CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems (Con’t),
MMAP, Buffer Cache

April 7th, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: A Little Queuing Theory: Some Results

Assumptions:
— System in equilibrium; No limit to the queue
— Time between successive arrivals Is random and memoryless

Arrival Rat: Service Rate
. H= I /Tser
* Parameters that describe our system:
— A mean number of arriving customers/second
— T mean time to service a customer (“m ")
- C squared coefficient of variance = 02/m|12
— M service rate = |/T__
—u server utilization (Osusl)u =My =Ax T,
* Parameters we wish to compute:
- Iy Time spent In queue
- L Length of queue = A x T (by Little’s law)

Results:
— Memoryless service distribution (C = 1): (an "M/M/| queue”):
» Tq= Teer X /(1 —u)
— General service distribution (no restrictions), | server (an“M/G/| queue”™):
» Tq = T X 72(1+C) xu/(l —u)
417120 Kubiatowicz CS162 © UCB Spring 2020

Recall: A Little Queuing Theory: Some Results

e Assumptions:

— System in equilibrium; No limit to the g
— Time between successive arrivals Is rand

>
Arrival Rate

\Y:

A

Parameters that describe our system:
mean number of arriving cust

mean time 1o service a custor
squared coefficient of variance

service rate = |/T

ser

server utilization (Osus=|):u 5
Parameters we wish to compute:

- Iy Time spent In queue
- Ly Length of queue = A
* Results:

— Memoryless s

“ce .|si b
» Tq= Teer x-

Why does response/queueing
delay grow unboundedly even
though the utilization is < | ?

300

200

100

0

Response
Time (ms)

0% 100%

Throughput (Utilization)
(% total BW)

:(an "M/M/1 queue™):

— General service distributi®n (no rerictions), | server (an “M/G/| queue”™):
» Tq =T x 72(1+0) x

4/7/20

Kubiatowicz CS162 © UCB Spring 2020

Components of a File System

File path

Directory File Index One file system block
Structure e usually = multiple sectors

File number Ex: 512 sector, 4K block

“inumber”

Data blocks

“inode”

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 4

Components of a file system

file name N file number Index
offset directory offset structure

> Storage block

* Open performs Name Resolution
— Translates pathname into a "file number”
» Used as an “index” to locate the blocks
— Creates a file descriptor in PCB within kernel
— Returns a "handle” (another integer) to user process

* Read, Write, Seek, and Sync operate on handle
— Mapped to file descriptor and to blocks

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 5

Directories

[NN] [website
< EH oo ol 58 v 0 © | ¥~
Favorites Name ~ Date Modified Size Kind
23 Dropbox v [static Feb 10, 2016, 12:45 PM - Folder
» [css Jan 14, 2016, 11:51 AM -- Folder
< iCloud Drive » [exams Mar 10, 2016, 9:03 PM - Folder
@) AirDrop » [fonts Jan 14, 2016, 11:51 AM -~ Folder
v [hw Mar 1, 2016, 7:29 PM -- Folder
(] Desktop = hwo.pdf Jan 20, 2016, 3:19 PM 175KB PDF Document
k) . y y 90
£} adj = hwi1.pdf Feb 11, 2016, 9:42 AM 128KB PDF Document
s8¢ Applications = hw2.pdf Feb 16, 2016, 9:00 PM 180 KB PDF Document
= hw3.pdf Mar 1, 2016, 7:29 PM 200 KB PDF Document
[§ Documents > s Jan 14, 2016, 11:51 AM -- Folder
© Downloads » [lectures Apr 1, 2016, 5:41 PM -~ Folder
E Movies » [pics Jan 18, 2016, 6:13 PM -~ Folder
> ! profiles Jan 25, 2016, 3:32 PM -- Folder
[Box Sync » [projects Mar 26, 2016, 10:07 AM - Folder
ES Google Drive v [readings Jan 14, 2016, 11:51 AM -~ Folder
= endtoend.pdf Jan 14, 2016, 11:51 AM 38 KB PDF Document
Devices = FFS84.pdf Jan 14, 2016, 11:51 AM 1.3MB PDF Document
Remote Disc = garman_bug_81.pdf Jan 14, 2016, 11:51 AM 610 KB PDF Document
= Jacobson-congestion.pdf Jan 14, 2016, 11:51 AM 1.2MB PDF Document
i = Original_Byzantine.pdf Jan 14, 2016, 11:51 AM 1.2MB PDF Document
[adj-MBP = patterson_queue.pdf Jan 14, 2016, 11:51 AM 1.3MB PDF Document
& adj-mini = TheracNew.pdf Jan 14, 2016, 11:51 AM 299 KB PDF Document
v [sections Mar 17, 2016, 10:03 AM -- Folder
@ fido = section1.pdf Jan 18, 2016, 6:13 PM 130KB PDF Document
@ All... = section2.pdf Jan 26, 2016, 7:13 PM 108 KB PDF Document
= section2sol.pdf Jan 28, 2016, 10:10 AM 127 KB PDF Document
Tags = section3.pdf Feb 5, 2016, 10:15 AM 115KB PDF Document
= section3sol.pdf Feb 5, 2016, 10:15 AM 134 KB PDF Document
= sectiond.pdf Feb 10, 2016, 12:45 PM 114KB PDF Document
= sectiondsol.pdf Feb 11, 2016, 9:42 AM 134 KB PDF Document
i A ndf EFah 18 _2N1A_1-55 PAM 1iNQ KR PNE Nacumant

& Macintosh HD »

| Users » 4 adj » [ly) Documents » GitHub » website

4/7/20

51 items, 39.01 GB available

Kubiatowicz CS162 © UCB Spring 2020

Directory

Basically a hierarchical structure

Each directory entry is a collection of
— Files
— Directories
» A link to another entries

Fach has a name and attributes
— Files have data

Links (hard links) make it a DAG, not just a tree
— Softlinks (aliases) are another name for an entry

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

Directory Structure

* How many disk accesses to resolve "“/my/book/count™
— Read in file header for root (fixed spot on disk)

— Read in first data block for root

» Table of file name/index pairs. Search linearly — ok since directories
typically very small

— Read in file header for “my"”
— Read in first data block for “my"; search for “book”
— Read in file header for “book”
— Read in first data block for “book™; search for “count”
— Read in file header for"“count”
» Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names

— Allows user to specify relative filename instead of absolute path (say
CWD="/my/book’™ can resolve “count”)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 8

File

* Named permanent storage
Data blocks

» Contains
— Data
» Blocks on disk somewhere
— Metadata (Attributes)
» Owner, size, last opened, ...

» Access rights
*RW, X
* Owner, Group, Other (in Unix systems)

* Access control list in Windows system

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 9

In-Memory File System Structures

open (file name)

directory structure

=

directory structure

file-control block

user space

kernel memory

secondary storage

* Open system call:

— Resolves file name, finds file control block (inode)

— Makes entries in per-process and system-wide tables

— Returns index (called “file handle™) in open-file table

4/7/20

Kubiatowicz CS162 © UCB Spring 2020

In-Memory File System Structures

read (index)

index

N

per-process system-wide
open-file table open-file table

L

data blocks

H

file-control block

user space

kernel memory

secondary storage

* Read/write system calls:
—Use file handle to locate inode

— Perform appropriate reads or writes

4/7/20

Kubiatowicz CS162 © UCB Spring 2020

Our first filesystem: FAT (File Allocation Table)

* The most commonly used filesystem in the world!

* Assume (for now) we have a

way to translate a path to 0-
a

“file number”

File number
— lLe, a directory structure \ 31

* Disk Storage is a collection of Blocks
— Just hold file data (offset 0 = < B, x >)

e Example:file_read 31, <2, x>
— Index into FAT with file number
— Follow linked list to block

— Read the block from disk

4/7/20

into memory

memory
Kubiatowicz CS162 © UCB Spring 2020

FAT

1]

‘.—

N-1:

Disk Blocks

File 31, Block O

File 31, Block |

File 31, Block 2

N-1:

FAT Properties

e File s collection of disk blocks

e FAT is linked list -1 with blocks

* File Number is index of root

of block list for the file File number \
31

* File offset (0 = < B, x >)

* Follow list to get block #

* Unused blocks » Marked free (no

ordering, must scan to find)

free

memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

FAT

0:

N-1:

Disk Blocks

File 31, Block O

File 31, Block |

File 31, Block 2

N-1:

FAT Properties

e File s collection of disk blocks

e FAT is linked list -1 with blocks

* File Number is index of root

of block list for the file File number \
31

* File offset (0 = <B,x>)

* Follow list to get block #

* Unused blocks » Marked free (no

ordering, must scan to find)
o Exifile_write(31,< 3,y >)
— Grab free block
— Linking them into file

free

memory

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

FAT

0:

A

N-1:

Disk Blocks

File 31, Block O

File 31, Block |

File 31, Block 3

File 31, Block 2

N-1:

FAT Properties

e File s collection of disk blocks

* FAT is linked list -1 with blocks FAT Disk Blocks
e File Number is index of roFQIt I] 0: 0:
of block list for the file ™% 7 "R s g
* Grow file by allocating free blocks /Z .':] AGIlsaleasls
and linking them in free L | L6 s ElteE |
: : < File 63, Block |
e Ex: Create file, write, write
L File 31, Block 3
63: File 63, Block 0
File 2 number 4 | |File 31,Block 2

N-1: N-1:

memory
417120 Kubiatowicz CS162 © UCB Spring 2020

FAT Assessment

* FAT32 (32 instead of |2 bits) used in Windows, USB drives,
5D cards, ... FAT Disk Blocks

e Where is FAT stored? 0: 0:

File | number

— On Disk, on boot cache in memory, \

second (backup) copy on disk 31: "1 File 31, Block 0
* What happens when you format a disk? E':e Z; E:“t :
< e , DIOC
— Zero the blocks, Mark FAT entries “free”
* What happens when you
quick format a disk?) File 31, Block 3
— Mark all entries in FAT as free 63: File 63, Block 0
Sirmpl File 2 number 4 <] [File 31, Block 2
* Simple ’
— Can implement in
device firmware N-1: N-1:

memory
417120 Kubiatowicz CS162 © UCB Spring 2020

FAT Assessment — Issues

* Time to find block (large files) ?

Sequential Access !

Random Access !

Fragmentation !

— MSDOS defrag tool

Small files 2?7

Big files 7/

4/7/20

Block layout for file 7?7 0-

File #1 N

31:

File #2 /

N-1:

Kubiatowicz CS162 © UCB Spring 2020

FAT

A

A

63:

Disk Blocks

File 31, Block O

File 31, Block |

File 63, Block |

File 31, Block 3

File 63, Block 0

File 31, Block 2

N-1:

What about FAT directories!?

file 5268830 egf
“/home/tom” file
Name | Music Work Free | foo.txt | Free
File Number | 5268830 88026158 35002320 85200219 Space 66212871 Space
Next |

¥/

* Directory is a file containing <file_name: file_number> mappings
— Free space for new/deleted entries

— In FAT: file attributes are kept in directory (III)
— Each directory is a linked list of entries

* Where do you find root directory (/")?
— At well-defined place on disk
— For FAT, this is at block 2 (there are no blocks O or |)
— Remaining directories are accessed via their file_number

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 18

Many Huge FAT Security Holes!

* FAT has no access rights
—No way, even in principle, to track ownership of data

 FAT has no header In the file blocks

—No way to enforce control over data, since all processes
have access of FAT table

— Just follow pointer to disk blocks

* Just gives an index Into the FAT to read data
— (file number = block number)

— Could start in middle of file or access deleted data

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 19

12000

10000

8000

6000

4000

Files per file system

2000

4/7/20

Characteristics of Files

A Five-Year Study of File-System Metadata

NITIN AGRAWAL

University of Wisconsin, Madison

and

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

9:9
1800 T T T T T T T ' T
: ; ; PoA ; ; 2000
- : I 2001 - ._
= 1600 ; yiaw 5002 o
= ; : i H " : i 2003 |
E 1400 : ,,- : a \1\. 2004 _________
15} / B 1
% 1200 : ' ‘ i b
o 1000 3 g i
g 800 | | i :
8
g 600
2]
T° 400
3 ‘
200
Sy 0 Y ot 1 1 [i——— Ay '1‘:1'-.'."""
128 2K 32K 512K 8M 128 512 4K 32K 256K 2M i6M 128M 1G 8G 64G
File size (bytes, log scale, power-of-2 bins) Containing file size (bytes, log scale, power-of-2 bins)
Fig. 2. Histograms of files by size. Fig. 4. Histograms of bytes by containing file size.

Kubiatowicz CS162 © UCB Spring 2020 20

Unix File System (1/2)

* Original inode format appeared in BSD 4.1
— Berkeley Standard Distribution Unix
— Part of your heritage [if you are at Berkley]!
— Similar structure for Linux Ext2/3
* File Number is index into inode arrays
* Multi-level index structure
— Great for little and large files

— Asymmetric tree with fixed sized blocks

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

21

Unix File System (2/2)

* Metadata associated with the file
— Rather than In the directory that points to it

« UNIX Fast File System (FFS) BSD 4.2 Locality Heuristics:
— Block group placement
— Reserve space

* Scalable directory structure

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

22

4/7/20

Inode Structure

* Inode metadata

Inode Array

Triple Double
Indirect Indirect Indirect Data
Inode Blocks Blocks Blocks Blocks
Fil,e/
Metadata /D
Direct
Pointers \D
]]
Indirec’; \Pointer \:\
Dbl. Indirect Ptr. g s ‘\:\
Tripl. Indrect Ptr: —D\D_':%\D
D—’D

Kubiatowicz CS162 © UCB Spring 2020

23

File Attributes

* Inode metadata

Inode Array Triple Double
Indirect Indirect Indirect Data
laode— Blocks Blocks Blocks Blocks
Fil,e/
Metadata /%
User ~_—t
Group —
9 basic access control bits u
- UGO x RWX

Setuid bit

rather than user
Setgid bit

/D\E;D
- execute at owner permissions %

- execute at group’s permissions e

4/7/20

Kubiatowicz CS162 © UCB Spring 2020

24

Data Storage

* Small files: |2 pointers direct to data blocks

4/7/20

Indirect Indirect Data

Blocks Blocks Blocks

Metadata /‘:\

Direct pointers Triple Double
Indirect

4kB blocks => sufficient for Inode Blocks

files up to 48KB e

Direct
Pointers
/
Indirect \Pointer
Dbl. Indirect Ptr.]
Tripl. Indrect Ptr.

Kubiatowicz CS162 © UCI

Files per file system

12000 T T T T T T
‘ 2000 —
: : 2001 --------
2002 -
10000 5003
2004 ----
8000 f I
6000 it
4000 |
2000 ft- b "}ymﬁfi//j“ R SRR o : _
0 P i I j Pl
0 8 128 2K 32K 512K 8M 128M

File size (bytes, log scale, power-of-2 bins)

Fig. 2. Histograms of files by size.

Data Storage

 large files: 1,2,3 level indirect pointers

Indirect pointers

- point to a disk block
containing only pointers

- 4 kB blocks => 1024 ptrs

=>4 MB @ level

2

=>4 GB @ level 3

Hata

Triple Double
Indirect Indirect Indirect Data

/Inode Blocks Blocks Blocks Blocks

Used space per file system (MB)

=>4TB @ level 4

A Five-Year Study of File-System Metadata ¢ 9:9

1800

2000 ——

1600 - oy
o
1200 -
1000
800
600
400
0 st T :
512 4K 32K

8G 64G

Containing file size (bytes, log scale, power-of-2 bins)

Fig. 4. Histograms of bytes by containing file size.

1] &=V

Direct
$Jinters

+4 MB

\‘:’
T +4GB

[]

D\‘%
D—»D +4TB

~uviatowicz CS162 © UCB Spring 2020 26

UNIX BSD 4.2 (1984) (1/2)

* Same as BSD 4.1 (same file header and triply indirect blocks), except
incorporated ideas from Cray Operating System:

— Uses bitmap allocation in place of freelist
— Attempt to allocate files contiguously

— 0% reserved disk space

— Skip-sector positioning (mentioned later)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 27

UNIX BSD 4.2 (1984) (2/2)

* Problem:When create a file, don't know how big it will become (in
UNIX, most writes are by appending)

— How much contiguous space do you allocate for a file?
—In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range

» To expand a file, you first try successive blocks in bitmap, then
choose new range of blocks

— Also in BSD 4.2: store files from same directory near each other

* Fast File System (FFS)
— Allocation and placement policies for BSD 4.2

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 28

Attack of the Rotational Delay

* Problem 2: Missing blocks due to rotational delay

— Issue: Read one block, do processin% and read next block. In meantime, disk has
continued turning: missed next block! Need | revolution/block!

= | |
Track Buffer
(Holds complete track)

— Solution |: Skip sector positioning (“interleaving”)

» Place the blocks from one file on every other block of a track: give time for processing
to overlap rotation

» Can be done by OS or in modern drives by the disk controller

— Solution 2: Read ahead: read next block right after first, even if application hasn't
asked for it yet
» This can be done either by OS (read ahead)

» By disk itself (track buﬁ‘ersg - many disk controllers have internal RAM that allows
them to read a complete track

Skip Sector

* Modern disks + controllers do many things “under the covers”
— Track buffers, elevator algorithms, bad block filtering

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 29

Where are inodes Stored?

* In early UNIX and DOS/Windows' FAT file system, headers stored
in special array in outermost cylinders

* Header not stored anywhere near the data blocks
— To read a small file, seek to get header, seek back to data

* Fixed size, set when disk is formatted
— At formatting time, a fixed number of inodes are created
— Each is given a unique number; called an “inumber”

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 30

Where are inodes Stored?

e |[ater versions of UNIX moved the header information to be
closer to the data blocks

— Often, inode for file stored in same “cylinder group™ as parent directory
of the file (makes an Is of that directory run fast)

* Pros:
— UNIX BSD 4.2 puts bits of file header array on many cylinders

— For small directories, can fit all data, file headers, etc. in same cylinder =
no seeks!

— File headers much smaller than whole block (a few hundred bytes), so
multiple headers fetched from disk at same time

— Reliability: whatever happens to the disk, you can find many of the files
(even if directories disconnected)

» Part of the Fast File System (FFS)

— General optimization to avoid seeks

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 31

4.2 BSD Locality: Block Groups

* File system volume is divided into a set of block groups
— Close set of tracks

Block Group 0

* Data blocks, metadata, and free

space Interleaved within block group Block Group 1

— Avoid huge seeks between

Block Group 2
user data and system structure

* Put directory and its files in
common block group

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 32

4.2 BSD Locality: Block Groups

e First-Free allocation of new file blocks

— To expand file, first try successive
blocks in britmap, then
choose new range of blocks

Block Group 0

Block Group 1

— Few little holes at start, big

sequential runs at end of group Block Group 2

— Avoids fragmentation
— Sequential layout for big files

* Important: keep 0% or more free!
— Reserve space in the Block Group

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 33

UNIX 4.2 BSD FFS First Fit Block Allocation

In-Use Free
Start of Block Block

Block ([[

Group
Write Two Block File

Start of
Block ii-]

Group
Write Large File

Start of \ f
Block w

Group

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

UNIX 4.2 BSD FFS

* Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data
— No defragmentation necessary!

e Cons

— Inefficient for tiny files (a | byte file requires both an inode and a data
block)

— Inefficient encoding when file is mostly contiguous on disk
— Need to reserve 10-20% of free space to prevent fragmentation

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

35

Linux Example: Ext2/3 Disk Layout

. . . Block Group 0
* Disk divided into block groups ~ Super
Block Inode Table "
B P : C| Iocalit i Root Directory
roviaes Y R Sckc 558 P_jw-"’_' Len |Name | Inode
— Each group has two block-sized ok R o -)
) . 6 .
bitmaps (free blocks/inodes) . S ae W Comens {12 [|5003
. roup j
— Block sizes settable Descriptor ‘ / Block 258
at format time: TS 7
1K, 2K, 4K, 8K... o
. Block Group 2
* Actual inode structure similar to * s ——F S ——
42 BSD Blocks 2 -3 / Len |Name | Inode
. . . 5,033 Block: 18,431 12 y 2
— with |2 direct pointers e |18 12 [som
. . 5110 Block: 20,002.. <116 filel.dat | 5,110
 Ext3: Ext2 with Journaling B.mm,ago.m,w\\ 6 Tiajpg | 5088
. Block 18,431
— Several degrees of protection Block Inode \ _
WI 'th Comparable oV erhe a d Bitmap Bitmap file1.dat contents
wedas | | o 1.
Block Block Blocks 20,002-20,003, 20,114-20,117
16,385 16,386

* Example:createa filel.dat
under /dirl/ in Ext3

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 36

A bit more on directories

* Stored in files, can be read, but typically don't
— System calls to access directories
—open / creat traverse the structure
—mkdir /rmdir add/remove entries

/usr

. : 1lib :
— link / unlink (rm) /usr/li /usr/1ib4.3
» Link existing file to a directory
* Not in FAT !
» Forms a DAG
o ?
When can file be deleted: Jusr/1ib/ foo

— Maintain ref-count of links to the file
— Delete after the last reference is gone /usr/1ib4.3/foo

* libc support
—DIR * opendir (const char *dirname)
—struct dirent * readdir (DIR *dirstream)

—1int readdir r (DIR *dirstream, struct dirent
*entry, struct dirent **result)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 37

4/7/20

Links

e Hard link

— Sets another directory entry to contain the file number for
the file

— Creates another name (path) for the file
— Each is "first class”

* Soft link or Symbolic Link or Shortcut
— Directory entry contains the path and name of the file

— Map one name to another name

Kubiatowicz CS162 © UCB Spring 2020 38

Large Directories: B-Trees (dirhash)

in FreeBSD, NetBSD, OpenBSD

Search for hash(“out2”) = 0x0000c194

B+Tre§e Root

Before [[00ad1102[b0bf8201 cfflad12
Child Pointer v ; :

& B+Tree Node B+Tree Node B+Tree Node

Before [[0000c195 00018201 \ \
Child Pointer i ;

L
= LS .

BiTree Laaf ... : B+Tree Leaf B+Tree Leaf

Hash ||0000a0d1|0000b971 0000c194 \
Entry Pointer ! L |

— s B R A R R A e o
,-

Name filel fle2 | .. | file9841 | outl out2 | .. loutl6341

File Number 3621.0429 983“211 239341 | 231121 243212 | 841013 | 841014 . 324114

“out2”is file 841014

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 39

4/7/20

NTFS

New Technology File System (NTFS)

— Default on Microsoft Windows systems

Variable length extents
— Rather than fixed blocks

Everything (almost) is a sequence of <attribute:value> pairs
— Meta-data and data

Mix direct and indirect freely

Directories organized in B-tree structure by default

Kubiatowicz CS162 © UCB Spring 2020

40

NTFS

* Master File Table
— Database with Flexible |KB entries for metadata/data
— Variable-sized attribute records (data or metadata)
— Extend with variable depth tree (non-resident)

* Extents — variable length

contiguous regions SE
— Block pointers cover Master File Table (Extent
runs of blocks MET
— Similar approach in g Fils =scord Extent
Linux (ext4)

— File create can provide
hint as to size of file

Extent 1

* Journaling for reliability Snall file xecoxd -

— Discussed later Extent 2

Large file recorxd

Small directory record Extent 2

http://ntfs.com/ntfs-mft.htm
4/7/20 Kubiatowicz CS162 © UCB Spring 2020 41

4/7/20

NTFS Small File

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

- MFT Record (small file) data attribute

Std/Info. | File Name Data (residentj (free)

Attribute list

Kubiatowicz CS162 © UCB Spring 2020 42

4/7/20

NTFS Medium File

Master File Table

Start .
Length
,\:_ %
X
©
©
a
MFT Record Start + Lengthl__,
Std. Info. | File Name Data (nonresident) (free)
Start ,
|
Length L
,\ .
)
X
©
©
a
Start + Lengthl_]

Kubiatowicz CS162 © UCB Spring 2020

43

NTFS Multiple Indirect Blocks

ol MFT Record
E _(big/fragmented file)
A Std Info. | AurList lDau (ronresident)
B] — -
| Data (nonresident)
]] B
;. I ' Data (nonresident)
— —) —
: Data (nonresident)
—] 1 |]

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

4/7/20

Master File Table

MFT Record

_(huge/badly-fragmented file)

Std. Info.

Attr. List (nonresident)
| |

T eee]

;ﬁz‘ Extent with part of attribute list

Data (nonresident)

l

Data (nonresident)
|

—

Data (nonresident)

l

45:# Extent with part of attribute list

Data (nonresident)

:b

Data (nonresident)

l

-+« | Extent with part of attribute list

Data (nonresident)

:E]

Data (nonresident)

l l

- Kubiatowicz CS162 © UCB Spring 2020

45

Memory Mapped Files

 Traditional I/O involves explicit transfers between buffers in
process address space to/from regions of a file

— This involves multiple copies into caches in memory, plus system
calls

* What if we could “map’ the file directly into an empty region of
our address space

— Implicitly “page 1t iIn” when we read it
— Write it and “eventually” page it out

« Executable files are treated this way when we exec the
process!!

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 46

Recall: Who Does What, When!

Process virtual address physical address
. , page#
mstrbéuon —> MMU ~frame#
VAR N PT
| /e aukl 17 offset
retry exception pag B —
Opergting System offset

"update PT entry

e Fault Handler

oad page from disk

scheduler

4/7/20 Kubiatowicz CS162 © UCB Spring 2020

Using Paging to mmap ()

Files

Process virtual address physical address
. . page#
mstr)éuon —> MMU PT frame#
etry / \ offset "
/ \\
oo Read File V™
contents . N | =
Opepating/System ' N
S from memory! hte PT entries™
e Fau — N
for“mappe’c’i region "y
7 3 as''backed’ by file
File
scheduler
mmap () file to region of VAS

4/7/20

KubW@ UCB Spring 2020

mmap () system call

MMAP(2) BSD System Calls Manual MMAP(2)

mmap —— allocate memory, or map files or devices into memory

LIBRARY

Standard C Library (libc, -1lc)

SYNOPSIS

#include <sys/mman.h>

void x

mmap(void *addr, size t len, int prot, int flags, int fd,
off_t offset);

DESCRIPTION

The mmap() system call causes the pages starting at addr and continuing
for at most len bytes to be mapped from the object described by fd,
starting at byte offset offset. If offset or len is not a multiple of

A Lo A Lo pu |

4 pu | I S v i - pu |

* May map a specific region or let the system find one for you

— Tricky to know where the holes are

* Used both for manipulating files and for sharing between processes

4/7/20

Kubiatowicz CS162 © UCB Spring 2020

49

An mmap () Example

#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */
int something = 162;

int main (int argc, char *argv[]) {
int myfd;
char *mfile;

printf("Data at: %161x\n", (long unsigned int) &something);
printf("Heap at : %161x\n", (long unsigned int) malloc(1l));
printf("Stack at: %161x\n", (long unsigned int) &mfile);

/* Open the file */
myfd = open(argv[1l], O RDWR | O CREAT);
if (myfd < 0) { perror("open failed!");exit(1l); }

/* map the file */
mfile = mmap(0, 10000, PROT READ|PROT WRITE, MAP FILE|MAP SHARED, myfd, 0);
if (mfile == MAP FAILED) {perror("mmap failed"); exit(1l);}

printf("mmap at : %161x\n", (long unsigned int) mfile);

puts(mfile);

strcpy(mfile+20,"Let's write over it");
close(myfd);

return 0;

}

APAY) Kubiatowicz L5162 © UCDB Spring ZUZU oU

An mmap () Example

#include <sys/mman.h> /* also stdio

int something = 162; $ cat test
This is line one
int main (int argc, char *argv]] This is line two

int myfd;

char *mfile; This 1s line three

This is line four
printf("Data at: %161X\n“, (l $. /map test
printf("Heap at : %161x\n", (14 .
printf("Stack at: %161x\n", (14 Data at: 105d63058
Heap at : 7£8a33c04b70

/* Open the file */ Stack at: 7f££59e9db1l0

myfd = open(argv[l], O RDWR | ap at : 105d97000
if (myfd < 0) { perror("open failw

/* map the file */
mfile = mmap(0, 10000, PROT REj}
if (mfile == MAP FAILED) {perrq

S cat test
This is line one

printf("mmap at : %16lx\n", (14 Thilet's write over its line three
puts (mfile); This 1s line four
strcpy(mfile+20,"Let's write o

close(myfd);

return 0;

}

APAY) Kubiatowicz L5162 © UCDB Spring ZUZU)

Sharing through Mapped Files

VAS |

Jnstruction||s

data

heap l

0x000...

OxFFF...

VAS 2

File _L

Memory

instructiorlls

data

heap l

* Also:anonymous memory between parents and children

4/7/20

— no file backing — just swap space
s~ KulJ:i)atoE/)vicz CS162 © UCB Spring 2020

0x000...

OxFFF...

52

File System Caching

* Key |dea: Explort locality by caching data in memory
— Name translations: Mapping from paths—inodes

— Disk blocks: Mapping from block address—disk content

 Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations
— Can contain “dirty” blocks (blocks yet on disk)

* Replacement policy! LRU
— Can afford overhead of timestamps for each disk block
— Advantages:
» Works very well for name translation

» Works well in general as long as memory Is big enough to accommodate a
host's working set of files.

— Disadvantages:
» Falls when some application scans through file system, thereby flushing the
cache with data used only once

» Example: find . —-exec grep foo {} \;
* Other Replacement Policies!
— Some systems allow applications to request other policies

— Example, ‘Use Once’:
» File system can discard blocks as soon as they are used

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 53

File System Caching (con’t)

» Cache Size: How much memory should the OS allocate to the buffer
cache vs virtual memory!?

— Too much memory to the file system cache = won't be able to run
many applications at once
— Too little memory to file system cache = many applications may run
slowly (disk caching not effective)
— Solution: adjust boundary dynamically so that the disk access rates for
paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early

— Key Idea: explort fact that most common file access is sequential by
prefetching subsequent disk blocks ahead of current read request (if they
are not already in memory)

— Elevator algorithm can efficiently interleave groups of prefetches from
concurrent applications

— How much to prefetch?
» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among concurrent file
requests

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 54

File System Caching (con’t)

* Delayed Writes:Writes to files not immediately sent out to disk
— Instead, write () copies data from user space buffer to kernel buffer
(in cache)

» Enabled by presence of buffer cache: can leave written file blocks in cache
for a while

» If some other application tries to read data before written to disk, file
system will read from cache

— Flushed to disk periodically (e.g.in UNIX every 30 sec)
— Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value for a file

» Some files need never get written to disk! (e..g temporary scratch files
written /tmp often don't exist for 30 sec)

— Disadvantages
» What if system crashes before file has been written out?

» Worse yet, what if system crashes before a directory file has been written
out! (lose pointer to inode!)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 55

Important “ilities”

* Avallabllity: the probability that the system can accept and process
requests

— Often measured in “nines” of probability. So,a 99.9% probability is
considered "“3-nines of availability”

— Key idea here is independence of failures

* Durablility: the ablility of a system to recover data despite faults
— This idea is fault tolerance applied to data

— Doesn't necessarily imply availability: information on pyramids was very
durable, but could not be accesseJ until discovery OWE ﬁosetta Stone
* Reliabllity: the ability of a system or component to perform its
required functions under stated conditions for a specified period of
time (IEEE definition)

— Usually stronger than simply availability: means that the system is not
only “up’, but also working correctly

— Includes availability, security, fault tolerance/durability

— Must make sure data survives system crashes, disk crashes, other
problems

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 56

File System Summary (1/2)

File System:

— Transforms blocks into Files and Directories

— Optimize for size, access and usage patterns

— Maximize sequential access, allow efficient random access

— Projects the OS protection and security regime (UGO vs ACL)
File defined by header, called “inode”

Naming: translating from user-visible names to actual sys resources
— Directories used for naming for local file systems
— Linked or tree structure stored in files

Multilevel Indexed Scheme

— inode contains file info, direct pointers to blocks, indirect blocks,
doubly indirect, etc..

— NTFS: variable extents not fixed blocks, tiny files data Is in header

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 57

File System Summary (2/2)
4.2 BSD Multilevel index files

— Inode contains ptrs to actual blocks, indirect blocks, double indirect
blocks, etc.

— Optimizations for sequential access: start new files in open ranges
of free blocks, rotational optimization

File layout driven by freespace management
— Integrate freespace, inode table, file blocks and dirs into block group
* Deep interactions between mem management, file system, sharing

—mmap (): map file or anonymous segment to memory

Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations
— Can contain “dirty” blocks (blocks yet on disk)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 58

