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Recall: Implementation of Multi-Segment Model

Virtual Offset | offset »Error
Address Base0 |Limit0 |V
Limit|
Base3 |Limit3 > Physical
Base4 |Limit4 [V Address
Base5 |Limit5 [N
Base6 |[Limit6 [N
Base7 |Limit7 [V Check Valid
|
* Segment map resides in processor A N
: C : CccCess
— Segment number mapped into base/limit pair .
— Base added to offset to generate physical address rror

— Error check catches offset out of range

* As many chunks of physical memory as entries
— Segment addressed by portion of virtual address

— However, could be included In instruction instead:
» x86 Example: mov [es:bx],ax.

* What is"V/N" (valid / not valid)?

— Can mark segments as invalid; requires check as well
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Recall: Problems with Segmentation

process 6
* Must fit variable-sized chunks into =
dbhysical memory -
process 9 process 11?
process 10
. move processes multiple times |
to it everything o

* Limited options for swapping to disk

* Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don't need all memory within allocated chunks
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Paging: Physical Memory in Fixed Size Chunks

* Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)

— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
001 10001 10001 101 ... 110010

» Each bit represents page of physical memory
| = allocated, O = free

* Should pages be as big as our previous segments?

— No: Could lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
» Consequently: need multiple pages/segment
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How to Implement Simple Paging?

Virtual Address:

Offset i |

\4
PageTablePtr page #0  |VR >-O oot
»|page #I
é e Physical Address
ILageTableSize I_> : page #3 V,R, W Check Perm
v |
page H#4 N v
Access Error bage #5 VRW Access
Error

» Page Table (One per process)
— Resides in physical memog
— Contains physical page and permission for each virtual page
» Permissions include:Valid bits, Read, Write, etc
* Virtual address mapFing
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = [024-byte pages
— Virtual page # Is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, 1.e. 4 million entries
» Physical 1Qage # copied from table into physical address
— Check Page Table bounds and permissions
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Simple Page Table Example

Example (4 byte pages)

ox00 [E2000 0000 0x00 ——
b ‘
: . 0 0001 0000 3, x4 —
: d 0000 0100 ___ j 0x05!
: 0x04 [ >1[3 0000 1100 )
: f —
: 0000 0100 |
: 0x06? g |—>2 L 0x08 =
: h
Eoxoa —] 0000 1000 Page L5 oxoc |-
: 0x097 | Table f
: k g 0XOE!
| h
— 3 Ox10  [r—
Virtual 0000 0110 ===>> 0000 1110 g
Memory 00001001 =-=--3> 00000101 ;
Physical
: Memory
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What about Sharing!?
Virtual Address

(Process ) | EREEIIOtse |

This physical page appears in
addrgssyspacg 6gf boPtFP)1
processes

 But at DIFFERENT virtual
addresses!

— Will make sharing of
objects harder!
Virtual Address — Probably want to map at
(Process B): same place instead?
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Where is page sharing used ?

The “kernel region™ of every process has the same page table
entries

— The process cannot access 1t at user level

— But on U->K switch, kernel code can access it AS WELL AS the
region for THIS user

» What does the kernel need to do to access other user processes!

Different processes running same binary!
— Execute-only, but do not need to duplicate code segments

User-level system libraries (execute only)

Shared-memory segments between different processes

— Can actually share objects directly between processes
» Must map page into same place in address spacel

— This is a limited form of the sharing that threads have within a
single process
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Some simple security measures

* Address Space Randomization: Limit the damage of buffer overflow attacks

(e.g. overwriting stack to point to arbitrary code)

— Position-Independent Code => can place user code region anywhere

In the address space

» Random start address makes much harder for attacker to cause jump to

code that it seeks to take over

— Stack & Heap can start anywhere, so randomize placement

* Kernel address space isolation

— Don't map whole kernel into each Kernel page-table isolation

process (Provide separate kernel
page table)

Kernel space

— Meltdown protection = map none

Kernel space

Kernel space

of kernel into user mode!

User space

User space

User space

User mode
Kernel mode

Kernel mode

User mode
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Example: Memory Layout for Linux 32-bit

(Pre-Meltdown patch!)

1GB

~

3GB <<

-

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

0xc0000000 == TASK_SIZE

} Random stack offset

Stack (grows down)

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

U brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data
end_code

0x08048000

(%]

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png
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Summary: Paging

Physical memory view

110 0000

Neap— 4141 000

0101 000

i i ‘ ‘ A y y

——code
0001 0000

[ oooo 0000

A\ \

Virtual memory view ql ﬁ?f" _1|1a:lg1le

111 1M T 1110 [11100
1111 0000 11101 | null
l 11100 | null

11011 | null

11010 | null

11001 | null

1100 0000 11000 | null
10111 | null

10110 | null

10101 | null

I 10100 | null

10011 | null

Rean |- 10010 | 10000

1000 0000 10001 | 01111
\ 01110

null

null

null

null

01101

0100 0000 01100
01011

01010

null

null

00100 | null

0000 0000 \30011 00101
Y Lr’ 0010 | 00100
page # offset 0001 | 00011
0000 | 00010
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Summary: Paging

Physical memory view

110 0000

Neap— 4141 000

0101 000

i i ‘ ‘ A y y

——code
0001 0000

[ oooo 0000

A\ \

Virtual memory view ma:%e _1132:e

1111 1111 1110 [11100
11100 | null

1110 0000 11011 | null
11010 | null

- 11001 | null
: 11000 | null

What happens if 10111 | null
10110 | null

stack grows to 10101 | null
1110 00007 10100 | null
\_ 10011 | null
Reap - 10010 | 10000

1000 0000 T 0001 | 01111
\;IOOOO 01110

01111 | null

01110 | null

01101 | null

01100 | null

01011 | 01101

0100 0000 01010 | 01100
01001 | 01011

1000 | 01010

0111 | null

00110 | null

00100 | null

0000 0000 00011 | 00101
— "r' 0010 | 00100
page # offset 0001 | 00011
0000 | 00010
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Summary: Paging

Virtual memory view

11111

1111 1111

- otack—| 11101

1110 0000

1100 0000

1000 0000

0100 0000

——code—

0000 0000

]
page # o‘ﬂg’et
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11101
11100
10111
10110
null
null
null
null
null
null
null
null
null
10000
01111
01110
null
null
null
null
01101
01100
01011
01010
null
null
null
null
00101
00100
00011
00010

Page Table

/

Physical memory view

!!!!! \110 0000

/

| S

——stack——

=

Allocate new
pages where
room!

0101 000

——code

A\ \

0001 0000

[ oooo 0000



How big do things get!

32-bit address space => 232 bytes (4 GB)
— Note:"b" = bit,and "B"” = byte
— And for memory:
» “K'(kilo) = 210= 1024 ~ |03 (But not quite!)
» ‘M'(mega) = 220 = (1024)2= 1,048576 = 10¢ (But not quitel)
» "“G"(giga) = 230 = (1024)3= 1,073,741,824 = 10° (But not quite!)
Typical page size: 4 KB
— how many bits of the address is that ! (remember 210 = [024)
— Ans — 4KB = 4x210 = 212 = | bits of the address

So how big Is the simple page table for each process!
— 232/212 =20 (that's about a million entries) x 4 bytes each => 4 MB
— When 32-bit machines got started (vax | /780, intel 80386), |6 MB was a LOT of memory

How big is a simple page table on a 64-bit processor (x86_64)?

— 264/212 = )52(that's 4.5x 101> or 4.5 exa-entries)x8 bytes each =
36x10!5 bytes or 36 exa-bytes!lll This is a ridiculous amount of memory!

— This is really a lot of space — for only the page tablelll

Mostly, the address space Is sparse, I.e. has holes in 1t that are not mapped to physical
memory

— S0, most of this space is taken up by page tables mapped to nothing
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Page Table Discussion

What needs to be switched on a context switch?
— Page table pointer and limit
What provides protection here!?
— Translation (per process) and dual-model!
— Can't let process alter its own page table!
* Analysis
— Pros
» Simple memory allocation
» Easy to share
— Con:What If address space Is sparse!
» E.g., on UNIX code starts at O, stack starts at (23!-1)
» With |K pages, need 4 million page table entries!
— Con:What if table really big?

» Not all pages used all the time = would be nice to have working
set of page table in memory

* Simple Page table is way too big!
— Does it all need to be in memory?
— How about multi-level paging!
— or combining paging and segmentation
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Administrivia

* Hope everyone Is doing well
* HW2 will be released today.
* What are your ideas on midterm evaluation?
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Fix for sparse address space: The two-level page table

Physical

|0 bits |0 bits |2 bits

Virtual
Address:

ddress:

* Tree of Page Tables

— "Magic” 10b-10b-12b pattern!

* Tables fixed size (1024 entrieg)

— On context-switch: save single Page TablePtr

register (l.e. CR3)

* Valid bits on Page Table Entries

— Don't need every 2nd-level table

— Even when exist, 2nd-level tables can reside oR=—p 4 bytes <=

disk if not In use
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Example: x86 classic 32-bit address translation

Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

/10 10  Page Table Physical Address
Page Directory

—> PTE —
20

—>» PDE with PS=0

20

fology: Top-level page-table called a “Page Directory”
“Page Directory Entries”
» (CR3 provides physical address of the page directory
— This is what we have called the “Page TablePtr” in previous slides
— Change in CR3 changes the whole translation table!
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What is in a Page Table Entry (PTE)?
* What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page
— Permission bits: valid, read-only, read-write, write-only
* Example: Intel x86 architecture PTE:
— Address same format previous slide (10, 10, |2-bit offset)
— Intermediate page tables called "Directories”

Page Frame Number Free ‘ ‘ “NI ‘
(Physical Page Number) (0S)
31-12 11-9 8 7 543210
P: Present (same as "valid” bit in other arch|tectures
W Writeable
U: User accessible
PWT: Page write transparent: external cache write-through

PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently

D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
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Examples of how to use a PTE

How do we use the PTE?
— Invalid PTE can imply different things:

» Region of address space Is actually invalid or
» Page/directory Is just somewhere else than memory

— Validity checked first
» OS can use other (say) 3| bits for location info
Usage Example: Demand Paging
— Keep only active pages iIn memory
— Place others on disk and mark their PTEs invalid

Usage Example: Copy on Write
— UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
— How to do this cheaply?
» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
Usage Example: Zero Fill On Demand
— New data pages must carry no information (say be zeroed)
— Mark PTEs as invalid; page fault on use gets zeroed page
— Often, OS creates zeroed pages In background
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Sharing with multilevel page tables

2 bie B ore: |

|0 bits |0 bits

Virtual
Address:

* Entire regions of the address space can be
efﬂcien’tlyg shared ° m—
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Summary: Two-Level Paging

Virtual memory view Page Table Page Tables Physical memory view
1111 1111 (level 1) (level 2)
stack 11 {11101 %1100000
10 |11100
1111 0000 01 |10111
00 {10110
1100 0000 \
11| o 11 | null
i 5 o
101 | null
REEH 100 ./ 00 |01110 \
1000 0000 ' 11 | nul \
001 | il ——o_, 0111 000
00| & 11 01101 |——
10 01100 ——
- 01 |ot011 0101 000
00 {01010
0100 0000
11 |00101
oy 10 00100 code
age 01 (00011 | ——
Pag I 00 lo0o10 ——— 0001 0000
00d(-)l-6000 _0000 0000
sl

pagel # offset
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Summary: Two-Level Paging

Virtual memory view

1001 0000

(0x90)

3/10/20

stack

111

110
101
Fﬁqr)

010

0ot

000

9)
o
Q
4]
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Page Table
(level 1)

[ )
null

o
null

11
10
01
00

"1

Page Tables
(level 2)

11101
11100
10111
10110

null

null
nu;; '

01
00

11
10
01
00

01111
01110

01101
01100
01011
01010

11
10
01
00

00101
00100
00011
00010

I

'!Fﬁqr)

AnAAa
CVUUC

Physical memory view

%110 0000

1000 0000
(0x80)

0001 0000
0000 0000

23



Multi-level Translation: Segments + Pages

 \What about a tree of tables?

— Lowest level page table = memory still allocated with bitmap
— Higher levels often segmented

* Could have any number of levels. Example (top segment):
Virtual

Address: l

page #0 V,R
page #| V,R

BaseO [Limit
Basel pticl |V

Physical Address

Base3 [Limit3 YN

Base4 |Limit4 ? —
V.R,W

Base5 |Limics page #5 CheckI Permissions

Base6 |Limit6 |N \ 4 v

Base7 |[Limit7 |V | (> —Access Access

Error Error
* \What must be saved/restored on context switch?

— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)
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What about Sharing (Complete Segment)!?

Process A:

page #O V.R

page #I V,R

page H2 V.R,W

L?mitO page #3 V,R,W
v EEEER I’ page H4 N
Limit3 [N page #5 V.R,W
Base4 |Limit4 |V :’ Shared Segment
pase> LimitS A o BaseOf [LimitO
Baseb L!m!t6 N R4 G
Base7 |Limit7 |V &

Limit3
Base4 |Limit4
Base5 |Limit5
Base6 |[Limité
Limit7

<[ZIZI<I1ZI<I<|<

Process B:
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Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we need for
application

» In other wards, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing
» Share at segment or page level
« Cons:
— One pointer per page (typically 4K — [ 6K pages today)
— Page tables need to be contiguous

» However, the |0b-10b-12b configuration keeps tables to
exactly one page In size

— Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 26



Recall: Dual-Mode Operation

Can a process modify its own translation tables! NO!
— If it could, could get access to all of physical memory (no protection!)

To Assist with Protection, Hardware provides at least two modes (Dual-Mode
Operation):

— “Kernel” mode (or “supervisor’ or “protected”)

— “User” mode (Normal program mode)

— Mode set with bit(s) in control register only accessible in Kernel mode

— Kernel can easily switch to user mode; User program must invoke an exception
of some sort to get back to kernel mode

Note that x86 model actually has more modes:

— Traditionally, four “rings” representing priority; most OSes use only two:
» Ring 0 = Kernel mode, Ring 3 = User mode

» Called “Current Privilege Level” or CPL
— Newer processors have additional mode for hypervisor (“Ring -1")
Certain operations restricted to Kernel mode:
— Modifying page table base (CR3 in x86), and segment descriptor tables

» Have to transition into Kernel mode before you can change them!

— Also, all page-table pages must be mapped only in kernel mode
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Making it real:
X86 Memory model with segmentation (|6/32-bit)

Logical Address
(or Far Pointer)

Segment k
Selector et L

Segment Selector from
instruction: mov eax, gs(0x0)

inear Address
| | | | Space
Global Descriptor
Table (GDT)
Segment
Segment o
L. Descriptor
{’ Lin. Addr.
A
Segment
Base Address \
Combined addres
Is 32-bit “linear”

Virtual address
Segmentati

2-level page table

{ in 10-10-12 bit address
inear Address

——»{ Dir | Table | Offset | Physical
Address
Space
Page Table Page
Page Directory I »| Phy. Addr.
”—D Entry »
»|  Entry I

T Page

Second level
called “table”

First level
called “directory” |

on

Paging |

Kubiatowicz CS162 ©UCB Spring 2020
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X86 Segment Descriptors (32-bit Protected Mode)

* Segments are either implicit in the instruction (say for code segments) or actually part
of the instruction

— There are 6 registers: SS, CS, DS, ES, FS, GS

* What is in a segment register?
— A pointer to the actual sesment description:

—

Segment selector [ | 3 bits] @ | RPL

G/L selects between GDT and LDT tables (global vs local descriptor tables)
— RPL: Requestor's Privilege Level (RPL of CS = Current Privilege Level)

* Two registers: GDTR and LD TR hold pointers to the global and local descriptor tables
iIn memory

— Includes length of table (for < 213) entries
* Descriptor forrspat (64 bits)zk:1

23 20,19 16,15 12,11 8,7 0

[Basle c't:?Idrcless[(Zl;‘?l)l G DB| A Lﬁ':1it(I16-1l9) P Dl:’L S lTylpt'el [Basle a:ldréss [(16-IZ3)I
U scamssiol | Seomewim@osy

G: Granularity of segment | Limit Size %{EO: | 6or1t, 1:4KIB unit)

DB: Default operand size (0: | 6bit, |: 32bit)
A: Freely available for use by software
P: Segment present |
DPL: Descriptor Privilege Level: Access requires Max(CPLRPL)<DPL
S: System Segment (0: System, |: code or data)

Type: Code, Data, Segment
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How are segments used!

One set of global segments (GDT) for everyone, different set of local
segments (LDT) for every process

In legacy applications (| 6-bit mode):
— Segments provide protection for different components of user programs

— Separate segments for chunks of code, data, stacks
» RPL of Code Segment =CPL (Current Privilege Level)

— Limited to 64K segments
Modern use in 32-bit Mode:

— Even though there is full segment functionality, segments are set up as “flattened”,
.e. every segment is 4GB in size

— One exception: Use of GS (or FS) as a pointer to “Thread Local Storage™ (TLS)

» A thread can make accesses to TLS like this:
mov eax, gs(0x0)

Modern use in 64-bit (“long”) mode
— Most segments (SS, CS, DS, ES) have zero base and no length limits
— Only FS and GS retain their functionality (for use in TLS)
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X86_64: Four-level page table!

9 bits 9 bits 9 bits 9 bits 12 bits

48-bit Virtual
Address:

PageTablePtr

—> 8 bytes +—

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Physical

(40-50 bits)
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From x86 64 architecture specification

Linear Address
47 39 38 30 29 2120 12 1 0

| _PML4 | Directory Ptr | Directory Table |  Offset

J 9 Tl
9 dk 1o _4-KByte Page
L Physical Addr

PTE >
40

Page-Directory- PDE with PS=0 >
Pointer Table 40 Page Table

Jf Page-Directory
"> PDPTE 40

e

—>»| PML4E

-
-

40
——{ CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

* All current x86 processor support a 64 bit operation
* 64-bit words (so ints are 8 bytes) but 48-bit addresses
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Larger page sizes supported as well

Linear Address
47 39 38 3029 2120 0
I PML4 I Directory Ptr l Directory ] Offset
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1 >
Pointer Table 31
Page-Directory Linear Address
Ly PDPTE 47 39 38 3029 0
40 I PML4 [ Directory Ptr Offset
° < — | 3
9
40
»| PML4E
Page-Directory- 1-GByte Page
> Pointer Table
40 Physical Addr
» PDPTE with PS=1 >
CR3 22
g g
Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-L 40
—>»| PML4E
40
CR3

Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

* Or larger page sizes, memory Is now cheap
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|IA64: 64bit addresses: Six-level page table?!?

64bit 7 bits 9 bits 9 bits 9 bits 9 bits 9 bits 12 bits
Address:
No!
Too slow

Too many almost-empty tables
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Inverted Page Table

* With all previous examples (“Forward Page Tables")

— Size of page table is at least as large as amount of virtual memory
allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Offset

> Hash Offset

Table

* Answer: use a hash table
— Called an “Inverted Page Table”
— Size is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces
» PowerPC, UltraSPARC, |1A64
* Cons:
— Complexity of managing hash chains: Often in hardware!

31000 — Hoor cache locality, of Page 4ablg g g ring 2020 35



Inverted Page Table

With all previous examples (“Forward Page Tables™)

— Size of page table is at least as large as amount of virtual memory
allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Offset

> Hash
Table

Offset

 Answer: use a hash table
— Called an "Inverted Page Table”
— Sizg
— Dir{ Total size of page table =~ number of pages used by

— Ver| program in physical memory. Hash more complex
»

* Cons:
— Complexity of managing hash chains: Often in hardware!
3100 — roor cache locality of PAge 1abIS p <,ring 2020




|A64: Inverse Page Table (IPT)

|dea: iIndex page table by physical pages instead of VM

VMpageO [«
VMpage1 [¢

VMpage2 B

VMpage3 "\

Process id O
Virtual memory

pid 0 \VMpageO

id 1]\

pid 0

VMpage2

pid 0

VMpage1

XX

free

pid 2

10/12/15

-

Ox0
Ox1

O0x2
0x3
Ox4
0x5
O0x6
Ox7

Inverse Page Table

0x0000
0x1000
0x2000
0x3000

0x4000
0x5000
0x6000
0x7000

Physical memory
in 4kB pages
Page numbers in red
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IPT address translation

* Need an associative map from VM page to IPT address:
— Use a hash map

Process 0 virtual address / Physical address \‘

A
0x0000

pid 0 | VMpageO |OxO
pid 1 Ox1 0x1000

pid 0 |VMpage1 |0x2 / 0x2000
o 0x3000

id 0 |VM 2 |0x3
Hash VM page # a Page X

XX free Ox4 0x4000
pid 2 0x5 0x5000
pid 1 0x6 0x6000

pid 0 [VMpage3 [Ox7 0x7000

Inverse Page Table
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Address Translation Comparison

Advantages

Disadvantages

Simple
Segmentation

Fast context switching:
Segment mapping
maintained by CPU

External fragmentation

Paging (single-level
page)

No external fragmentation,
fast easy allocation

Large table size ~ virtual memory
Internal fragmentation

Paged segmentation

Two-level pages

Table size ~ # of pages in
virtual memory, fast easy
allocation

Multiple memory references per
page access

Inverted Table

Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page table

3/10/20
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Two Critical Issues in Address Translation

Processor

Registers

N
S . Memory
4

* How to translate addresses fast enough?

— Every instruction fetch

— Plus every load / store

— EVERY MEMORY REFERENCE !

— More than one translation for EVERY instruction
* What to do If the translation fails?

— Page fault (Later!)

3/10/20

0x000...

OxFFF...
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How is the Translation Accomplished?

Virtual
ddresses

Physical
Addresses
>

What does the MMU need to do to translate an address?
| -level Page Table

— Read PTE from memory, check valid, merge address
— Set “accessed” bit in PTE, Set "dirty bit” on write

2-level Page Table
— Read and check first level
— Read, check, and update PTE

* N-level Page Table ...
MMU does page table Tree raversal to translate each address

* How can we make this go REALLY fast!
— Fraction of a processor cycle
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Recall: Memory Hierarchy

Large memories are slow, only small memory is fast

Address Translation Page table lives here
needs to occur here (perhaps_cached)
rocessor
1%
Core —
ANERE
o] @) &
® N 7]
§ o = Secondary
ol 1] L] ] Viai Secondary Storage
Core —_r ain Storage (Disk)
- - @ Memory (SSD)
o | |S] | 5 || |(DRAM)
Q @) & ® O
7 QD o Q I
o |S =3 O
» ® ®
100,000 10,000,000
. 0. 10-30 ’ 90,
Speed (ns): 0.3 1 3 100 (0.1 ms) (10 ms)
Size (bytes): 100Bs 10kBs 100kBs  MBs GBs 100GBs TBs
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Where and What is the MMU ?

Physical
Memory

Processor

(core) Sage
tables

—— o o e oy

-

* The processor requests READ Virtual-Address to memory system
— Through the MMU to the cache (to the memory)

* Some time later, the memory system responds with the data stored at the
physical address (resulting from virtual =  physical) translation

— Fast on a cache hit, slow on a miss
* So what is the MMU doing?

* On every reference (I-fetch, Load, Store) read (multiple levels of) page table
entries to get physical frame or FAULT

— Through the caches to the memory
— Then read/write the physical location
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» Cache: a repository for copies that can be accessed more quickly than
the original

— Make frequent case fast and infrequent case less dominant
 Caching underlies many techniques used today to make computers fast

— Can cache: memory locations, address translations, pages, file blocks,
file names, network routes, etc...

* Only good If:
— Frequent case frequent enough and
— Infrequent case not too expensive

* Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Recall: In Machine Structures (eg. 61C) ...

* Caching is the key to memory system performance

Main
Memory
Processor | . > (DRAM)
Access time = [00ns
Main
Cache Memory
Processor | >|(rRAM)  |€—>t (DRAM)
| ns 00ns

Average Memory Access Time (AMAT)

= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = |

HitRate = 90% => AMAT = (09 x 1) + (0.1 x 10)=11.I ns
HitRate = 99% => AMAT = (099 x ) + (001 x 101)=2.01 ns
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Another Major Reason to Deal with Caching

Virtual
Address:

Q
73
(0]

o

page #0 V,R v

Base0

page #| V,R >-)ffset
page #2 R,W

ploe B Physical Address
Base3 Lim!t3 N page H4 N
Based L!mft4 page #5 VR,W TCheck Perm|
Base5 |Limith |
Base6 |Limit6 |N A4 v
Base7 |Limit7 [V | (5>)—f\ccess Access
Error Error

» Cannot afford to translate on every access
— At least three DRAM accesses per actual DRAM access
— Or: perhaps I/O if page table partially on disk!

* EBven worse:What if we are using caching to make memory access
faster than DRAM access!

* Solution? Cache translations!

— Translation Cache: TLB (“Translation Lookaside Buffer™)
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Why Does Caching Help? Locality!

Probability
of reference

0 Address Space 2n-1

* Temporal Locality (Locality in Time):

— Keep recently accessed data items closer to processor
* Spatial Locality (Locality in Space):

— Move contiguous blocks to the upper levels

Lower Level
. To Processor Upper Level Memory
) Memory
Blk X ‘ g

\

From Processor - BlkY
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Recall: Memory Hierarchy

- Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Core —
g [E] (B
Q e) &
g,'_ Q (2]
® Q = Secondary
" o | o Secondary Sto_rage
Core —_r ain Storage (Disk)
- - @ Memory (SSD)
2| |=] [ 3 0| | |(DRAM)
Q| |o & 3 o
— m
7 ) o Q
2| |S > — o
» ® ®
100,000 10,000,000
: 0. 10-30 = UG,
Speed (ns): 0.3 1 3 100 (0.1 ms) (10 ms)
Size (bytes): 100Bs 10kBs 100kBs  MBs GBs 100GBs TBs
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How do we make Address Translation Fast?

* (Cache results of recent translations !
— Different from a traditional cache

— Cache Page Table Entries using Virtual Page # as the key

Physical
Memory

Processor

(core)

page
tables
[ ]

V_Pg M, : <Phs_Frame #,, V, .. >

V_Pg M, : <Phs_Frame #,, V, .. >

V_Pg M, : <Phs_Frame #,, V, .. >
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3/10/20

Translation Look-Aside Buffer

Record recent Virtual Page # to Physical Frame # translation

If present, have the physical address without reading any of the
page tables !!!

— Even if the translation involved multiple levels

— Caches the end-to-end result
Was invented by Sir Maurice Wilkes — prior to caches

— People realized "if it's good for page tables, why not the rest of the
data in memory!?”

On a TLB miss, the page tables may be cached, so only go to
memory when both miss
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Caching Applied to Address Translation

Virtual

Physical
ddress ysica

Address

Data Read or Write
(untranslated)

* Question Is one of page locality: does it exist!

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

* Can we have a TLB hierarchy!?
— Sure: multiple levels at different sizes/speeds
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What kind of Cache for TLB?

Set Size (k) - Associativity

\

# of Sets _
(N)

tag data

\ J
1

line size (L)

* Remember all those cache design parameters and trade-offs!

— Amount of Data = N * L * K
— Tag is portion of address that identifies line (w/o line offset)

— Write Policy (write-thru, write-back), Eviction Policy (LRU, ...)
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3/10/20

How might organization of TLB differ from that
of a conventional instruction or data cache!?

e | et's do some review ...
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A Summary on Sources of Cache Misses

Compulsory (cold start or process migration, first reference): first
access to a block

— "Cold" fact of life: not a whole lot you can do about it

— Note: If you are going to run "billions” of instruction, Compulsory
Misses are insignificant

Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size

Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution |:increase cache size
— Solution 2:increase associativity

Coherence (Invalidation): other process (e.g., [/O) updates memory
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How is a Block found in a Cache?

Set Select

Data Select
* Block is minimum quantum of caching

— Data select field used to select data within block

— Many caching applications don't have data select field
* Index Used to Lookup Candidates in Cache

— Index identifies the set
* Tag used to identify actual copy

— If no candidates match, then declare cache miss
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Review: Direct Mapped Cache

* Direct Mapped 2N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag

— The lowest M bits are the Byte Select (Block Size = 2M)
* Example: | KB Direct Mapped Cache with 32 B Blocks

— Index chooses potential block
— Tag checked to verify block
ngyte select chooses byte within block o

4 0
Cache Tag A Cache Index Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
I
Valid Bit Cache Tag Cache Data
.............................................. Byte3l.].....|Byte 1. .[Bytel. |0
0x50 Byte 63 | . |Byte 33 [Byte 32 | f +—
4 o TP O e T O CE e E L EE L L L LT 5
3
Byte 1023 .- Byte992 |31
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Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

* Example: Two-way set associative cache
— Cache Index selects a ““set” from the cache
— Two tags In the set are compared to input in parallel
;57 Data is selected based on the tag rgsult

4 0
Cache Tag Cache Index Byte Select
J
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
g I by ol ettt B A I e B -1,
| < > |
i i R i e L —
I [

—’@ }&Sen —Mpx 0 Sel0 ,/_CJ
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Review: Fully Associative Cache

* Fully Associative: Every block can hold any line

— Address does not include a cache index

— Compare Cache Tags of all Cache Entries in Parallel
* Example: Block Size=32B blocks

— We need N 2/-brt comparators
— Still have byte select to choose from within black

31 0
Ex: 0x01
Cache Tag Valid Bit  Cache Data

v

Byte 31| - [Byei[Bytc 0

Byte 63 «« |Byte 33 |Byte 32
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Where does a Block Get Placed in a Cache?

* Example: Block |2 placed in 8 block cache
32-Block Address Space:

Block

1111111111222222222233

no. 01234567890123456789012345678901

Direct mapped:

block 12 can go
only into block 4
(12 mod 8)

Block 01234567

no.

3/10/20

Set associative: Fully associative:
block 12 can go block 12 can go
anywhere in set 0 anywhere
(12 mod 4)
Block 01234567 Block 01234567
no. no.

Set Set Set Set
0 1 2 3
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Which block should be replaced on a miss!?

* Easy for Direct Mapped: Only one possibility
* Set Associative or Fully Associative:
— Random

— LRU (Least Recently Used)

* Miss rates for a workload:

2-way 4-way 8-way
Size LRU Random [ RU Random LRU Random

6 KB 52% 57% 47% 53% 44%  5.0%
64 KB 1.9%  2.0%  1.5% |.7% 4% 1.5%
256 KB [.15% |.17% 1.13% 1.13% 1.129% 1.12%
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Review:What happens on a write!?

* Write through: The information is written to both the block in the
cache and to the block in the lower-level memory

* Write back: The information is written only to the block in the cache

— Modified cache block is written to main memory only when it is
replaced

— Question is block clean or dirty?
* Pros and Cons of each?
— WT:
» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
— WB:

» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data
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Questions about caches ?

* How does operating system behavior affect cache
performance!

* Switching threads!
* Switching contexts!
* Cache design! What addresses are used?

* What does our understanding of caches tell us about TLB
organization?
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What TLB Organization Makes Sense!

TLB [—*|Cache p—>Memory

* Needs to be really fast

— Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

— Seems to argue for Direct Mapped or Low Associativity

* However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high! (PT traversal)
— Cost of Conflict (Miss Time) is high

— Hit Time — dictated by clock cycle

 Thrashing: continuous conflicts between accesses
— What if use low order bits of page as index into TLB!
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
— What if use high order bits as index?
» TLB mostly unused for small programs
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TLB organization: include protection

* How big does TLB actually have to be!
—Usually small: 128-512 entries (larger now)

—Not very big, can support higher associativity
* Small TLBs usually organized as fully-associative cache
— Lookup I1s by Virtual Address
—Returns Physical Address + other info
* What happens when fully-associative is too slow!
—Put a small (4-16 entry) direct-mapped cache in front

— Called a"“TLB Slice”
* Example for MIPS R3000:

3/10/20

Virtual Address

0xFA00
0x0040
0x0041

Physical Address |Dirty |Ref |[Valid |Access ASID
0x0003 Y N Y RW 34
0x0010 N Y Y R 0
0x0011 N Y Y R 0
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Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline

TLB

Inst Fetch Dcd/Reg |ALU / EAA | Memory Write Reg
TLB | I-Cache RF Operation | | WB
E.A. | TLB D-Cache

64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

ASID

V. Page Number

Offset

O T

Allows context switching among

20

12

64 user processes without TLB flush

3/10/20

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached
11x Kernel virtual space
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3/10/20

Example: Pentium-M TLBs (2003)

* Four different TLBs
— Instruction TLB for 4K pages

» |28 entries, 4-way set associative

— Instruction TLB for large pages
» 2 entries, fully associative

— Data TLB for 4K pages

» |28 entries, 4-way set associative

— Data TLB for large pages

» 8 entries, 4-way set associative
* All TLBs use LRU replacement policy

. \/\/hy? different TLBs for instruction, data, and page
sizes!
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Intel Nahelem (2008)

e LI DTLB
— 64 entries for 4 K pages and
— 32 entries for 2/4 M pages,
LI ITLB
— |28 entries for 4 K pages using 4-way associativity and
— |4 fully associative entries for 2/4 MiB pages

 unified 512-entry L2 TLB for 4 KiB pages, 4-way associative.
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Current Intel x86 (Skylake, Cascade Lake)

Front End Instruction )
Cache Tag| L1 Instruction Cache

MOP Cache 32KiB 8-Way Instruction
Tag TLB

16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MOP MOP MOP MOP MOP MOP

Instruction Queue
(50, 2x25 entries)

8124h2/av9

MoP MoP MopP MmopP MopP

MicroCode 5-Way Decode
seq;oehr;cer Complex|[ Simple |[ Simple |[ Simple |[ Simple
(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder Stack
1-4 poPs HOP HOP HOP HOP Eng ine
4 poPs
5 uOPs
Deooded(itor;ua::ger (DSB) 6 HOPs
60’5 window

Allocation Queue (IDQ) (128, 2x64 LOPs) ‘

MOP pOP pOP pOP pOP pOP Branch Order Buffer
‘ Register Alias Table (RAT) ‘ ak’ho (BOB) (48-entry)
»

Load
g —| |—| Rename / Allocate / Retirement ; ing 1di
§ FP. | Move Elimination ReOrder Buffer (224 entries) | Ones Idioms | | Zeroing Idioms |
]
B uopP Hop HoP Hop HopP uoP e uoP
8 Scheduler
= Integer Physical Register File eer " " Vector Physical Register File
§ . Unified Reservatlop Station (RS) (168 Registers)
2| | Storel (97 entries)
| Port0 | [ Portl | | Port5 | | Port6 | [ Port2 | [ Port3 | [ Portd | [ Port7 |
Hop Hop Hop uop uop Hop uopP uop
[}
= =r
m = o 64B/cycle
ALU]|[INT % e
MUL|[INT 8 = ToL3
MA Fi ; O|\ Ia)
=
Gl =5
QU
<
Execution Engine
g Store Buffer & Forwarding
(56 entries) g
\E
)
2 <
g Data TLB 2
Load Buffer| 2 | L1 Data Cachg 2
(72 entries) —!'é 32KiB 8-Way
g Line Fill Buffers (LFB)
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Current Example: Memory Hierarchy

* Caches (all 64 B line size)
— LI |-Cache: 32 KiB/core, 8-way set assoc.

— LI D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back
policy

— L2 Cache: | MiB/core, | 6-way set assoc., Inclusive, Write-back policy, 14 cycles
latency

— L3 Cache: 1.375 MiB/core, | |-way set assoc., shared across cores, Non-inclusive
victim cache, Write-back policy, 50-70 cycles latency

« TLB

— LI ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

— LI DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, | G page translations:

— L2 STLB: |536 entries; | 2-way set assoc. 4 KiB + 2 MiB pages

» |6 entries; 4-way set associative, | GIB page translations:
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What happens on a Context Switch?

* Need to do something, since TLBs map virtual addresses to physical
addresses

— Address Space just changed, so TLB entries no longer valid!
* Options!
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?

— Include ProcessID in TLB

» This is an architectural solution: needs hardware
* What if translation tables change!?
— For example, to move page from memory to disk or vice versa. ..

— Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

— Called "TLB Consistency”
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Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:
o
Page TablePtr PhyXjcal Aderess: \,
Page Table
(Ist level)
Page Table
(2nd level)
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Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ J
of |
Page lablePy Ps q Physical A SS: Y
sica
\. Paye #
%,
Page Table
(Ist level)
Page Table
(2nd level)
TLB:

—
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Putting Everything Together: Cache

Physical
Memory:

Physical A S\
Paygc;l IOffset

{
Itag Iindex Ibyte I
ache:
tag: block:




Two Critical Issues in Address Translation

Processor

Registers

N
S v Memory
>

* How to translate addresses fast enough?

— Every instruction fetch

— Plus every load / store
— EVERY MEMORY REFERENCE !
— More than one translation for EVERY instruction

e Next:What to do if the translation fails?

0x000...

OxFFF...

— Page fault! This is a synchronous exception!

3/10/20
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Recall: User—Kernel
(Exceptions: Traps & Interrupts)

A system call instruction causes a synchronous exception (or “trap”)
— In fact, often called a software “trap” instruction

Other sources of Synchronous Exceptions (“Trap™):

— Divide by zero, lllegal instruction, Bus error (bad address, e.g. unaligned
access)

— Segmentation Fault (address out of range)
— Page Fault (for illusion of infinite-sized memory)

Interrupts are Asynchronous Exceptions:
— Examples: timer, disk ready, network, etc. ...
— Interrupts can be disabled, traps cannot!
On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel

— Some processors (e.g. x86) also save registers, changes stack

Handler does any required state preservation not done by CPU:
— Might save registers, other CPU state, and switches to kernel stack
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Page Fault

* The Virtual-to-Physical Translation fails

— PTE marked invalid, Priv. Level Violation, Access violation, or does not
exist

— Causes an Fault / Trap
» Not an interrupt because synchronous to instruction execution

— May occur on instruction fetch or data access
— Protection violations typically terminate the instruction

* Other Page Faults engage operating system to fix the situation and
retry the Instruction

— Allocate an additional stack page, or

— Make the page accessible - Copy on Write,

— Bring page in from secondary storage to memory — demand paging
* Fundamental inversion of the hardware / software boundary
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Next Up:What happens when ...

Process virtual address physical address
\_/
. page#
mstr%((on —> MMU frame#
/ \ PT
/ 3 offset
retry exception page fault | |-
ame#
Opkrafjng System offset

Page Fault Handler. "

scheduler
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Summary (1/3)

* Page Tables
— Memory divided into fixed-sized chunks of memory

— Virtual page number from virtual address mapped through page table
to physical page number

— Offset of virtual address same as physical address

— Large page tables can be placed into virtual memory

* Mult-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space

* Inverted Page Table
— Use of hash-table to hold translation entries

— Size of page table ~ size of physical memory rather than size of virtual
memory
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Summary (2/3)

* The Principle of Locality:

— Program likely to access a relatively small portion of the address
space at any Instant of time.

» lemporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or [/O devices
» Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent
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Summary (3/3)

* “Translation Lookaside Buffer” (TLB)
— Small number of PTEs and optional process IDs (< 512)

— Fully Associative (Since conflict misses expensive)

— On TLB miss, page table must be traversed and if located PTE is
invalid, cause Page Fault

— On change in page table, TLB entries must be invalidated

— TLB is logically in front of cache (need to overlap with cache access)

* Next Time:What to do on a page fault!
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