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Review: Synchronization problem with Threads

• One thread per transaction, each running: 
  Deposit(acctId, amount) {  
   acct = GetAccount(actId); /* May use disk I/O */  
   acct->balance += amount;  
   StoreAccount(acct);   /* Involves disk I/O */  
 } 

• Unfortunately, shared state can get corrupted: 
  Thread 1  Thread 2 
  load r1, acct->balance  
   load r1, acct->balance 
   add r1, amount2 
   store r1, acct->balance 
 add r1, amount1 
 store r1, acct->balance 

• Atomic Operation: an operation that always runs to 
completion or not at all 
– It is indivisible: it cannot be stopped in the middle and state 
cannot be modified by someone else in the middle
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Review: Too Much Milk Solution #3
• Here is a possible two-note solution: 
   Thread A  Thread B 
  leave note A; leave note B;  
 while (note B) {\\X  if (noNote A) {\\Y 
    do nothing;    if (noMilk) { 
 }        buy milk; 
 if (noMilk) {    } 
    buy milk; } 
 }  remove note B; 
 remove note A; 

• Does this work? Yes. Both can guarantee that:  
– It is safe to buy, or 
– Other will buy, ok to quit 

• At X:  
– if no note B, safe for A to buy,  
– otherwise wait to find out what will happen 

• At Y:  
– if no note A, safe for B to buy 
– Otherwise, A is either buying or waiting for B to quit
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Review: Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock 

(more in a moment).  
– Acquire(&mylock) – wait until lock is free, then grab 
– Release(&mylock) – Unlock, waking up anyone waiting 
– These must be atomic operations – if two threads are 
waiting for the lock and both see it’s free, only one 
succeeds to grab the lock 

• Then, our milk problem is easy: 
  Acquire(&milklock); 
  if (nomilk) 
     buy milk; 
  Release(&milklock); 

• Once again, section of code between Acquire() and 
Release() called a “Critical Section”
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Goals for Today

• Explore several implementations of locks 
• Continue with Synchronization Abstractions 

– Semaphores, Monitors, and Condition variables 
• Very Quick Introduction to scheduling

Note: Some slides and/or pictures in the following are 
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are 
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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Better Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual 
exclusion only during operations on that variable 

 
int value = FREE; 

Acquire() {  
 disable interrupts;  
 if (value == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  value = BUSY;  
 }  
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if (anyone on wait queue) { 
  take thread off wait queue 
  Place on ready queue; 
 } else { 
  value = FREE;  
 }  
 enable interrupts;  
}  
 



9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Recall: How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you 

call sleep: 
– Responsibility of the next thread to re-enable ints 
– When the sleeping thread wakes up, returns to acquire 
and re-enables interrupts 

 Thread A Thread B 
 .  
 .  
 disable ints  
 sleep 

  sleep return  
  enable ints 

  . 
  . 
  . 

  disable int  
  sleep 

 sleep return  
 enable ints  
 .  
 .

context 
switch

context 

switch
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Examples of Read-Modify-Write 
• test&set (&address) {  /* most architectures */ 

 result = M[address];  
 M[address] = 1;  
 return result;  
} 

• swap (&address, register) { /* x86 */  
  temp = M[address]; 
 M[address] = register;  
 register = temp;  
} 

• compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) {  
  M[address] = reg2;  
  return success;  
 } else {  
  return failure;  
 }  
} 

• load-linked&store conditional(&address) {  
 /* R4000, alpha */  
    loop:  
  ll r1, M[address];  
  movi r2, 1;    /* Can do arbitrary comp */  
  sc r2, M[address];  
  beqz r2, loop;  
}
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Implementing Locks with test&set

• Another flawed, but simple solution: 
  int value = 0; // Free 
  Acquire() { 
  while (test&set(value)); // while busy  
 } 

  Release() { 
  value = 0;  
 } 

• Simple explanation: 
– If lock is free, test&set reads 0 and sets value=1, so lock 
is now busy.  It returns 0 so while exits. 

– If lock is busy, test&set reads 1 and sets value=1 (no 
change). It returns 1, so while loop continues 

– When we set value = 0, someone else can get lock 
• Busy-Waiting: thread consumes cycles while waiting
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Problem: Busy-Waiting for Lock
• Positives for this solution 

– Machine can receive interrupts 
– User code can use this lock 
– Works on a multiprocessor 

• Negatives 
– This is very inefficient because the busy-waiting thread 
will consume cycles waiting 

– Waiting thread may take cycles away from thread holding 
lock (no one wins!) 

– Priority Inversion: If busy-waiting thread has higher 
priority than thread holding lock ⇒ no progress! 

• Priority Inversion problem with original Martian rover  
• For semaphores and monitors, waiting thread may wait 

for an arbitrary length of time! 
– Thus even if busy-waiting was OK for locks, definitely not 
ok for other primitives 

– Homework/exam solutions should not have busy-waiting!
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Multiprocessor Spin Locks: test&test&set

• A better solution for multiprocessors: 
  int mylock = 0; // Free 
  Acquire() { 
   do { 
    while(mylock);   // Wait until might be free  

  } while(test&set(&mylock)); // exit if get lock 
  } 

  Release() {  
  mylock = 0; 
 } 

• Simple explanation: 
– Wait until lock might be free (only reading – stays in cache) 
– Then, try to grab lock with test&set 
– Repeat if fail to actually get lock 

• Issues with this solution: 
– Busy-Waiting: thread still consumes cycles while waiting 

» However, it does not impact other processors!
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Better Locks using test&set
• Can we build test&set locks without busy-waiting? 

– Can’t entirely, but can minimize! 
– Idea: only busy-wait to atomically check lock value 

• Note: sleep has to be sure to reset the guard variable 
– Why can’t we do it just before or just after the sleep?

Release() {  
 // Short busy-wait time 
 while (test&set(guard));  
 if anyone on wait queue { 
  take thread off wait queue 
  Place on ready queue; 
 } else { 
  value = FREE;  
 }  
 guard = 0;  

int guard = 0; 
int value = FREE; 

Acquire() { 
 // Short busy-wait time 
 while (test&set(guard));  
 if (value == BUSY) { 
  put thread on wait queue; 
  go to sleep() & guard = 0;  
 } else { 
  value = BUSY;  
  guard = 0;  
 }  
}



9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 13

• compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) {  
  M[address] = reg2;  
  return success;  
 } else {  
  return failure;  
 }  
} 

  

Here is an atomic add to linked-list function: 
 addToQueue(&object) {  
 do {  // repeat until no conflict  
  ld r1, M[root] // Get ptr to current head  
  st r1, M[object]  // Save link in new object  
 } until (compare&swap(&root,r1,object));  
}

Using of Compare&Swap for queues 

root next next

next
New 

Object
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Higher-level Primitives than Locks

• Goal of last couple of lectures: 
– What is the right abstraction for synchronizing threads that 
share memory? 

– Want as high a level primitive as possible 
• Good primitives and practices important! 

– Since execution is not entirely sequential, really hard to find 
bugs, since they happen rarely 

– UNIX is pretty stable now, but up until about mid-80s (10 
years after started), systems running UNIX would crash every 
week or so – concurrency bugs 

• Synchronization is a way of coordinating multiple concurrent 
activities that are using shared state 
– This lecture and the next presents a couple of ways of 
structuring the sharing
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Semaphores

• Semaphores are a kind of generalized lock 
– First defined by Dijkstra in late 60s 
– Main synchronization primitive used in original UNIX 

• Definition: a Semaphore has a non-negative integer 
value and supports the following two operations: 
– P(): an atomic operation that waits for semaphore to 
become positive, then decrements it by 1  

» Think of this as the wait() operation 
– V(): an atomic operation that increments the semaphore 
by 1, waking up a waiting P, if any 

» This of this as the signal() operation 
– Note that P() stands for “proberen” (to test) and V() 
stands for “verhogen” (to increment) in Dutch
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• Semaphores are like integers, except 
– No negative values 
– Only operations allowed are P and V – can’t read or write 
value, except to set it initially 

– Operations must be atomic 
» Two P’s together can’t decrement value below zero 
» Similarly, thread going to sleep in P won’t miss wakeup from 

V – even if they both happen at same time 

• Semaphore from railway analogy 
– Here is a semaphore initialized to 2 for resource control:

Value=0Value=2

16

Value=2Value=1Value=0

Semaphores Like Integers Except

Value=1Value=0
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Two Uses of Semaphores
• Mutual Exclusion (initial value = 1) 

– Also called “Binary Semaphore”. 
– Can be used for mutual exclusion: 

 semaphore.P();  
 // Critical section goes here  
 semaphore.V(); 

• Scheduling Constraints (initial value = 0) 
– Locks are fine for mutual exclusion, but what if you 
want a thread to wait for something? 

– Example: suppose you had to implement ThreadJoin 
which must wait for thread to terminiate: 

 Initial value of semaphore = 0 
 ThreadJoin {  
    semaphore.P();  
 } 

 ThreadFinish {  
    semaphore.V();  
 }
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Producer-consumer with a bounded buffer

• Problem Definition 
– Producer puts things into a shared buffer 
– Consumer takes them out 
– Need synchronization to coordinate producer/consumer 

• Don’t want producer and consumer to have to work in lockstep, 
so put a fixed-size buffer between them 
– Need to synchronize access to this buffer 
– Producer needs to wait if buffer is full 
– Consumer needs to wait if buffer is empty 

• Example 1: GCC compiler 
– cpp | cc1 | cc2 | as | ld 

• Example 2: Coke machine 
– Producer can put limited number of cokes in machine 
– Consumer can’t take cokes out, if machine is empty

Producer ConsumerBuffer
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Correctness constraints for solution
• Correctness Constraints: 

– Consumer must wait for producer to fill buffers, if none full 
(scheduling constraint) 

– Producer must wait for consumer to empty buffers, if all full 
(scheduling constraint) 

– Only one thread can manipulate buffer queue at a time (mutual 
exclusion) 

• Remember why we need mutual exclusion 
– Because computers are stupid 
– Imagine if in real life: the delivery person is filling the machine 
and somebody comes up and tries to stick their money into the 
machine 

• General rule of thumb:  
Use a separate semaphore for each constraint 
– Semaphore fullBuffers; // consumer’s constraint 
– Semaphore emptyBuffers;// producer’s constraint 
– Semaphore mutex;       // mutual exclusion
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Full Solution to Bounded Buffer
 Semaphore fullBuffer = 0;  // Initially, no coke 
 Semaphore emptyBuffers = numBuffers;  
    // Initially, num empty slots 

 Semaphore mutex = 1; // No one using machine 
 
Producer(item) {  
 emptyBuffers.P(); // Wait until space  
 mutex.P(); // Wait until buffer free  
 Enqueue(item);  
 mutex.V();  
 fullBuffers.V(); // Tell consumers there is  
    // more coke  
} 

 Consumer() {  
 fullBuffers.P(); // Check if there’s a coke  
 mutex.P(); // Wait until machine free  
 item = Dequeue();  
 mutex.V();  
 emptyBuffers.V(); // tell producer need more  
 return item;  
}  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Discussion about Solution

• Why asymmetry? 
– Producer does: emptyBuffer.P(), fullBuffer.V() 
– Consumer does: fullBuffer.P(), emptyBuffer.V() 

• Is order of P’s important? 
– Yes!  Can cause deadlock  

Producer(item) {  
          Mutex.P(); // Wait until buffer free 
          emptyBuffers.P(); // Could Wait forever! 
          Enqueue(item); 
          mutex.V(); 
          fullBuffers.V(); // Tell consumers more coke 
} 

• Is order of V’s important? 
– No, except that it might affect scheduling efficiency 

• What if we have 2 producers or 2 consumers? 
– Do we need to change anything?
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Motivation for Monitors and Condition Variables

• Semaphores are a huge step up; just think of trying to 
do the bounded buffer with only loads and stores 
– Problem is that semaphores are dual purpose: 

» They are used for both mutex and scheduling constraints 
» Example: the fact that flipping of P’s in bounded buffer 

gives deadlock is not immediately obvious.  How do you prove 
correctness to someone? 

• Cleaner idea: Use locks for mutual exclusion and 
condition variables for scheduling constraints 

• Definition: Monitor: a lock and zero or more condition 
variables for managing concurrent access to shared data 
– Some languages like Java provide this natively 
– Most others use actual locks and condition variables
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 Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data 
– Always acquire before accessing shared data structure 
– Always release after finishing with shared data 
– Lock initially free 

• Condition Variable: a queue of threads waiting for something 
inside a critical section 
– Key idea: make it possible to go to sleep inside critical section by 
atomically releasing lock at time we go to sleep 

– Contrast to semaphores: Can’t wait inside critical section
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Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue 
  Lock lock; 
 Queue queue; 

  AddToQueue(item) { 
  lock.Acquire(); // Lock shared data 
  queue.enqueue(item); // Add item 
  lock.Release(); // Release Lock 
 }  

  RemoveFromQueue() { 
  lock.Acquire(); // Lock shared data 
  item = queue.dequeue();// Get next item or null 
  lock.Release(); // Release Lock 
  return(item); // Might return null  
 } 

• Not very interesting use of “Monitor” 
– It only uses a lock with no condition variables 
– Cannot put consumer to sleep if no work!
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Condition Variables
• How do we change the RemoveFromQueue() routine to 

wait until something is on the queue? 
– Could do this by keeping a count of the number of things 
on the queue (with semaphores), but error prone 

• Condition Variable: a queue of threads waiting for 
something inside a critical section 
– Key idea: allow sleeping inside critical section by 
atomically releasing lock at time we go to sleep 

– Contrast to semaphores: Can’t wait inside critical section 
• Operations: 

– Wait(&lock): Atomically release lock and go to sleep. 
Re-acquire lock later, before returning.  

– Signal(): Wake up one waiter, if any 
– Broadcast(): Wake up all waiters 

• Rule: Must hold lock when doing condition variable ops!
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Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue 
  Lock lock;  
 Condition dataready;  
 Queue queue; 

  AddToQueue(item) {  
  lock.Acquire(); // Get Lock  
  queue.enqueue(item); // Add item  
  dataready.signal(); // Signal any waiters  
  lock.Release(); // Release Lock  
 }  

  RemoveFromQueue() {  
  lock.Acquire(); // Get Lock  
  while (queue.isEmpty()) {  
   dataready.wait(&lock); // If nothing, sleep  
  }  
  item = queue.dequeue(); // Get next item  
  lock.Release(); // Release Lock  
  return(item);  
 }
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Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and 

wait.  Consider a piece of our dequeue code: 
   while (queue.isEmpty()) {  

   dataready.wait(&lock); // If nothing, sleep 
  }  
  item = queue.dequeue(); // Get next item 

– Why didn’t we do this? 
   if (queue.isEmpty()) {  

   dataready.wait(&lock); // If nothing, sleep 
  }  
  item = queue.dequeue(); // Get next item 

• Answer: depends on the type of scheduling 
– Hoare-style (most textbooks): 

» Signaler gives lock, CPU to waiter; waiter runs immediately 
» Waiter gives up lock, processor back to signaler when it exits 

critical section or if it waits again 
– Mesa-style (most real operating systems): 

» Signaler keeps lock and processor 
» Waiter placed on ready queue with no special priority 
» Practically, need to check condition again after wait
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Recall: CPU Scheduling

• Earlier, we talked about the life-cycle of a thread 
– Active threads work their way from Ready queue to Running to 
various waiting queues. 

• Question: How is the OS to decide which of several tasks to 
take off a queue? 
– Obvious queue to worry about is ready queue 
– Others can be scheduled as well, however 

• Scheduling: deciding which threads are given access to 
resources from moment to moment  
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Scheduling Assumptions
• CPU scheduling big area of research in early 70’s 
• Many implicit assumptions for CPU scheduling: 

– One program per user 
– One thread per program 
– Programs are independent 

• Clearly, these are unrealistic but they simplify the problem 
so it can be solved 
– For instance: is “fair” about fairness among users or 
programs?   

» If I run one compilation job and you run five, you get five times 
as much CPU on many operating systems 

• The high-level goal: Dole out CPU time to optimize some 
desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time 
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Scheduling Policy Goals/Criteria
• Minimize Response Time 

– Minimize elapsed time to do an operation (or job) 
– Response time is what the user sees: 

» Time to echo a keystroke in editor 
» Time to compile a program 
» Real-time Tasks: Must meet deadlines imposed by World 

• Maximize Throughput 
– Maximize operations (or jobs) per second 
– Throughput related to response time, but not identical: 

» Minimizing response time will lead to more context switching than if 
you only maximized throughput 

– Two parts to maximizing throughput 
» Minimize overhead (for example, context-switching) 
» Efficient use of resources (CPU, disk, memory, etc) 

• Fairness 
– Share CPU among users in some equitable way 
– Fairness is not minimizing average response time: 

» Better average response time by making system less fair
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First-Come, First-Served (FCFS) Scheduling

• First-Come, First-Served (FCFS) 
– Also “First In, First Out” (FIFO) or “Run until done” 

» In early systems, FCFS meant one program  
scheduled until done (including I/O) 

» Now, means keep CPU until thread blocks  
• Example: Process Burst Time 

 P1 24  
                     P2 3  
 P3  3 

– Suppose processes arrive in the order: P1 , P2 , P3   
The Gantt Chart for the schedule is: 
 
 
 
 

– Waiting time for P1  = 0; P2  = 24; P3 = 27 
– Average waiting time:  (0 + 24 + 27)/3 = 17 
– Average Completion time: (24 + 27 + 30)/3 = 27 

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300
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FCFS Scheduling (Cont.)
• Example continued: 

– Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 

– Waiting time for P1 = 6; P2 = 0; P3 = 3 
– Average waiting time:   (6 + 0 + 3)/3 = 3 
– Average Completion time: (3 + 6 + 30)/3 = 13 

• In second case: 
– average waiting time is much better (before it was 17) 
– Average completion time is better (before it was 27)  

• FIFO Pros and Cons: 
– Simple (+) 
– Short jobs get stuck behind long ones (-) 

» Safeway: Getting milk, always stuck behind cart full of small items.

P1P3P2

63 300
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First peak at responsiveness scheduler: 
Multi-Level Feedback Scheduling

• A method for exploiting past behavior 
– First used in CTSS 
– Multiple queues, each with different priority 

» Higher priority queues often considered “foreground” tasks 
– Each queue has its own scheduling algorithm 

» e.g. foreground – RR, background – FCFS 
» Sometimes multiple RR priorities with quantum increasing 

exponentially (highest:1ms, next:2ms, next: 4ms, etc) 
• Adjust each job’s priority as follows (details vary) 

– Job starts in highest priority queue 
– If timeout expires, drop one level 
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute 
Tasks Demoted to  

Low Priority
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Summary
• Semaphores: Like integers with restricted interface 

– Two operations: 
» P(): Wait if zero; decrement when becomes non-zero 
» V(): Increment and wake a sleeping task (if exists) 
» Can initialize value to any non-negative value 

– Use separate semaphore for each constraint 
• Monitors: A lock plus one or more condition variables 

– Always acquire lock before accessing shared data 
– Use condition variables to wait inside critical section 

» Three Operations: Wait(), Signal(), and Broadcast() 
• Scheduling: selecting a waiting process from the ready queue and 

allocating the CPU to it 
• FCFS Scheduling: 

– Run threads to completion in order of submission 
– Pros: Simple 
– Cons: Short jobs get stuck behind long ones 

• Round-Robin Scheduling:  
– Give each thread a small amount of CPU time when it executes; cycle 

between all ready threads 
– Pros: Better for short jobs  
– Cons: Poor when jobs are same length 


