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Recall: Caching Applied to Address Translation

Virtual

Physical
ddress ysica

Address

Data Read or Write
(untranslated)

* Question Is one of page locality: does it exist!

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

* Can we have a TLB hierarchy!?
— Sure: multiple levels at different sizes/speeds
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Recall: Current x86 (Skylake, Cascade Lake)
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Recall: Putting Everything Together:
Address Translation

Physical
Virtual Address: Memory:
o
Page TablePtr PhyXjcal Aderess: \,
Page Table
(Ist level)
Page Table
(2nd level)
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Recall: Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ J
of |
Page lablePy Ps q Physical A SS: Y
sica
\. Paye #
%,
Page Table
(Ist level)
Page Table
(2nd level)
TLB:

—
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Recall: Putting Everything Together: Cache

Physical
Memory:

Physical A S\
Paygc;l IOffset

{
Itag Iindex Ibyte I
ache:
tag: block:




Recall: Page Fault = Demand Paging

Process virtual address physical address
\_/
. page#
mstr%((on —> MMU frame#
/ \ PT
/ 3 offset
retry exception page fault | |-
ame#
Opkrafjng System offset

Page Fault Handler. "

scheduler
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Demand Paging

* Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year
* But they don't use all their memory all of the time

— 90-10 rule: programs spend 90% of their time in 10% of their
code

— Wiasteful to require all of user's code to be in memory
* Solution: use main memory as “cache” for disk

Processor
Control :
Tertiary
// S_'Ic_orage
QNS ape
Datapath | | 3 (Tape)
5 Q
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Demand Paging as Caching, ...

What "block size™?! - | page (e.g, 4 KB)
* What "organization” ie. direct-mapped, set-assoc., fully-associative!

— Any page in any frame of memory, I.e., fully associative: arbitrary virtual
— physical mapping

* How do we locate a page!
— First check TLB, then page-table traversal

* What is page replacement policy! (i.e. LRU, Random...)

— This requires more explanation... (kinda LRU)
* What happens on a miss!
— Go to lower level to fill miss (i.e. disk)

* What happens on a write! (write-through, write back)
— Definitely write-back — need dirty bit!
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............ llusion of Infinite Memory
_ | A
oo— [B | "
Page I
e Table Physical Disk
Virtual Memory 50068
Memory
512 MB
4 6B

o Disk is larger than physical memory =
— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than physical
memory
» More programs fit into memory, allowing more concurrency

* Principle: Transparent Level of Indirection (page table)
— Supports flexible placement of physical data
» Data could be on disk or somewhere across network
— Variable location of data transparent to user program

» Performance issue, not correctness issue
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Review:What is in a PTE!?
* What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page
— Permission bits: valid, read-only, read-write, write-only
* Example: Intel x86 architecture PTE:
— 2-level page tabler (10, 10, [2-bit offset)
— Intermediate page tables called "Directories”

Page Frame Number Fr'ee ‘ ‘ ‘ ‘ ‘ ‘ ‘Wi ‘
Phvsical P b Olw[DI|A |G 2luwmp
31-12 543210
P: Present (same as “valid" bit | m other arch|tectures)
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through

PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently

D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
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Demand Paging Mechanisms

* PTE makes demand paging implementatable
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on disk when
necessary
* Suppose user references page with invalid PTE!
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a "Page Fault”
— What does OS do on a Page Fault!: UaAuvilvY
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!

— While pulling pages off disk for one process, OS runs another process
from ready queue

» Suspended process sits on wait queue
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Origins of Paging

Keep most of the (T Disks provide

address space on most of the

disk storage
~_

Actively swap

s to/from
pages To/Tro Relatively small

memory, for
many processes

Keep memory full
of the frequently @

accesses pages / P \

Many clients on

~ dumb terminals
E%. running different
programs
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Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user
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3/17/20

A Picture on one machine

Processes: 407 total, 2 running, 405 sleeping, 2135 threads 22:10:3¢
Load Avg: 1.26, 1.26, 0.98 CPU usage: 1.35% user, 1.59% sys, 97.5% idle

SharedLibs: 292M resident, 54M data, 43M linkedit.

MemRegions: 155071 total, 4489M resident, 124M private, 1891M shared.

PhysMem: 13G used (3518M wired), 2718M unused.

VM: 1819G vsize, 1372M framework vsize, 68020510(0) swapins, 71200340(0) swapouts.

Networks: packets: 40629441/21G in, 21395374/7747M out.

Disks: 17026780/555G read, 15757470/638G written.

PID COMMAND %CPU TIME #TH #WQ #PORTS MEM PURG CMPRS PGRP PPID STATE
90498 bash 0.0 00:00.41 1 0 21 1080K 0B 564K 90498 90497 sleeping
90497 login 0.0 00:00.10 2 1 31 1236K 0B 1220K 90497 90496 sleeping
90496 Terminal 0.5 01:43.28 6 1 378- 103M- 16M 13M 90496 1 sleeping
89197 siriknowledg 0.0 00:00.83 2 2 45 2664K 0B 1528K 89197 1 sleeping
89193 com.apple.DF 0.0 00:17.34 2 1 68 2688K 0B 1700K 89193 1 sleeping
82655 LookupViewSe 0.0 00:10.75 3 1 169 13M 0B 8064K 82655 1 sleeping
82453 PAH_Extensio 0.0 00:25.89 3 1 235 15M 0B 7996K 82453 1 sleeping
75819 tzlinkd 0.0 00:00.01 2 2 14 452K 0B 444K 75819 1 sleeping
75787 MTLCompilerS 0.0 00:00.10 2 2 24 9032K 0B 9020K 75787 1 sleeping
75776 secd 0.0 00:00.78 2 2 36 3208K 0B 2328K 75776 1 sleeping
75098 DiskUnmountW 0.0 00:00.48 2 2 34 1420K ©B 728K 75098 1 sleeping
75093 MTLCompilerS 0.0 00:00.06 2 2 21 5924K 0B 5912K 75093 1 sleeping
74938 ssh-agent 0.0 00:00.00 1 0 21 908K 0B 892K 74938 1 sleeping
74063 Google Chrom 0.0 10:48.49 15 1 678 192M 0B 51M 54320 54320 sleeping

* Memory stays about /5% used, 25% for dynamics
* Alotof itisshared |.9 GB
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Many Uses of Virtual Memory and “Demand Paging” ...

Extend the stack
— Allocate a page and zero it

Extend the heap (sbrk of old, today mmap)

Process Fork
— Create a copy of the page table
— Entries refer to parent pages — NO-WRITE
— Shared read-only pages remain shared
— Copy page on write

* Exec
— Only bring in parts of the binary in active use
— Do this on demand

MMAP to explicitly share region (or to access a file as RAM)
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Administrivia

 HW 2 issues!
* GHW?2 will be out today
* Any final thoughts on the midterm?
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Classic: Loading an executable into memory

disk (huge) memory

AN
- -

exe

SN

.exe
— lives on disk in the file system
— contains contents of code & data segments, relocation entries and symbols
— OS loads it into memory, initializes registers (and initial stack pointer)

— program sets up stack and heap upon initialization:
crt0 (C runtime init)
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Create Virtual Address Space of the Process

disk (huge) process VAS memory

N kernel user page

. frames
_nfo stack

exe —sbrk user
pagetable

kernel code
& data

» Utllized pages in the VAS are backed by a page block on disk

— Called the backing store or swap file
— Typically in an optimized block store, but can think of it like a file
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Create Virtual Address Space of the Process

disk (huge, TB)
N
w

stack

11

heap

exe

data

w

process VAS (GBs)

kernel

» User Page table maps entire VAS

 All the utilized regions are backed on disk

— swapped into and out of memory as needed

* [or every process

3/17/20
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Create Virtual Address Space of the Process

PT

M VAS — per process
N kernel
o] Kk
| stack S
] _______
ot heap
exe h
data =
data
code
w COde

* User Page table maps entire VAS

— Resident pages to the frame in memory they occupy
— The portion of it that the HW needs to access must be resident in

memory

3/17/20

/
/

Kubiatowicz CS162 ©UCB Spring 2020

memory

user page
frames

user
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kernel code
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Provide Backing Store for VAS

disk (huge, TB)

A
A

VAS — per process

kernel

E stack L.
code heap .:
data L

* User Page table maps entire VAS

* Resident pages mapped to memory frames

memory

user page
frames

user
pagetable

kernel code
& data

 For all other pages, OS must record where to find them on disk

3/17/20
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What Data Structure Maps Non-Resident Pages to Disk!?

e FindBlock(PID, page#) — disk block
— Some OSs utllize spare space in PTE for paged blocks
— Like the PT, but purely software

Where to store it!

— In memory — can be compact representation if swap storage is
contiguous on disk

— Could use hash table (like Inverted PT)

Usually want backing store for resident pages too

May map code segment directly to on-disk image
— Saves a copy of code to swap file

May share code segment with multiple instances of the program
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Provide Backing Store for VAS

disk (huge, TB)

w kernel
stack _________________________________ stack
stack | heap | -
N heap
heap || e | — i /
\ \\\\ \\ _____ _V_ _A__S_ _2 PT 2 ta.
data Yocode N[ T 7
stack
heap y
\ data
code /
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PT |

N\

memory

—

; user

page
frames
pagetable

kernel

code &
data
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On page Fault ...

disk (huge, TB)

memory

; user

M VAS | PT
stack stack “
stack | _ heap | T /
T h // /
\\\ \\\ ___________________ eaP
heap Y data. -I—-—__#_. /
, - <t YAS 2 P
L e .
oo W kernel L/
\\\ \\\ /
stack
heap y
\ data
code /
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kernel
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On page Fault ... find & start load

disk (huge, TB)

VAS |

kernel

memory

stack | . heap

‘H user

heap

2\ /

page

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
pppppppppp

zzzzzzzzzz
4444444444 r'a mes
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On page Fault ... schedule other P or T

disk (huge, TB)

VAS |

kernel

memory

stack

heap
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On page Fault ... update PTE

disk (huge, TB)

stack

heap
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\
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R
\
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Eventually reschedule faulting thread

disk (huge, TB)
N
\_/

stack
stack | ™
heap |

Y
N \ N
N \ S \
\ \ N
M N
. code
N
\ \\
- \

3/17/20

data \
R
N
N D "
\ IR
\\ A \
N \ \
\ N3 1
\

kernel
ol
stack
heap -
\ ./
. data
b code /

VAS |

PT |

kernel

2\ /

-

memory

—

page
frames

user
pagetable

active process & PT

LY

CB Spring 2020

kernel

code &
data

29



Summary: Steps in Handling a Page Fault

page is on
backing store

operating
system

@

reference
trap

O,
load M 1« S i
®

restart page table

instruction
free frame |« S
reset page bring in
table missing page
physical
memory
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Some questions we need to answer!

* During a page fault, where does the OS get a free frame?
— Keeps a free list

— Unix runs a “reaper’ if memory gets too full
» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven't been accessed in a while

— As a last resort, evict a dirty page first

* How can we organize these mechanisms!
— Work on the replacement policy

* How many page frames/process!

— Like thread scheduling, need to “schedule” memory resources:

» Ultilization? fairness?! priority?

— Allocation of disk paging bandwidth

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020
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Working Set Model

* As a program executes It transitions through a sequence of
“working sets” consisting of varying sized subsets of the address
space

Address

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020
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Cache Behavior under WS model

new working set fits -
-

Hit Rate

Cache Size

Amortized by fraction of time the Working Set is active
Transitions from one WS to the next

Capacity, Conflict, Compulsory misses

Applicable to memory caches and pages.
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Another model of Locality: Zipf

P access(rank) = |/rank
20% — 0.9

()
0 / 5
< 15% \ 0.675 <~
& 9 10% - oy - 045 —©
S o
S ®  go — Hit Rate(cache) 0.225 g
\\ 7
0% 0
4 7 1013161922252831343740434649
Rank

Likelihood of accessing item of rank ris & [/ra

Although rare to access items below the top few, there are so many that it yields a “heavy
tailed” distribution

Substantial value from even a tiny cache

Substantial misses from even a very large cache
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Demand Paging Cost Model

Since Demand Pagrmg like caching, can compute average access time!
(“Effective Access Time”

— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
— EAT = Hit Time + Miss Rate x Miss Penalty

Example:

— Memory access time = 200 nanoseconds

— Average page-fault service time = 8 milliseconds

— Suppose p = Probability of miss, |-p = Probably of hit
— Then, we can compute EAT as follows:

EAT  =200ns + p x 8 ms

= 200ns + p x 8,000,000ns
If one access out of [,000 causes a page fault, then
EAT = 8.2 Us:
— This is a slowdown by a factor of 40!
What if want slowdown by less than 10%!
— EAT <200ns x .| = p <25x 10*
— This is about | page fault in 400,000!
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What Factors Lead to Misses in Page Cache!?

Compulsory Misses:
— Pages that have never been paged into memory before
— How might we remove these misses!
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later
Capacity Misses:
— Not enough memory. Must somehow increase available memory size.

— Can we do this?
» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage of
memory allocated to each one!

Conflict Misses:

— Technically, conflict misses don't exist in virtual memory, since it is a “fully-
associative’ cache

Policy Misses:

— Caused when pages were in memory, but kicked out prematurely
because of the replacement policy

— How to fix! Better replacement policy
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Page Replacement Policies

Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

FIFO (First In, First Out)

— Throw out oldest page. Be fair — let every page live in memory for same
amount of time.

— Bad — throws out heavily used pages instead of infrequently used
RANDOM:

— Pick random page for every replacement

— Typical solution for TLB's. Simple hardware

— Pretty unpredictable — makes it hard to make real-time guarantees
MIN (Minimum):

— Replace page that won't be used for the longest time

— Great (provably optimal), but cant really know future...

— But past is a good predictor of the future ...
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Replacement Policies (Con’t)

LRU (Least Recently Used):

— Replace page that hasn't been used for the longest time

— Programs have locality, so if something not used for a while, unlikely to
be used in the near future.

— Seems like LRU should be a good approximation to MIN.

Head —*|Page 6

How to implement LRU? Use a list!

_>

Page 7 |—>|Page | |—>|Page 2

Tail (LRU) —

— On each use, remove page from list and place at head

— LRU page is at tall

Problems with this scheme for paging?

— Need to know immediately when each page used so that can change

position in list...

— Many instructions for each hardware access

In practice, people approximate LRU (more later)
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Example: FIFO (strawman)

* Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

-~-ABCABDADBCSB
* Consider FIFO Page replacement:

e FIFO: / faults

* When referencing D, replacing A is bad choice, since need A
again right away
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Example: MIN / LRU

* Suppose we have the same reference stream:
-~-ABCABDADBCRB

* Consider MIN Page replacement:

« MIN: 5 faults

— Where will D be brought in! Look for page not referenced
farthest in future

* What will LRU do!?
— Same decisions as MIN here, but won't always be truel

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020

40



Is LRU guaranteed to perform well?

* Consider the following ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
* Fairly contrived example of working set of N+ 1 on N frames
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When will LRU perform badly?

* Consider the following ABCDABCDABCD
e [RU Performs as follows (same as FIFO here):

— Every reference is a page fault!
* MIN Does much better:

3/17/%
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Graph of Page Faults Versus The Number of Frames

16 -
14
12
10

number of page faults

N~ OO

1 2 3 4 5 6
number of frames

* One desirable property: When you add memory the miss
rate drops
— Does this always happen!?
— Seem:s like 1t should, right!
* No: Bélady's anomaly
— Certain replacement algorithms (FIFO) don't have this obvious

property!
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Adding Memory Doesn’t Always Help Fault Rate

* Does addin% memohf reduce number of page faults!
— Yes for LRU and M

— Not necessarily for FIFO! (Called Bélady's anomaly)
Ref:.ABCDABEABCDE

C B
D C

o After add|d<g memory
— With FIFO, contents can be completely different

— In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+ | Page
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Implementing LRU

» Perfect:
— Timestamp page on each reference
— Keep list of pages ordered by time of reference
— Too expensive to implement in reality for many reasons

* Clock Algorithm: Arrange physical pages in circle with single clock hand
— Approximate LRU (approximation to approximation to MIN)
— Replace an old page, not the oldest page

* Detalls:
— Hardware “use” bit per physical page:
» Hardware sets use bit on each reference
» If use bit isn't set, means not referenced in a long time
— On page fault:
» Advance clock hand (not real time)
» Check use bit: | —used recently; clear and leave alone
O—selected candidate for replacement
— Will always find a page or loop forever?
» Even if all use bits set, will eventually loop around = FIFO
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Clock Algorithm: Not Recently Used
L]
P - ~ /Single Clock Hand:
\ Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

/

| Set of all pages
\ inMemory I
4
\ /
~ /
~
* What if hand moving slowly?

— Good sign or bad sign!?
» Not many page faults and/or find page quickly

* What if hand is moving quickly?
— Lots of page faults and/or lots of reference bits set
* One way to view clock algorithm:

— Crude partitioning of pages into two groups: young and old
— Why not partition into more than 2 groups!
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Nth Chance version of Clock Algorithm

» Nth chance algorithm: Give page N chances
— OS keeps counter per page: # sweeps
— On page fault, OS checks use bit:

» | — clear use and also clear counter (used in last sweep)
» 0 — increment counter; if count=N, replace page

— Means that clock hand has to sweep by N times without page being
used before page is replaced

* How do we pick N?
— Why pick large N? Better approximation to LRU
» If N ~ K really good approximation
— Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
* What about dirty pages?

— Takes extra overhead to replace a dirty page, so give dirty pages an
extra chance before replacing?

— Common approach:
» Clean pages, use N=|
» Dirty pages, use N=2 (and write back to disk when N=1)
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Clock Algorithms: Details

* Which bits of a PTE entry are useful to us!
— Use: Set when page is referenced; cleared by clock algorithm

— Modified: set when page is modified, cleared when page written to disk
— Valid: ok for program to reference this page
— Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
* Do we really need hardware-supported "modified” brt!

— No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit, and marks page as
read-write.

» Whenever page comes back in from disk, mark read-only
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Clock Algorithms Details (continued)

* Do we really need a hardware-supported “use” bit?
— No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

— Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

— When clock hand passes by, reset use and modified bits and mark page as
invalid again

* Remember; however; clock is just an approximation of LRU!

— Can we do a better approximation, given that we have to take page faults
on some reads and writes to collect use information?

— Need to identify an old page, not oldest page!
— Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

> RU victim
Directly Second
Mapped Pages |:| Chance List
Marked: RW |:| |:| Marked: Invalid
st FiFo. [ List: LRU

Page-in New New
From disk > Active Pages SC Victims

* Split memory in two: Active list (RW), SC list (Invalid)
* Access pages In Active list at full speed

* Otherwise, Page Fault

— Always move overflow page from end of Active list to front of Second-
chance list (SC) and mark invalid

— Desired Page On SC List: move to front of Active list, mark RW

— Not on SC list: page in to front of Active list, mark RW; page out LRU

victim at end of SC list
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Second-Chance List Algorithm (continued)

* How many pages for second chance list!
~ If 0 = FIFO

— If all = LRU, but page fault on every page reference

* Pick intermediate value. Result is:

— Pro: Few disk accesses (page only goes to disk if unused for a long
time)

— Con: Increased overhead trapping to OS (software / hardware
tradeof)

* Question: why didntVAX include “use” bit!

— Strecker (architect) asked OS people, they said they didn't need it, so
didn't implement it

— He later got blamed, but VAX did OK anyway
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Free List

/ Advances as needed to keep
Ny freelist full (“background”)

/ 2
| Setofall pages \,\‘H\
\ Q!

iIn Memory
/

\ / o
N Free Pages
For Processes

» Keep set of free pages ready for use in demand paging

— Freelist filled in background by Clock algorithm or other technique
("Pageout demon™)

— Dirty pages start copying back to disk when enter list

* Like VAX second-chance list
— If page needed before reused, just return to active set

» Advantage: faster for page fault
— Can always use page (or pages) immediately on fault
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Demand Paging (more details)

* Does software-loaded TLB need use bit?
Two Options:

— Hardware sets use bit in TLB; when TLB entry is replaced, software
coples use bit back to page table

— Software manages TLB entries as FIFO list; everything not in TLB s
Second-Chance list, managed as strict LRU

* Core Map
— Page tables map virtual page — physical page
— Do we need a reverse mapping (i.e. physical page — virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing, then multiple
virtual-pages per physical page

» Can't push page out to disk without invalidating all PTEs
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Allocation of Page Frames (Memory Pages)

* How do we allocate memory among different processes?
— Does every process get the same fraction of memory? Different fractions?
— Should we completely swap some processes out of memory?

 Each process needs minimum number of pages

— Want to make sure that all processes that are loaded into memory can make
forward progress

— Example: IBM 370 — 6 pages to handle SS MOVE instruction:
» Instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

* Possible Replacement Scopes:

— Global replacement — process selects replacement frame from set of all frames;
one process can take a frame from another

— Local replacement — each process selects from only its own set of allocated
frames
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Fixed/Priority Allocation

 Equal allocation (Fixed Scheme):
— Every process gets same amount of memory
— Example: 100 frames, 5 processes — process gets 20 frames

* Proportional allocation (Fixed Scheme)
— Allocate according to the size of process
— Computation proceeds as follows:
s; = size of process p; and S = Z S;
m = total number of framess
a; = (allocation forg;) = — X m
—Xm
* Priority Allocation: \)
— Proportional scheme using priorities rather than size
» Same type of computation as previous scheme
— Possible behavior: If process p; generates a page fault, select for replacement a
frame from a process with lower priority number

* Perhaps we should use an adaptive scheme instead???
— What if some application just needs more memory!?
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Page-Fault Frequency Allocation

* Can we reduce Capacity misses by dynamically changing
the number of pages/application?

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames 1

* Establish "acceptable” page-fault rate
— |f actual rate too low, process loses frame
— |f actual rate too high, process gains frame

* Question:What If we just don't have enough memory!
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Thrashing

| L.

! thrashing

CPU utilization

degree of multiprogramming

* If a process does not have “enough’ pages, the page-fault
rate Is very high. This leads to:
— low CPU utilization
— operating system spends most of its time swapping to disk

 Thrashing = a process Is busy swapping pages in and out

e Questions:
— How do we detect Thrashing!
— What is best response to Thrashing!
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3/17/20

Locality In A Memory-Reference Pattern

Program Memory Access
Patterns have temporal and
spatial locality

— Group of Pages accessed along a

given time slice called the
“"Working Set”

— Working Set defines minimum
number of pages needed for
process to behave well

Not enough memory for
Working Set = Thrashing

— Better to swap out process!
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Working-Set Model

Ppage reference table
. ..2615777751623412344434344413234443444...

R S

t t,
WS(t,) = {1,2,5,6,7) WS(t,) = {3,4}

A = working-set window = fixed number of page references
— Example: 10,000 instructions

* WSi (working set of Process Pi) = total set of pages referenced in the
most recent A (varies in time)

— 1If A too small will not encompass entire locality
— If Atoo large will encompass several localities
— If A = o0 = will encompass entire program

D = 2|WSI| = total demand frames
if D > m = Thrashing

— Policy: if D > m, then suspend/swap out processes

— This can improve overall system behavior by a lot!
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What about Compulsory Misses!?

* Recall that compulsory misses are misses that occur the first time
that a page Is seen

— Pages that are touched for the first time
— Pages that are touched after process is swapped out/swapped back
in
* Clustering:
— On a page-fault, bring in multiple pages “around’ the faulting page

— Since efficiency of disk reads increases with sequential reads, makes
sense to read several sequential pages

* Working Set Tracking:

— Use algorithm to try to track working set of application
— When swapping process back in, swap in working set
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Reverse Page Mapping
(Sometimes called “Coremap”)

 Physical page frames often shared by many different address
spaces/page tables

— All children forked from given process
— Shared memory pages between processes

* Whatever reverse mapping mechanism that is in place must be
very fast
— Must hunt down all page tables pointing at given page frame when
freeing a page
— Must hunt down all PTEs when seeing If pages “active”

* Implementation options:

— For every page descriptor, keep linked list of page table entries that
point to It

» Management nightmare — expensive

— Linux 2.6: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser
granularity)
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Linux Memory Details!?

Memory management in Linux considerably more complex than the
examples we have been discussing

Memory Zones: physical memory categories
— ZONE_DMA: < [6MB memory, DMAable on ISA bus
— ZONE_NORMAL: |6MB — 896MB (mapped at 0xC0000000)
— ZONE_HIGHMEM: Everything else (> 896MB)
Each zone has | freelist, 2 LRU lists (Active/Inactive)
Many different types of allocation
— SLAB allocators, per-page allocators, mapped/unmapped

Many different types of allocated memory:
— Anonymous memory (not backed by a file, heap/stack)
— Mapped memory (backed by a file)

Allocation priorities
— Is blocking allowed/etc
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Linux Virtual memory map

OxFFFFFEFF OxFFFFFFFFFFFFFFFF
896MB Kernel E . Kernel
: Addresses xQ 64 TiB Addresses
Physical N Physical
0xC0000000 ysiea
/\ OxFFFF800000000000
“Canonical Hole” Empty
_ Space
(o]
I_‘a’ User
oo Addresses 0x00007FFFFFFFFFFF
- =
= User
N Addresses
%OOOOOOOO 0x0000000000000000
32-Bit Virtual Address Space 64-Bit Virtual Address Space
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Virtual Map (Details)

Kernel memory not generally visible to user

— Exception: special VDSO (virtual dynamically linked shared objects) facility that
maps kernel code into user space to aid in system calls (and to provide certain
actual system calls such as gettimeofday())

Every physical page described by a “page” structure
— Collected together in lower physical memory
— Can be accessed in kernel virtual space
— Linked together in various “LRU" lists

For 32-bit virtual memory architectures:
— When physical memory < 896MB
» All physical memory mapped at OxC0000000
— When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

For 64-bit virtual memory architectures:
— All physical memory mapped above OxFFFF800000000000
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Summary

Replacement policies
— FIFO: Place pages on queue, replace page at end
— MIN: Replace page that will be used farthest in future
— LRU: Replace page used farthest in past

Clock Algorithm: Approximation to LRU
— Arrange all pages in circular list
— Sweep through them, marking as not “in use”
— If page not "'in use” for one pass, than can replace

Nth-chance clock algorithm: Another approximate LRU
— Give pages multiple passes of clock hand before replacing

Second-Chance List algorithm:Yet another approximate LRU

— Divide pages into two groups, one of which is truly LRU and managed on
page faults.

Working Set:
— Set of pages touched by a process recently

Thrashing: a process Is busy swapping pages in and out
— Process will thrash if working set doesn't fit in memory
— Need to swap out a process
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