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Recall: Lifecycle of a Process

• As a process executes, it changes state: 
– new:  The process is being created 
– ready:  The process is waiting to run 
– running:  Instructions are being executed 
– waiting:  Process waiting for some event to occur 
– terminated:  The process has finished execution
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Recall: Use of Threads

• Version of program with Threads (loose syntax): 

 main() { 
    ThreadFork(ComputePI(“pi.txt”)); 
    ThreadFork(PrintClassList(“clist.text”)); 
 } 

• What does “ThreadFork()” do? 
– Start independent thread running given procedure 

• What is the behavior here? 
– Now, you would actually see the class list 
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time 

CPU1 CPU2
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Recall: Thread Abstraction

• Infinite number of processors 
• Threads execute with variable speed 

– Programs must be designed to work with any schedule
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Recall: Execution Stack Example

• Stack holds temporary results 
• Permits recursive execution 
• Crucial to modern languages

A(int tmp) { 

  if (tmp<2) 

    B(); 

  printf(tmp); 

} 

B() { 

  C(); 

} 

C() { 

  A(2); 

} 

A(1);

A: tmp=2 
   ret=C+1Stack 

Pointer

Stack Growth

A: tmp=1 
   ret=exit

B: ret=A+2

C: ret=b+1
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0 zero constant 0 

1 at reserved for assembler 

2 v0 expression evaluation & 

3 v1 function results 

4 a0 arguments 

5 a1 

6 a2 

7 a3  

8 t0 temporary: caller saves 

. . .  (callee can clobber) 

15 t7

16 s0 callee saves 

. . . (callee must save) 

23 s7 

24 t8  temporary (cont’d) 

25 t9 

26 k0 reserved for OS kernel 

27 k1 

28 gp Pointer to global area 

29 sp Stack pointer 

30 fp frame pointer 

31 ra Return Address (HW)

MIPS: Software conventions for Registers

• Before calling procedure: 
– Save caller-saves regs 
– Save v0, v1 
– Save ra

• After return, assume 
– Callee-saves reg OK 
– gp,sp,fp OK (restored!) 
– Other things trashed
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Recall: Multithreaded stack switching

• Consider the following 
code blocks: 

      proc A() {  
     B();   
  } 
  proc B() { 
     while(TRUE) { 
        yield(); 
     } 
  } 

• Suppose we have 2 
threads: 
– Threads S and T

Thread S

St
ac

k 
gr

ow
th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch
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Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem 
– Use the timer interrupt to force scheduling decisions 

• Timer Interrupt routine: 
 TimerInterrupt() {  
    DoPeriodicHouseKeeping(); 
    run_new_thread(); 
 } 

• I/O interrupt: same as timer interrupt except that 
DoHousekeeping() replaced by ServiceIO().

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch
Stack growth
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How does Thread get started?

• Eventually, run_new_thread() will select this TCB 
and return into beginning of ThreadRoot() 
– This really starts the new thread

St
ac

k 
gr

ow
th

A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread
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What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine: 
    ThreadRoot() { 
      DoStartupHousekeeping(); 
      UserModeSwitch(); /* enter user mode */ 
      Call fcnPtr(fcnArgPtr); 
      ThreadFinish(); 
   } 

• Startup Housekeeping  
– Includes things like recording  
start time of thread 

– Other Statistics 
• Stack will grow and shrink 

with execution of thread 
• Final return from thread returns into ThreadRoot()  

which calls ThreadFinish() 
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack growth

Thread Code
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Examples multithreaded programs

• Embedded systems  
– Elevators, Planes, Medical systems, Wristwatches 
– Single Program, concurrent operations 

• Most modern OS kernels 
– Internally concurrent because have to deal with 
concurrent requests by multiple users 

– But no protection needed within kernel 

• Database Servers 
– Access to shared data by many concurrent users 
– Also background utility processing must be done
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Example multithreaded programs (con’t)

• Network Servers 
– Concurrent requests from network 
– Again, single program, multiple concurrent operations 
– File server, Web server, and airline reservation 
systems 

• Parallel Programming (More than one physical CPU) 
– Split program into multiple threads for parallelism 
– This is called Multiprocessing
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A typical use case

Client Browser 
  - process for each tab 
  - thread to render page 
  - GET in separate thread 
  - multiple outstanding GETs 
  - as they complete, render  
    portion

Web Server 
   - fork process for each client         
connection 
   - thread to get request and issue  
response 
   - fork threads to read data, access  
DB, etc 
   - join and respond
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Some Numbers

• Many process are multi-threaded, so thread context 
switches may be either within-process or across-
processes. 
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Kernel Use Cases

• Thread for each user process 
• Thread for sequence of steps in processing I/O 
• Threads for device drivers 
• …
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Administrivia

• Group formation: should be completed by tonight! 
– Will handle stragglers tonight 

• Group HW #1: Released! 
– Starts today 
– All design reviews will be conducted by TAs 

• HW1 due Thursday 
– Must be submitted via the recommended “push” mechanism 

through git 
– “commit as you make progress” is essential!
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Famous Quote WRT Scheduling: Dennis Richie

Dennis Richie, 
Unix V6, slp.c: 

“If the new process paused because it was swapped out, set the 
stack level to the last call to savu(u_ssav). This means that the 
return which is executed immediately after the call to aretu 
actually returns from the last routine which did the savu.”  

“You are not expected to understand this.” 

Source: Dennis Ritchie, Unix V6 slp.c (context-switching code) 
as per The Unix Heritage Society(tuhs.org); gif by Eddie 
Koehler.  

Included by Ali R. Butt in CS3204 from Virginia Tech
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Putting it together: Process

Memory

I/O State
(e.g., file, 
socket 
contexts)

CPU state 
(PC, SP, 
registers..)

Sequential 
stream of 
instructions

A(int tmp) {
  if (tmp<2)
    B();
  printf(tmp);
}
B() {
  C();
}
C() {
  A(2);
}
A(1);
…

(Unix) Process

Resources
Stack

Stored in OS
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Putting it together: Processes

…

Process 1 Process 2 Process N

CPU 
sched.

OS

CPU
(1 core)

1 process 
at a time

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.

• Switch overhead: high 
– Kernel entry: low (ish) 
– CPU state: low 
– Memory/IO state: high 

• Process creation: high 
• Protection 

– CPU: yes 
– Memory/IO: yes 

• Sharing overhead: high 
(involves at least a context 
switch)
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Putting it together: Threads
Process 1

CPU 
sched.

OS

CPU
(1 core)

1 thread at 
a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead: medium 
– Kernel entry: low(ish) 
– CPU state: low 

• Thread creation: medium 
• Protection 

– CPU: yes 
– Memory/IO: No 

• Sharing overhead: low(ish) 
(thread switch overhead low)

CPU 
state

CPU 
state

CPU 
state

CPU 
state
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Kernel versus User-Mode threads
• We have been talking about Kernel threads 

– Native threads supported directly by the kernel 
– Every thread can run or block independently 
– One process may have several threads waiting on different things 

• Downside of kernel threads: a bit expensive 
– Need to make a crossing into kernel mode to schedule 

• Lighter weight option: User Threads 
– User program provides scheduler and thread package 
– May have several user threads per kernel thread 
– User threads may be scheduled non-premptively relative to each 

other (only switch on yield()) 
– Cheap 

• Downside of user threads: 
– When one thread blocks on I/O, all threads block 
– Kernel cannot adjust scheduling among all threads 
– Option: Scheduler Activations 

» Have kernel inform user level when thread blocks…
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Some Threading Models

Simple One-to-One 
Threading Model

Many-to-One Many-to-Many
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Threads in a Process

• Threads are useful at user-level 
– Parallelism, hide I/O latency, interactivity 

• Option A (early Java): user-level library, within a single-
threaded process 
– Library does thread context switch 
– Kernel time slices between processes, e.g., on system call I/O 

• Option B (SunOS, Linux/Unix variants): green Threads 
– User-level library does thread multiplexing 

• Option C (Windows): scheduler activations 
– Kernel allocates processors to user-level library 
– Thread library implements context switch 
– System call I/O that blocks triggers upcall 

• Option D (Linux, MacOS, Windows): use kernel threads 
– System calls for thread fork, join, exit (and lock, unlock,…) 
– Kernel does context switching 
– Simple, but a lot of transitions between user and kernel mode
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Putting it together: Multi-Cores
Process 1

CPU 
sched.

OS

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead: low 
(only CPU state) 

• Thread creation: low 
• Protection 

– CPU: yes 
– Memory/IO: No 

• Sharing overhead: low 
(thread switch 
overhead low, may not 
need to switch at all!)core 1 Core 2 Core 3 Core 4 CPU

4 threads at a 
time

CPU 
state

CPU 
state

CPU 
state

CPU 
state
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Putting it together: Hyper-Threading
Process 1

CPU 
sched.

OS

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead 
between hardware-
threads: very-low 
(done in hardware) 

• Contention for 
ALUs/FPUs may 
hurt performance

core 1

CPU

core 2 core 3 core 4

8 threads at a 
time

hardware-threads
(hyperthreading)

CPU 
state

CPU 
state

CPU 
state

CPU 
state
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Multiprocessing vs Multiprogramming
• Remember Definitions: 

– Multiprocessing ≡ Multiple CPUs 
– Multiprogramming ≡ Multiple Jobs or Processes 
– Multithreading ≡ Multiple threads per Process 

• What does it mean to run two threads “concurrently”? 
– Scheduler is free to run threads in any order and interleaving: 
FIFO, Random, … 

– Dispatcher can choose to run each thread to completion or 
time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing



9/16/15 Kubiatowicz CS162 ©UCB Fall 2015 27

 Supporting 1T and MT Processes
U
se

r
Sy

st
em ***
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Classification

• Real operating systems have either 
– One or many address spaces 
– One or many threads per address space 

• Did Windows 95/98/ME have real memory protection? 
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux 
Windows 9x??? 

Win NT to XP, Solaris, 
HP-UX, OS X

Embedded systems 
(Geoworks, VxWorks, 

JavaOS,etc) 
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early 
Macintosh

Many

One

# threads 
Per AS:

ManyOne

#
 o

f 
ad

dr
 

sp
ac

es
:
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You are here… why?

• Processes 
– Thread(s) + address space 

• Address Space 
• Protection 
• Dual Mode 
• Interrupt handlers 

– Interrupts, exceptions, syscall 
• File System 

– Integrates processes, users, cwd, protection 
• Key Layers: OS Lib, Syscall, Subsystem, Driver 

– User handler on OS descriptors 
• Process control 

– fork, wait, signal, exec 
• Communication through sockets 

– Integrates processes, protection, file ops, concurrency 
• Client-Server Protocol 
• Concurrent Execution: Threads 
• Scheduling
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Perspective OS Course

• Historically, OS was the most complex software 
– Concurrency, synchronization, processes, devices, communication,… 
– Core systems concepts developed there 

• Today, many “applications” are complex software systems too 
– These concepts appear there 
– But they are realized out of the capabilities provided by the 

operating system 
• Seek to understand how these capabilities are implemented 

upon the basic hardware. 
• See concepts multiple times from multiple perspectives 

– Lecture provides conceptual framework, integration, examples, … 
– Book provides a reference with some additional detail 
– Lots of other resources that you need to learn to use 

» man pages, google, reference manuals, includes (.h) 
• Homework and Group Homework provides detail down to the 

actual code AND direct hands-on experience
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Operating System as Design

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call  
Interface

Portable OS Kernel

Platform support,  Device Drivers

x86 ARMPowerPC

Ethernet (10/100/1000)
802.11 a/b/g/n

SCSI IDE
Graphics
PCI

Hardware

Software

System
User

OS

Application / Service
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Starting today: Pintos Homeworks

• Groups almost all 
formed 

• Work as one! 
• more work than 

homework! 
• P1: threads & 

scheduler 
• P2: user process 
• P3: file system

…

Process 1 Process 2 Process N

CPU 
sched.

PintOS

CPU
(emulated)

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.
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MT Kernel 1T Process ala Pintos/x86

• Each user process/thread associated with a kernel thread, described by a 4kb 
Page object containing TCB and kernel stack for the kernel thread

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

magic #

tid
status
stack

priority
list
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In User thread, w/ k-thread waiting

• x86 proc holds interrupt SP high system level 
• During user thread exec, associate kernel thread is “standing by”

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 3
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In Kernel thread

• Kernel threads execute with small stack in thread struct 
• Scheduler selects among ready kernel and user threads

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 0
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Thread Switch (switch.S)

• switch_threads: save regs on current small stack, change SP, return from 
destination threads call to switch_threads

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 0
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Switch to Kernel Thread for Process

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 0
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Kernel->User

• iret restores user stack and PL

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 3
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User->Kernel

• Mechanism to resume k-thread goes through interrupt vector

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 0
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User->Kernel via interrupt vector

• Interrupt transfers control through the IV (IDT in x86) 
• iret restores user stack and PL

Kernel

User

User 
stack

code

data

heap

User 
stack

code

data

heap ***

code

data

Proc Regs

SP
K SP

IP

PL: 3

0

255
intr vector
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Pintos Interrupt Processing

0

255
Hardware 
interrupt 
vector

stubs

push 0x20 (int #) 
jmp intr_entry

push 0x21 (int #) 
jmp intr_entry

***

***

intr_entry: 
  save regs as frame 
  set up kernel env. 
  call intr_handler 

intr_exit: 
  restore regs 
  iret

Wrapper for 
generic handler

0x20 

stubs.S
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Pintos Interrupt Processing

0

255

Hardware 
interrupt 
vector

stubs

push 0x20 (int #) 
jmp intr_entry

push 0x21 (int #) 
jmp intr_entry

***

***

intr_entry: 
  save regs as frame 
  set up kernel env. 
  call intr_handler 

intr_exit: 
  restore regs 
  iret

Wrapper for 
generic handler

Intr_handler(*frame) 
 - classify 
 - dispatch 
 - ack IRQ 
 - maybe thread yield

0x20 

0

Pintos 
intr_handlers

0x20 

timer_intr(*frame) 
  tick++ 
  thread_tick()

timer.c

interrupt.c

stubs.S
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Timer may trigger thread switch

• thread_tick 
– Updates thread counters 
– If quanta exhausted, sets yield flag 

• thread_yield 
– On path to rtn from interrupt 
– Sets current thread back to READY 
– Pushes it back on ready_list 
– Calls schedule to select next thread to run upon iret 

• Schedule 
– Selects next thread to run 
– Calls switch_threads to change regs to point to stack for thread 

to resume 
– Sets its status to RUNNING 
– If user thread, activates the process 
– Returns back to intr_handler 
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Pintos Return from Processing

Hardware 
interrupt 
vector

thread_yield() 
  - schedule

schedule() 
  - switch

Resume Some Thread

0

255
Hardware 
interrupt 
vector

stubs

push 0x20 (int #) 
jmp intr_entry

push 0x21 (int #) 
jmp intr_entry

***

***

intr_entry: 
  save regs as frame 
  set up kernel env. 
  call intr_handler 

intr_exit: 
  restore regs 
  iret

Wrapper for 
generic handler

0x20 

stubs.S

0

Pintos 
intr_handlers

0x20 

timer_intr(*frame) 
  tick++ 
  thread_tick()

timer.c

Intr_handler(*frame) 
 - classify 
 - dispatch 
 - ack IRQ 
 - maybe thread yield

interrupt.c
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Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way, programs 

must work under all circumstances 
– Can you test for this? 
– How can you know if your program works? 

• Independent Threads: 
– No state shared with other threads 
– Deterministic ⇒ Input state determines results 
– Reproducible ⇒ Can recreate Starting Conditions, I/O 
– Scheduling order doesn’t matter (if switch() works!!!) 

• Cooperating Threads: 
– Shared State between multiple threads 
– Non-deterministic 
– Non-reproducible 

• Non-deterministic and Non-reproducible means that bugs 
can be intermittent 
– Sometimes called “Heisenbugs”
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Interactions Complicate Debugging
• Is any program truly independent? 

– Every process shares the file system, OS resources, 
network, etc 

– Extreme example: buggy device driver causes thread A to 
crash “independent thread” B 

• You probably don’t realize how much you depend on 
reproducibility: 
– Example: Evil C compiler 

» Modifies files behind your back by inserting errors into C 
program unless you insert debugging code 

– Example: Debugging statements can overrun stack 
• Non-deterministic errors are really difficult to find 

– Example: Memory layout of kernel+user programs 
» depends on scheduling, which depends on timer/other things 
» Original UNIX had a bunch of non-deterministic errors 
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Summary (1 of 2)

• Processes have two parts 
– Threads (Concurrency) 
– Address Spaces (Protection) 

• Concurrency accomplished by multiplexing CPU Time: 
– Unloading current thread (PC, registers) 
– Loading new thread (PC, registers) 
– Such context switching may be voluntary (yield(), I/O 
operations) or involuntary (timer, other interrupts) 

• Protection accomplished restricting access: 
– Memory mapping isolates processes from each other 
– Dual-mode for isolating I/O, other resources 

• Various Textbooks talk about processes  
– When this concerns concurrency, really talking about thread 
portion of a process 

– When this concerns protection, talking about address space 
portion of a process
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Summary (2 or 2)

• Concurrent threads are a very useful abstraction 
– Allow transparent overlapping of computation and I/O 
– Allow use of parallel processing when available 

• Concurrent threads introduce problems when accessing 
shared data 
– Programs must be insensitive to arbitrary interleavings 
– Without careful design, shared variables can become 
completely inconsistent 

• Important concept: Atomic Operations 
– An operation that runs to completion or not at all 
– These are the primitives on which to construct various 
synchronization primitives 

• Showed how to protect a critical section with only atomic 
load and store ⇒ pretty complex!


