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• Semaphores are like integers, except 
– No negative values 
– Only operations allowed are P and V – can’t read or write 
value, except to set it initially 

– Operations must be atomic 
» Two P’s together can’t decrement value below zero 
» Similarly, thread going to sleep in P won’t miss wakeup from 

V – even if they both happen at same time 

• Semaphore from railway analogy 
– Here is a semaphore initialized to 2 for resource control:

Value=0Value=2

2

Value=2Value=1Value=0

Semaphores Like Integers Except

Value=1Value=0
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Review: Full Solution to Bounded Buffer
 Semaphore fullBuffer = 0;  // Initially, no coke 
 Semaphore emptyBuffers = numBuffers;  
    // Initially, num empty slots 

 Semaphore mutex = 1; // No one using machine 
 
Producer(item) {  
 emptyBuffers.P(); // Wait until space  
 mutex.P(); // Wait until buffer free  
 Enqueue(item);  
 mutex.V();  
 fullBuffers.V(); // Tell consumers there is  
    // more coke  
} 

 Consumer() {  
 fullBuffers.P(); // Check if there’s a coke  
 mutex.P(); // Wait until machine free  
 item = Dequeue();  
 mutex.V();  
 emptyBuffers.V(); // tell producer need more  
 return item;  
}  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Condition Variables
• Monitor:  a lock and zero or more condition variables 

for managing concurrent access to shared data 
• Condition Variable: a queue of threads waiting for 

something inside a critical section 
– Key idea: allow sleeping inside critical section by 
atomically releasing lock at time we go to sleep 

– Contrast to semaphores: Can’t wait inside critical section 
• Operations: 

– Wait(&lock): Atomically release lock and go to sleep. 
Re-acquire lock later, before returning.  

– Signal(): Wake up one waiter, if any 
– Broadcast(): Wake up all waiters 

• Rule: Must hold lock when doing condition variable ops!
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Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue 
  Lock lock;  
 Condition dataready;  
 Queue queue; 

  AddToQueue(item) {  
  lock.Acquire(); // Get Lock  
  queue.enqueue(item); // Add item  
  dataready.signal(); // Signal any waiters  
  lock.Release(); // Release Lock  
 }  

  RemoveFromQueue() {  
  lock.Acquire(); // Get Lock  
  while (queue.isEmpty()) {  
   dataready.wait(&lock); // If nothing, sleep  
  }  
  item = queue.dequeue(); // Get next item  
  lock.Release(); // Release Lock  
  return(item);  
 }
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Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and 

wait.  Consider a piece of our dequeue code: 
   while (queue.isEmpty()) {  

   dataready.wait(&lock); // If nothing, sleep 
  }  
  item = queue.dequeue(); // Get next item 

– Why didn’t we do this? 
   if (queue.isEmpty()) {  

   dataready.wait(&lock); // If nothing, sleep 
  }  
  item = queue.dequeue(); // Get next item 

• Answer: depends on the type of scheduling 
– Hoare-style (most textbooks): 

» Signaler gives lock, CPU to waiter; waiter runs immediately 
» Waiter gives up lock, processor back to signaler when it exits 

critical section or if it waits again 
– Mesa-style (most real operating systems): 

» Signaler keeps lock and processor 
» Waiter placed on ready queue with no special priority 
» Practically, need to check condition again after wait
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Extended example: Readers/Writers Problem

• Motivation: Consider a shared database 
– Two classes of users: 

» Readers – never modify database 
» Writers – read and modify database 

– Is using a single lock on the whole database sufficient? 
» Like to have many readers at the same time 
» Only one writer at a time

R
R

R

W
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Basic Readers/Writers Solution
• Correctness Constraints: 

– Readers can access database when no writers 
– Writers can access database when no readers or writers 
– Only one thread manipulates state variables at a time 

• Basic structure of a solution: 
– Reader()  
   Wait until no writers  
   Access data base  
   Check out – wake up a waiting writer 

– Writer()  
   Wait until no active readers or writers 
   Access database  
   Check out – wake up waiting readers or writer 

– State variables (Protected by a lock called “lock”): 
» int AR: Number of active readers; initially = 0 
» int WR: Number of waiting readers; initially = 0 
» int AW: Number of active writers; initially = 0 
» int WW: Number of waiting writers; initially = 0 
» Condition okToRead = NIL 
» Conditioin okToWrite = NIL
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Code for a Reader
 Reader() {  
 // First check self into system  
 lock.Acquire(); 

  while ((AW + WW) > 0) { // Is it safe to read?  
  WR++; // No. Writers exist  
  okToRead.wait(&lock); // Sleep on cond var  
  WR--; // No longer waiting  
 } 

  AR++;  // Now we are active!  
 lock.release(); 

  // Perform actual read-only access  
 AccessDatabase(ReadOnly); 

  // Now, check out of system  
 lock.Acquire();  
 AR--;  // No longer active  
 if (AR == 0 && WW > 0) // No other active readers  
  okToWrite.signal(); // Wake up one writer  
 lock.Release();  
}
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 Writer() {  
 // First check self into system  
 lock.Acquire(); 

  while ((AW + AR) > 0) { // Is it safe to write?  
  WW++; // No. Active users exist  
  okToWrite.wait(&lock); // Sleep on cond var  
  WW--; // No longer waiting  
 } 

  AW++;  // Now we are active!  
 lock.release(); 

  // Perform actual read/write access  
 AccessDatabase(ReadWrite); 

  // Now, check out of system  
 lock.Acquire();  
 AW--;  // No longer active  
 if (WW > 0){ // Give priority to writers  
  okToWrite.signal(); // Wake up one writer  
 } else if (WR > 0) { // Otherwise, wake reader  
  okToRead.broadcast(); // Wake all readers  
 }  
 lock.Release();  
}

Code for a Writer
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Simulation of Readers/Writers solution
• Consider the following sequence of operators: 

– R1, R2, W1, R3 
• On entry, each reader checks the following: 

 while ((AW + WW) > 0) { // Is it safe to read?  
WR++; // No. Writers exist  
okToRead.wait(&lock); // Sleep on cond var  
WR--; // No longer waiting  
 } 

  AR++; // Now we are active! 

• First, R1 comes along: 
 AR = 1, WR = 0, AW = 0, WW = 0 

• Next, R2 comes along: 
 AR = 2, WR = 0, AW = 0, WW = 0 

• Now, readers make take a while to access database 
– Situation: Locks released 
– Only AR is non-zero
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Simulation(2)

• Next, W1 comes along: 
 while ((AW + AR) > 0) { // Is it safe to write?  
  WW++; // No. Active users exist  
  okToWrite.wait(&lock); // Sleep on cond var  
  WW--; // No longer waiting  
 } 

  AW++;  

• Can’t start because of readers, so go to sleep: 
  AR = 2, WR = 0, AW = 0, WW = 1 
• Finally, R3 comes along: 

 AR = 2, WR = 1, AW = 0, WW = 1 
• Now, say that R2 finishes before R1: 

 AR = 1, WR = 1, AW = 0, WW = 1 
• Finally, last of first two readers (R1) finishes and 

wakes up writer: 
  if (AR == 0 && WW > 0) // No other active readers  
  okToWrite.signal(); // Wake up one writer
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Simulation(3)

• When writer wakes up, get: 
 AR = 0, WR = 1, AW = 1, WW = 0 

• Then, when writer finishes: 
  if (WW > 0){           // Give priority to writers  
  okToWrite.signal(); // Wake up one writer  
 } else if (WR > 0) { // Otherwise, wake reader  
  okToRead.broadcast(); // Wake all readers  
 }  

– Writer wakes up reader, so get: 
 AR = 1, WR = 0, AW = 0, WW = 0 

• When reader completes, we are finished
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Questions
• Can readers starve?  Consider Reader() entry code: 

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 okToRead.wait(&lock); // Sleep on cond var  
 WR--; // No longer waiting  
 } 

  AR++; // Now we are active! 

• What if we erase the condition check in Reader exit? 
  AR--; // No longer active  
 if (AR == 0 && WW > 0) // No other active readers  
  okToWrite.signal();  // Wake up one writer  

• Further, what if we turn the signal() into broadcast() 
  AR--; // No longer active  
 okToWrite.broadcast();  // Wake up one writer  

• Finally, what if we use only one condition variable (call 
it “okToContinue”) instead of two separate ones? 
– Both readers and writers sleep on this variable 
– Must use broadcast() instead of signal()
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Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex 
• Can we implement condition variables this way? 

 Wait()   { semaphore.P(); } 
 Signal() { semaphore.V(); } 
– Doesn’t work: Wait() may sleep with lock held 

• Does this work better? 
 Wait(Lock lock) {  
   lock.Release();  
   semaphore.P();  
   lock.Acquire();  
}  
Signal() { semaphore.V(); } 

– No: Condition vars have no history, semaphores have 
history: 

» What if thread signals and no one is waiting? NO-OP 
» What if thread later waits? Thread Waits 
» What if thread V’s and no one is waiting? Increment 
» What if thread later does P? Decrement and continue
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Construction of Monitors from Semaphores (con’t)
• Problem with previous try: 

– P and V are commutative – result is the same no matter 
what order they occur 

– Condition variables are NOT commutative 
• Does this fix the problem? 

 Wait(Lock lock) {  
   lock.Release();  
   semaphore.P();  
   lock.Acquire();  
}  
Signal() {  
   if semaphore queue is not empty  
      semaphore.V();  
} 

– Not legal to look at contents of semaphore queue 
– There is a race condition – signaler can slip in after lock 
release and before waiter executes semaphore.P() 

• It is actually possible to do this correctly 
– Complex solution for Hoare scheduling in book
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Monitor Conclusion

• Monitors represent the logic of the program 
– Wait if necessary 
– Signal when change something so any waiting threads 
can proceed 

• Basic structure of monitor-based program: 
  lock  
while (need to wait) {  
   condvar.wait();  
}  
unlock  
 
do something so no need to wait  
 
lock  

  condvar.signal(); 
 
unlock

Check and/or update 
state variables 

Wait if necessary

Check and/or update 
state variables
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C-Language Support for Synchronization

• C language: Pretty straightforward synchronization 
– Just make sure you know all the code paths out of a 
critical section 

 int Rtn() {  
  lock.acquire();  
  … 
  if (exception) {  
   lock.release();  
   return errReturnCode;  
  } 
  … 
  lock.release();  
  return OK;  
} 

– Watch out for setjmp/longjmp! 
» Can cause a non-local jump out of procedure 
» In example, procedure E calls longjmp, poping stack back 

to procedure B 
» If Procedure C had lock.acquire, problem!

Proc A

Proc B 
Calls setjmp

Proc C 
lock.acquire

Proc D

Proc E 
Calls longjmp

Stack growth
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C++ Language Support for Synchronization
• Languages with exceptions like C++ 

– Languages that support exceptions are problematic (easy 
to make a non-local exit without releasing lock) 

– Consider: 
  void Rtn() {  
  lock.acquire();  
  …  
  DoFoo();  
  …  
  lock.release();  
 }  
 void DoFoo() {  
  …  
  if (exception) throw errException;  
  …  
 } 

– Notice that an exception in DoFoo() will exit without 
releasing the lock!
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C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections 

– Catch exceptions, release lock, and re-throw exception: 
 void Rtn() {  
  lock.acquire();  
  try {  
   …  
   DoFoo();  
   …  
  } catch (…) { // catch exception 
   lock.release(); // release lock  
   throw;  // re-throw the exception  
  }  
  lock.release();  
 }  
 void DoFoo() {  
  …  
  if (exception) throw errException;  
  …  
 } 

– Even Better: auto_ptr<T> facility.  See C++ Spec. 
» Can deallocate/free lock regardless of exit method
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Java Language Support for Synchronization

• Java has explicit support for threads and thread 
synchronization 

• Bank Account example: 
 class Account {  
  private int balance;  
  // object constructor  
  public Account (int initialBalance) {  
   balance = initialBalance;  
  }  
  public synchronized int getBalance() {  
   return balance;  
  }  
  public synchronized void deposit(int amount) {  
   balance += amount;  
  }  
 } 

– Every object has an associated lock which gets 
automatically acquired and released on entry and exit 
from a synchronized method.
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Java Language Support for Synchronization (con’t)

• Java also has synchronized statements: 
  synchronized (object) {  
   …  
 } 

– Since every Java object has an associated lock, this type 
of statement acquires and releases the object’s lock on 
entry and exit of the body 

– Works properly even with exceptions: 
  synchronized (object) {  
  …  
  DoFoo(); 
  …  
 }  
 void DoFoo() { 
  throw errException; 
 } 
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Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single 

condition variable associated with it 
– How to wait inside a synchronization method of block: 

» void wait(long timeout); // Wait for timeout 
» void wait(long timeout, int nanoseconds); //variant 

– How to signal in a synchronized method or block: 
» void notify(); // wakes up oldest waiter 
» void notifyAll(); // like broadcast, wakes everyone
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Recall: Better Implementation of Locks  
by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual 
exclusion only during operations on that variable 

• Really only works in kernel – why?

int mylock = FREE; 
Acquire(&mylock) – wait until lock is free, then grab 
Release(&mylock) – Unlock, waking up anyone waiting 

Acquire(int *lock) {  
 disable interrupts;  
 if (*lock == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  *lock = BUSY;  
 }  
 enable interrupts;  
}

Release(int *lock) {  
 disable interrupts;  
 if (anyone on wait queue) { 
  take thread off wait queue 
  Place on ready queue; 
 } else { 
  *lock = FREE;  
 }  
 enable interrupts;  
}  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In-Kernel Lock: Simulation

INIT 
 int value = 0; 
Acquire() {  
  disable interrupts;  
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep() //??  
  } else {  
    value = 1;  
  } 
  enable interrupts;  
}

Release() {  
 disable interrupts;  
  if anyone on wait queue {  
    take thread off wait-queue  
    Place on ready queue;  
  } else {  
    value = 0;  
  }  
  enable interrupts;  
}

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Value: 0 waiters owner

Thread A Thread B
Running

READY
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INIT 
 int value = 0; 
Acquire() {  
  disable interrupts;  
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep() //??  
  } else {  
    value = 1;  
  } 
  enable interrupts;  
}

In-Kernel Lock: Simulation

Release() {  
 disable interrupts;  
  if anyone on wait queue {  
    take thread off wait-queue  
    Place on ready queue;  
  } else {  
    value = 0;  
  }  
  enable interrupts;  
}

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Thread A Thread B

READY

Running
Value: 1 waiters owner
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INIT 
 int value = 0; 
Acquire() {  
  disable interrupts;  
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep() //??  
  } else {  
    value = 1;  
  } 
  enable interrupts;  
}

Release() {  
 disable interrupts;  
  if anyone on wait queue {  
    take thread off wait-queue  
    Place on ready queue;  
  } else {  
    value = 0;  
  }  
  enable interrupts;  
}

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running Running
Value: 1 waiters owner
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lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Release() {  
 disable interrupts;  
  if anyone on wait queue {  
    take thread off wait-queue  
    Place on ready queue;  
  } else {  
    value = 0;  
  }  
  enable interrupts;  
}

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

RunningRunning
INIT 
 int value = 0; 
Acquire() {  
  disable interrupts;  
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep() //??  
  } else {  
    value = 1;  
  } 
  enable interrupts;  
}

Value: 1 waiters owner
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INIT 
 int value = 0; 
Acquire() {  
  disable interrupts;  
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep() //??  
  } else {  
    value = 1;  
  } 
  enable interrupts;  
}

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Release() {  
 disable interrupts;  
  if anyone on wait queue {  
    take thread off wait-queue  
    Place on ready queue;  
  } else {  
    value = 0;  
  }  
  enable interrupts;  
}

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running
Value: 1 waiters owner



9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 30

INIT 
 int value = 0; 
Acquire() {  
  disable interrupts;  
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep() //??  
  } else {  
    value = 1;  
  } 
  enable interrupts;  
}

Release() {  
 disable interrupts;  
  if anyone on wait queue {  
    take thread off wait-queue  
    Place on ready queue;  
  } else {  
    value = 0;  
  }  
  enable interrupts;  
}

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running Running
Value: 1 waiters owner
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Recall: CPU Scheduling

• Earlier, we talked about the life-cycle of a thread 
– Active threads work their way from Ready queue to Running to 
various waiting queues. 

• Question: How is the OS to decide which of several tasks to 
take off a queue? 
– Obvious queue to worry about is ready queue 
– Others can be scheduled as well, however 

• Scheduling: deciding which threads are given access to 
resources from moment to moment  
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Scheduling Assumptions
• CPU scheduling big area of research in early 70’s 
• Many implicit assumptions for CPU scheduling: 

– One program per user 
– One thread per program 
– Programs are independent 

• Clearly, these are unrealistic but they simplify the problem 
so it can be solved 
– For instance: is “fair” about fairness among users or 
programs?   

» If I run one compilation job and you run five, you get five times 
as much CPU on many operating systems 

• The high-level goal: Dole out CPU time to optimize some 
desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time 
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Assumption: CPU Bursts

• Execution model: programs alternate between bursts of CPU and 
I/O 
– Program typically uses the CPU for some period of time, then does 
I/O, then uses CPU again 

– Each scheduling decision is about which job to give to the CPU for 
use by its next CPU burst 

– With timeslicing, thread may be forced to give up CPU before 
finishing current CPU burst

Weighted toward small bursts
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Scheduling Policy Goals/Criteria
• Minimize Response Time 

– Minimize elapsed time to do an operation (or job) 
– Response time is what the user sees: 

» Time to echo a keystroke in editor 
» Time to compile a program 
» Real-time Tasks: Must meet deadlines imposed by World 

• Maximize Throughput 
– Maximize operations (or jobs) per second 
– Throughput related to response time, but not identical: 

» Minimizing response time will lead to more context switching 
than if you only maximized throughput 

– Two parts to maximizing throughput 
» Minimize overhead (for example, context-switching) 
» Efficient use of resources (CPU, disk, memory, etc) 

• Fairness 
– Share CPU among users in some equitable way 
– Fairness is not minimizing average response time: 

» Better average response time by making system less fair
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First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS) 

– Also “First In, First Out” (FIFO) or “Run until done” 
» In early systems, FCFS meant one program  

scheduled until done (including I/O) 
» Now, means keep CPU until thread blocks  

• Example: Process Burst Time 
 P1 24  
 P2 3  
 P3     3 

– Suppose processes arrive in the order: P1 , P2 , P3   
The Gantt Chart for the schedule is: 
 
 
 
 

– Waiting time for P1  = 0; P2  = 24; P3 = 27 
– Average waiting time:  (0 + 24 + 27)/3 = 17 
– Average Completion time: (24 + 27 + 30)/3 = 27 

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300
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FCFS Scheduling (Cont.)
• Example continued: 

– Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 

– Waiting time for P1 = 6; P2 = 0; P3 = 3 
– Average waiting time:   (6 + 0 + 3)/3 = 3 
– Average Completion time: (3 + 6 + 30)/3 = 13 

• In second case: 
– average waiting time is much better (before it was 17) 
– Average completion time is better (before it was 27)  

• FIFO Pros and Cons: 
– Simple (+) 
– Short jobs get stuck behind long ones (-) 

» Safeway: Getting milk, always stuck behind cart full of small items. 
Upside: get to read about space aliens!

P1P3P2

63 300
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Summary
• Semaphores: Like integers with restricted interface 

– Two operations: 
» P(): Wait if zero; decrement when becomes non-zero 
» V(): Increment and wake a sleeping task (if exists) 
» Can initialize value to any non-negative value 

– Use separate semaphore for each constraint 
• Monitors: A lock plus one or more condition variables 

– Always acquire lock before accessing shared data 
– Use condition variables to wait inside critical section 

» Three Operations: Wait(), Signal(), and Broadcast() 
• Scheduling: selecting a waiting process from the ready queue and 

allocating the CPU to it 
• FCFS Scheduling: 

– Run threads to completion in order of submission 
– Pros: Simple 
– Cons: Short jobs get stuck behind long ones 

• Round-Robin Scheduling:  
– Give each thread a small amount of CPU time when it executes; 

cycle between all ready threads 
– Pros: Better for short jobs  
– Cons: Poor when jobs are same length 


