to data structures on
disk
— Recovery can read log to see what changes were intended

— (Can take our time making the changes
» As long as new requests consult the log first

Once changes are copied, safe to remove log
But, ...

— If the last atomic action is not done ... poof ... all gone
Basic assumption:

— Updates to sectors are atomic and ordered

— Not necessarily true unless very careful, but key assumption

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 38

Example: Creating a File

Find free data block(s)

Find free inode entry

Free space
. . . : : map
* Find dirent insertion point
Data blocks
: . Inode tabl
* Write map (i.e., mark used) node e
o . Directory
* Write inode entry to point to block(s) entries

Write dirent to point to inode

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 39

Ex: Creating a file (as a transaction)

Find free data block(s)

FIind free inode entry

* Find dirent insertion point

* [log] Write map (used)

* [log] Write inode entry to point to
block(s)

[log] Write dirent to point to mog'gad

done

\!—L%EJ

Free space
map

Data blocks

Inode table

Directory
entries

commit

Log: in non-volatile storage (Flash or on Disk)
4/14/20 Kubiatowicz CS162 © UCB Spring 2020

40

“Redo Log “ — Replay Transactions

o After Commit

* All access to file system first looks In
log

* Eventually copy changes to disk

tail tail

ta

done

Free space
map

Data blocks

Inode table

Directory
entries

tail ¢4j] head

\ start 7’
&

pending
Log: in non-volatile storage (Flash or Disk)
4/14/20 Kubiatowicz CS162 © UCB Spring 2020

ommit \
: <_-

41

Crash During Logging — Recover

Upon recovery scan the log

Detect transaction start with no

commit Free space

map

Data blocks

Discard log entries

Inode table

Disk remains unchanged
Directory

entries

tail head

\!—L%DJ% \AX/

Log: in non-volatile storage (Flash or on Disk)
4/14/20 Kubiatowicz CS162 © UCB Spring 2020 42

done

Recovery After Commit

* Scan log, find start

* Find matching commit Free space

map
* Redo It as usual
— Or just let it happen later

Data blocks

Inode table

Directory
entries

head
| !

- -

Log: in non-volatile storage (Flash or on Disk)
4/14/20 Kubiatowicz CS162 © UCB Spring 2020 43

tail

done

commit

Journaling Summary

Why go through all this trouble?

» Updates atomic, even if we crash:
— Update erther gets fully applied or discarded
— All physical operations treated as a logical unit

Isn't this expensive!

* Yes! We're now writing all data twice (once to log, once to
actual data blocks in target file)

* Modern filesystems offer an option to journal metadata
updates only

— Record modifications to file system data structures
— But apply updates to a file's contents directly

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

44

4/14/20

Going Further — Log Structured File Systems

The log IS what is recorded on disk

— File system operations logically replay log to get result

— Create data structures to make this fast

— On recovery, replay the log
Index (inodes) and directories are written into the log too
Large, important portion of the log is cached in memory
Do everything in bulk: log is collection of large segments

Fach segment contains a summary of all the operations within the
segment

— Fast to determine if segment is relevant or not
Free space Is approached as continual cleaning process of segments
— Detect what is live or not within a segment
— Copy live portion to new segment being formed (replay)
— Garbage collection entire segment
— No bit map

Kubiatowicz CS162 © UCB Spring 2020 45

LFS Paper in Readings

filel

dirl dir2 filel file2
N
Log —» Disk Disk
,,,,,,,,,,,,,,,,,,,,,,,,, v
Sprite LFS ; Unix FFS
dirl
file2
Block key: ~ Inode “ Directory D Data D Inode map

Figure 1 — A comparison between Sprite LFS and Unix FFS.

* LFS: write filel block, write inode for file |, write directory page

4/14/20

mapping “file | in “dir| ™ to its inode, write inode for this directory
page. Do the same for "/dir2/file2”. Then write summary of the new

inodes that got created in the segment
FFS: <left as exercise>
Reads are same in either case (pointer following)

Buffer cache likely to hold information in both cases
— But disk IOs are very different — writes sequential, reads not!
— Randomness of read layout assumed to be handled by cache

Kubiatowicz CS162 © UCB Spring 2020

46

Example: F2FS: A Flash File System

File system used on many mobile devices
— Including the Pixel 3 from Google
— Latest version supports block-encryption for security
— Has been “mainstream” in linux for several years now

* Assumes standard SSD interface
— With built-in Flash Translation Layer (FTL)
— Random reads are as fast as sequential reads

— Random writes are bad for flash storage
» Forces FTL to keep moving/coalescing pages and erasing blocks
» Sustained write performance degrades/lifetime reduced
Minimize Writes/updates and otherwise keep writes “sequential”
— Start with Log-structured file systems/copy-on-write file systems
— Keep writes as sequential as possible
— Node Translation Table (NAT) for “logical” to “physical’ translation
» Independent of FTL

For more details, check out paper in Readings section of website
— “F2FS: A New File System for Flash Storage™ (from 2015)
— Design of file system to leverage and optimize NAND flash solutions
— Comparison with Ext4, Btrfs, Nilfs2, etc

4/14/20 Kubiatowicz CS162 © UCB Spring 2020

Block — 4KB

T Flash-friendly on-disk LaYOUt < Section - n Seameits >

"Zone = M Sections

L Random Writes N Multi-stream Sequential Writes ’
| Zone | Zone | Zone | Zone |
| section | sSection | section | Section | Section | section | section | Section |
Segment Number o112 |...| |
Superblock #0 Check | Segment Info. ,N'Jde Address, Segment Summary Main Area
Superblock #1 : E
point Table Table Area l | l | I I I | I | I I
(cp) (sIm) . (NAT) ¢ (SSA) T
Sector#0 ,* ----- B — *\ - v -
‘~._HotyWarm/Cold__ -~ Hot/Warm/Cold
Node segments Data segments

Main Area:
— Divided into segments (basic unit of management in F2FS)
— 4KB Blocks. Each block typed to be node or data.

* Node Address Table (NAT): Independent of FTL!

— Block address table to locate all “node blocks™ in Main Area

» Updates to data sorted by predicted write frequency (Hot/VWarm/Cold) to optimize FLASH
Management

* Checkpoint (CP): Keeps the file system status
— Bitmaps for valid NAT/SIT sets and Lists of orphan inodes
— Stores a consistent F2FS status at a given point in time

* Segment Information Table (SIT):

— Per segment information such as number of valid blocks and the bitmap for the validity of all
blocksin the “Main™ area

— Segments used for “garbage collection”
Segment Summary Area (SSA):
— Summary representing the owner information of all blocks in the Main area

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 48

LFS Index Structure:
Forces many updates when updating data

® Update propagationissue: wandering tree
®m Onebiglog

Fixed location

S
B

Inode for

Directory data

Inode for
regular file }
File data o File data *

Segment Usage

Used for cleaning Indirect Direct

Pointer block Pointer block

T One big log /
| I

Segment Summary

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 49

F2FS Index Structure:
Indirection and Multi-head logs optimize updates

® Restrained update propagation: node address translation method
® Multi-head log

Fixed location

* NAT: Node Address Table Directory data

Inode for

Inode for

y

regular file
Referenced|via NAT lookup File data .- File data

Indirect Referenced via NAT lookup
Node

Segment Info. Table
(SIT)

Direct
Node

Segment Summary
(SSA)

\ MUﬂlple 'Ogs /

Used for cleaning

] o o

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 50

File System Summary (1/3)

File System:
— Transforms blocks into Files and Directories
— Optimize for size, access and usage patterns
— Maximize sequential access, allow efficient random access
— Projects the OS protection and security regime (UGO vs ACL)

File defined by header, called “inode”

Naming: translating from user-visible names to actual sys resources
— Directories used for naming for local file systems
— Linked or tree structure stored in files

Multilevel Indexed Scheme

— Inode contains file info, direct pointers to blocks, indirect blocks, doubly
indirect, etc..

— NTFS: variable extents not fixed blocks, tiny files data is in header

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 51

File System Summary (2/3)

* File layout driven by freespace management

— Optimizations for sequential access: start new files in open ranges of
free blocks, rotational optimization

— Integrate freespace, inode table, file blocks and dirs into block group
* FLASH filesystems optimized for:

— Fast random reads

— Limiting Updates to data blocks

* Buffer Cache: Memory used to cache kernel resources, including
disk blocks and name translations

— Can contain "“dirty” blocks (blocks yet on disk)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 52

4/14/20

File System Summary (3/3)

File system operations involve multiple distinct updates to blocks on
disk

— Need to have all or nothing semantics
— Crash may occur in the midst of the sequence
Traditional file system perform check and recovery on boot

— Along with careful ordering so partial operations result in loose fragments,
rather than loss

Copy-on-write provides richer function (versions) with much simpler
recovery

— Little performance impact since sequential write to storage device is
nearly free

Transactions over a log provide a general solution
— Commit sequence to durable log, then update the disk

— Log takes precedence over disk
— Replay committed transactions, discard partials

Kubiatowicz CS162 © UCB Spring 2020 53

