CS162
Operating Systems and Systems Programming
Lecture 10

Scheduling (con’t)

February 25th, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course taught by John Kubiatowicz at Berkeley, with few minor updates/changes. When slides are obtained from other sources, a reference will be noted on the bottom of that slide, in which case a full list of references is provided on the last slide.
Recall: Scheduling

- Discussion of Scheduling:
 - Which thread should run on the CPU next?
- Scheduling goals, policies
- Look at a number of different schedulers

```c
if ( readyThreads(TCBs) ) {
    nextTCB = selectThread(TCBs);
    run( nextTCB );
} else {
    run_idle_thread();
}
```
Recall: Scheduling Policy Goals/Criteria

• Minimize Response Time
 – Minimize elapsed time to do an operation (or job)
 – Response time is what the user sees:
 » Time to echo a keystroke in editor
 » Time to compile a program
 » Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
 – Maximize operations (or jobs) per second
 – Throughput related to response time, but not identical:
 » Minimizing response time will lead to more context switching than if you only maximized throughput
 – Two parts to maximizing throughput
 » Minimize overhead (for example, context-switching)
 » Efficient use of resources (CPU, disk, memory, etc)

• Fairness
 – Share CPU among users in some equitable way
 – Fairness is not minimizing average response time:
 » Better average response time by making system less fair
Recall: Example of RR with Time Quantum = 20

- Example:

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>53</td>
</tr>
<tr>
<td>P₂</td>
<td>8</td>
</tr>
<tr>
<td>P₃</td>
<td>68</td>
</tr>
<tr>
<td>P₄</td>
<td>24</td>
</tr>
</tbody>
</table>

- The Gantt chart is:

```
P₁  P₂  P₃  P₄  P₁  P₃  P₄  P₁  P₃
 0   20  28  48  68  88 108 112 125 145 153
```

- Waiting time for
 P₂ = (20-0) = 20
 P₁ = (68-20) + (112-88) = 72
 P₃ = (28-0) + (88-48) + (125-108) = 85
 P₄ = (48-0) + (108-68) = 88

- Average waiting time = (72 + 20 + 85 + 88) / 4 = 66 1/4
- Average completion time = (125 + 28 + 153 + 112) / 4 = 104 1/2

- Thus, Round-Robin Pros and Cons:
 - Better for short jobs, Fair (+)
 - Context-switching time adds up for long jobs (-)
Comparisons between FCFS and Round Robin

- Assuming zero-cost context-switching time, is RR always better than FCFS?

- Simple example: 10 jobs, each take 100s of CPU time
 RR scheduler quantum of 1s
 All jobs start at the same time

- Completion Times:

<table>
<thead>
<tr>
<th>Job #</th>
<th>FIFO</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>991</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>992</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>900</td>
<td>999</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

- Both RR and FCFS finish at the same time
- Average response time is much worse under RR!
 » Bad when all jobs same length

- Also: Cache state must be shared between all jobs with RR but can be devoted to each job with FIFO
 » Total time for RR longer even for zero-cost switch!
Earlier Example with Different Time Quantum

<table>
<thead>
<tr>
<th>Quantum</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best FCFS</td>
<td>32</td>
<td>0</td>
<td>85</td>
<td>8</td>
<td>31 1/4</td>
</tr>
<tr>
<td>Q = 1</td>
<td>84</td>
<td>22</td>
<td>85</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>Q = 5</td>
<td>82</td>
<td>20</td>
<td>85</td>
<td>58</td>
<td>61 1/4</td>
</tr>
<tr>
<td>Q = 8</td>
<td>80</td>
<td>8</td>
<td>85</td>
<td>56</td>
<td>57 1/4</td>
</tr>
<tr>
<td>Q = 10</td>
<td>82</td>
<td>10</td>
<td>85</td>
<td>68</td>
<td>61 1/4</td>
</tr>
<tr>
<td>Q = 20</td>
<td>72</td>
<td>20</td>
<td>85</td>
<td>88</td>
<td>66 1/4</td>
</tr>
<tr>
<td>Worst FCFS</td>
<td>68</td>
<td>145</td>
<td>0</td>
<td>121</td>
<td>83 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantum</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best FCFS</td>
<td>85</td>
<td>8</td>
<td>153</td>
<td>32</td>
<td>69 1/2</td>
</tr>
<tr>
<td>Q = 1</td>
<td>137</td>
<td>30</td>
<td>153</td>
<td>81</td>
<td>100 1/2</td>
</tr>
<tr>
<td>Q = 5</td>
<td>135</td>
<td>28</td>
<td>153</td>
<td>82</td>
<td>99 1/2</td>
</tr>
<tr>
<td>Q = 8</td>
<td>133</td>
<td>16</td>
<td>153</td>
<td>80</td>
<td>95 1/2</td>
</tr>
<tr>
<td>Q = 10</td>
<td>135</td>
<td>18</td>
<td>153</td>
<td>92</td>
<td>99 1/2</td>
</tr>
<tr>
<td>Q = 20</td>
<td>125</td>
<td>28</td>
<td>153</td>
<td>112</td>
<td>104 1/2</td>
</tr>
<tr>
<td>Worst FCFS</td>
<td>121</td>
<td>153</td>
<td>68</td>
<td>145</td>
<td>121 3/4</td>
</tr>
</tbody>
</table>
Handling Differences in Importance: Strict Priority Scheduling

- **Execution Plan**
 - Always execute highest-priority runnable jobs to completion
 - Each queue can be processed in RR with some time-quantum

- **Problems:**
 - **Starvation:**
 » Lower priority jobs don't get to run because higher priority jobs
 - **Deadlock: Priority Inversion**
 » Not strictly a problem with priority scheduling, but happens when low priority task has lock needed by high-priority task
 » Usually involves third, intermediate priority task that keeps running even though high-priority task should be running

- **How to fix problems?**
 - Dynamic priorities – adjust base-level priority up or down based on heuristics about interactivity, locking, burst behavior, etc…
Scheduling Fairness

• What about fairness?
 – Strict fixed-priority scheduling between queues is unfair (run highest, then next, etc):
 » long running jobs may never get CPU
 » Urban legend: In Multics, shut down machine, found 10-year-old job ⇒ Ok, probably not…
 – Must give long-running jobs a fraction of the CPU even when there are shorter jobs to run
 – Tradeoff: fairness gained by hurting avg response time!
Scheduling Fairness

• How to implement fairness?
 – Could give each queue some fraction of the CPU
 » What if one long-running job and 100 short-running ones?
 » Like express lanes in a supermarket—sometimes express lanes get so long, get better service by going into one of the other lines
 – Could increase priority of jobs that don’t get service
 » What is done in some variants of UNIX
 » This is ad hoc—what rate should you increase priorities?
 » And, as system gets overloaded, no job gets CPU time, so everyone increases in priority⇒Interactive jobs suffer
Lottery Scheduling

• Yet another alternative: Lottery Scheduling
 – Give each job some number of lottery tickets
 – On each time slice, randomly pick a winning ticket
 » NOTE: Not a “real” random number generator; instead pseudo-random number generators can make sure that every ticket picked once before repeating!
 – On average, CPU time is proportional to number of tickets given to each job
• How to assign tickets?
 – To help with responsiveness, give short running jobs more tickets, long running jobs get fewer tickets
 – To avoid starvation, every job gets at least one ticket (everyone makes progress)
• Advantage over strict priority scheduling: behaves gracefully as load changes
 – Adding or deleting a job affects all jobs proportionally, independent of how many tickets each job possesses
Lottery Scheduling Example (Cont.)

- Lottery Scheduling Example
 - Assume short jobs get 10 tickets, long jobs get 1 ticket

<table>
<thead>
<tr>
<th># short jobs/ # long jobs</th>
<th>% of CPU each short jobs gets</th>
<th>% of CPU each long jobs gets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>0/2</td>
<td>N/A</td>
<td>50%</td>
</tr>
<tr>
<td>2/0</td>
<td>50%</td>
<td>N/A</td>
</tr>
<tr>
<td>10/1</td>
<td>9.9%</td>
<td>0.99%</td>
</tr>
<tr>
<td>1/10</td>
<td>50%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- What if too many short jobs to give reasonable response time?
 - If load average is 100, hard to make progress
 - One approach: log some user out
How to Evaluate a Scheduling algorithm?

- Deterministic modeling
 - takes a predetermined workload and compute the performance of each algorithm for that workload
- Queueing models
 - Mathematical approach for handling stochastic workloads
- Implementation/Simulation:
 - Build system which allows actual algorithms to be run against actual data – most flexible/general
How to Handle Simultaneous: Mix of Diff Types of Apps?

• Consider mix of interactive and high throughput apps:
 – How to best schedule them?
 – How to recognize one from the other?
 » Do you trust app to say that it is “interactive”?
 – Should you schedule the set of apps identically on servers, workstations, pads, and cellphones?

• For instance, is Burst Time (observed) useful to decide which application gets CPU time?
 – Short Bursts ⇒ Interactivity ⇒ High Priority?

• Assumptions encoded into many schedulers:
 – Apps that sleep a lot and have short bursts must be interactive apps – they should get high priority
 – Apps that compute a lot should get low(er?) priority, since they won’t notice intermittent bursts from interactive apps

• Hard to characterize apps:
 – What about apps that sleep for a long time, but then compute for a long time?
 – Or, what about apps that must run under all circumstances (say periodically)
What if we Knew the Future?

• Could we always mirror best FCFS?

• Shortest Job First (SJF):
 – Run whatever job has least amount of computation to do
 – Sometimes called “Shortest Time to Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
 – Preemptive version of SJF: if job arrives and has a shorter time to completion than the remaining time on the current job, immediately preempt CPU
 – Sometimes called “Shortest Remaining Time to Completion First” (SRTCF)

• These can be applied to whole program or current CPU burst
 – Idea is to get short jobs out of the system
 – Big effect on short jobs, only small effect on long ones
 – Result is better average response time
Discussion

- SJF/SRTF are the best you can do at minimizing average response time
 - Provably optimal (SJF among non-preemptive, SRTF among preemptive)
 - Since SRTF is always at least as good as SJF, focus on SRTF

- Comparison of SRTF with FCFS
 - What if all jobs the same length?
 » SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the same length)
 - What if jobs have varying length?
 » SRTF: short jobs not stuck behind long ones
Example to illustrate benefits of SRTF

- Three jobs:
 - A, B: both CPU bound, run for week
 - C: I/O bound, loop 1ms CPU, 9ms disk I/O
 - If only one at a time, C uses 90% of the disk, A or B could use 100% of the CPU

- With FCFS:
 - Once A or B get in, keep CPU for two weeks

- What about RR or SRTF?
 - Easier to see with a timeline
SRTF Example continued:

Disk Utilization: 9/201 ~ 4.5%

Disk Utilization: ~90% but lots of wakeups!

Disk Utilization: 90%
SRTF Further discussion

• Starvation
 – SRTF can lead to starvation if many small jobs!
 – Large jobs never get to run

• Somehow need to predict future
 – How can we do this?
 – Some systems ask the user
 » When you submit a job, have to say how long it will take
 » To stop cheating, system kills job if takes too long
 – But: hard to predict job’s runtime even for non-malicious users

• Bottom line, can’t really know how long job will take
 – However, can use SRTF as a yardstick for measuring other policies
 – Optimal, so can’t do any better

• SRTF Pros & Cons
 – Optimal (average response time) (+)
 – Hard to predict future (-)
 – Unfair (-)
Predicting the Length of the Next CPU Burst

- **Adaptive:** Changing policy based on past behavior
 - CPU scheduling, in virtual memory, in file systems, etc
 - Works because programs have predictable behavior
 - If program was I/O bound in past, likely in future
 - If computer behavior were random, wouldn’t help

- **Example:** SRTF with estimated burst length
 - Use an estimator function on previous bursts:
 Let t_{n-1}, t_{n-2}, t_{n-3}, etc. be previous CPU burst lengths.
 Estimate next burst $\tau_n = f(t_{n-1}, t_{n-2}, t_{n-3}, \ldots)$
 - Function f could be one of many different time series estimation schemes (Kalman filters, etc)
 - For instance, exponential averaging
 $\tau_n = \alpha t_{n-1} + (1-\alpha)\tau_{n-1}$
 with $(0<\alpha\leq 1)$
Multi-Level Feedback Scheduling

- Another method for exploiting past behavior (first use in CTSS)
 - Multiple queues, each with different priority
 - Higher priority queues often considered “foreground” tasks
 - Each queue has its own scheduling algorithm
 - e.g. foreground – RR, background – FCFS
 - Sometimes multiple RR priorities with quantum increasing exponentially (highest: 1ms, next: 2ms, next: 4ms, etc)

- Adjust each job’s priority as follows (details vary)
 - Job starts in highest priority queue
 - If timeout expires, drop one level
 - If timeout doesn’t expire, push up one level (or to top)
Scheduling Details

- Result approximates SRTF:
 - CPU bound jobs drop like a rock
 - Short-running I/O bound jobs stay near top
- Scheduling must be done between the queues
 - Fixed priority scheduling:
 » serve all from highest priority, then next priority, etc.
 - Time slice:
 » each queue gets a certain amount of CPU time
 » e.g., 70% to highest, 20% next, 10% lowest
Scheduling Details

• **Countermeasure:** user action that can foil intent of the OS designers
 – For multilevel feedback, put in a bunch of meaningless I/O to keep job's priority high
 – Of course, if everyone did this, wouldn't work!

• **Example of Othello program:**
 – Playing against competitor, so key was to do computing at higher priority the competitors.
 » Put in printf’s, ran much faster!
Case Study: Linux O(1) Scheduler

- Priority-based scheduler: 140 priorities
 - 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
 - Lower priority value ⇒ higher priority (for nice values)
 - Highest priority value ⇒ Lower priority (for realtime values)
 - All algorithms O(1)
 » Timeslices/priorities/interactivity credits all computed when job finishes time slice
 » 140-bit bit mask indicates presence or absence of job at given priority level
- Two separate priority queues: “active” and “expired”
 - All tasks in the active queue use up their timeslices and get placed on the expired queue, after which queues swapped
- Timeslice depends on priority – linearly mapped onto timeslice range
 - Like a multi-level queue (one queue per priority) with different timeslice at each level
 - Execution split into “Timeslice Granularity” chunks – round robin through priority
O(1) Scheduler Continued

• Heuristics
 – User-task priority adjusted ±5 based on heuristics
 » p->sleep_avg = sleep_time – run_time
 » Higher sleep_avg ⇒ more I/O bound the task, more reward (and vice versa)
 – Interactive Credit
 » Earned when a task sleeps for a “long” time
 » Spend when a task runs for a “long” time
 » IC is used to provide hysteresis to avoid changing interactivity for temporary changes in behavior
 – However, “interactive tasks” get special dispensation
 » To try to maintain interactivity
 » Placed back into active queue, unless some other task has been starved for too long…

• Real-Time Tasks
 – Always preempt non-RT tasks
 – No dynamic adjustment of priorities
 – Scheduling schemes:
 » SCHED_FIFO: preempts other tasks, no timeslice limit
 » SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority
Linux Completely Fair Scheduler (CFS)

• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use heuristics to identify interactive tasks—it just makes sure every process gets a fair share of CPU within a set amount of time given the number of runnable processes on the CPU.”

• Inspired by Networking “Fair Queueing”
 – Each process given their fair share of resources
 – Models an “ideal multitasking processor” in which N processes execute simultaneously as if they truly got 1/N of the processor
 » Tries to give each process an equal fraction of the processor
 – Priorities reflected by weights such that increasing a task’s priority by 1 always gives the same fractional increase in CPU time – regardless of current priority
Real-Time Scheduling (RTS)

• Efficiency is important but predictability is essential:
 – We need to predict with confidence worst case response times for systems
 – In RTS, performance guarantees are:
 » Task- and/or class centric and often ensured a priori
 – In conventional systems, performance is:
 » System/throughput oriented with post-processing (… wait and see …)
 – Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard Real-Time
 – Attempt to meet all deadlines
 – EDF (Earliest Deadline First), LLF (Least Laxity First), RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

• Soft Real-Time
 – Attempt to meet deadlines with high probability
 – Minimize miss ratio / maximize completion ratio (firm real-time)
 – Important for multimedia applications
 – CBS (Constant Bandwidth Server)
Example: Workload Characteristics

- Tasks are preemptable, independent with arbitrary arrival (=release) times
- Tasks have deadlines (D) and known computation times (C)
- Example Setup:

![Diagram showing task scheduling with deadlines and computation times]
Example: Round-Robin Scheduling Doesn’t Work

Time

T1

T2

T3

T4

Missed deadline!!
• Tasks periodic with period P_i and computation C_i in each period: (P_i, C_i) for each task i

• Preemptive priority-based dynamic scheduling:
 – Each task is assigned a (current) priority based on how close the absolute deadline is (i.e. $D_i^{t+1} = D_i^t + P_i$ for each task!)
 – The scheduler always schedules the active task with the closest absolute deadline

Schedulable when $\sum_{i=1}^{n} \left(\frac{C_i}{P_i} \right) \leq 1$
Choosing the Right Scheduler

<table>
<thead>
<tr>
<th>I Care About:</th>
<th>Then Choose:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Throughput</td>
<td>FCFS</td>
</tr>
<tr>
<td>Avg. Response Time</td>
<td>SRTF Approximation</td>
</tr>
<tr>
<td>I/O Throughput</td>
<td>SRTF Approximation</td>
</tr>
<tr>
<td>Fairness (CPU Time)</td>
<td>Linux CFS</td>
</tr>
<tr>
<td>Fairness – Wait Time to Get CPU</td>
<td>Round Robin</td>
</tr>
<tr>
<td>Meeting Deadlines</td>
<td>EDF</td>
</tr>
<tr>
<td>Favoring Important Tasks</td>
<td>Priority</td>
</tr>
</tbody>
</table>
A Final Word On Scheduling

• When do the details of the scheduling policy and fairness really matter?
 – When there aren’t enough resources to go around

• When should you simply buy a faster computer?
 – (Or network link, or expanded highway, or …)
 – One approach: Buy it when it will pay for itself in improved response time
 » Perhaps you’re paying for worse response time in reduced productivity, customer angst, etc…
 » Might think that you should buy a faster X when X is utilized 100%, but usually, response time goes to infinity as utilization ⇒ 100%

• An interesting implication of this curve:
 – Most scheduling algorithms work fine in the “linear” portion of the load curve, fail otherwise
 – Argues for buying a faster X when hit “knee” of curve
Summary (1 of 2)

- **Scheduling Goals:**
 - Minimize Response Time (e.g. for human interaction)
 - Maximize Throughput (e.g. for large computations)
 - Fairness (e.g. Proper Sharing of Resources)
 - Predictability (e.g. Hard/Soft Realtime)

- **Round-Robin Scheduling:**
 - Give each thread a small amount of CPU time when it executes; cycle between all ready threads
 - Pros: Better for short jobs

- **Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):**
 - Run whatever job has the least amount of computation to do/least remaining amount of computation to do
 - Pros: Optimal (average response time)
 - Cons: Hard to predict future, Unfair

- **Multi-Level Feedback Scheduling:**
 - Multiple queues of different priorities and scheduling algorithms
 - Automatic promotion/demotion of process priority in order to approximate SJF/SRTF
Summary (2 of 2)

• **Lottery Scheduling:**
 – Give each thread a priority-dependent number of tokens (short tasks ⇒ more tokens)

• **Linux CFS Scheduler: Fair fraction of CPU**
 – Approximates a “ideal” multitasking processor

• **Realtime Schedulers such as EDF**
 – Guaranteed behavior by meeting deadlines
 – Realtime tasks defined by tuple of compute time and period
 – Schedulability test: is it possible to meet deadlines with proposed set of processes?