
CS162 
Operating Systems and  
Systems Programming  

Lecture 5  
  

Introduction to Networking (Finished), 
Concurrency (Processes and Threads)

September 14th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: Namespaces for communication over IP

• Hostname
– www.eecs.berkeley.edu

• IP address
– 128.32.244.172 (ipv4 format)

• Port Number
– 0-1023 are “well known” or “system” ports

» Superuser privileges to bind to one
– 1024 – 49151 are “registered” ports (registry)

» Assigned by IANA for specific services
– 49152–65535 (215+214 to 216−1) are “dynamic” or
“private”

» Automatically allocated as “ephemeral Ports”

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Recall: Use of Sockets in TCP

• Socket: an abstraction of a network I/O queue
– Embodies one side of a communication channel

» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote machine

(called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Server
Socket

socket socketconnection
Reque

st Co
nnect

ion
new

socket

ServerClient

Recall: Socket Setup over TCP/IP

• Server Socket: Listens for new connections
– Produces new sockets for each unique connection

• Things to remember:
– Connection involves 5 values: 

[Client Addr, Client Port, Server Addr, Server Port, Protocol]
– Often, Client Port “randomly” assigned

» Done by OS during client socket setup
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Example: Server Protection and Parallelism

Client Server

Create Client Socket

Connect it to server (host:port)

write request

read response

Close Client Socket

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Accept connection

read request
write response

Close Connection
Socket

Close Server Socket

Connection Socketchild

Close Connection
Socket

Close Listen Socket
Parent

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Recall: Server Protocol (v3)

while (1) {
 listen(lstnsockfd, MAXQUEUE);
 consockfd = accept(lstnsockfd, (struct sockaddr *) &cli_addr,

 &clilen);
 cpid = fork(); /* new process for connection */
 if (cpid > 0) { /* parent process */
 close(consockfd);
 } else if (cpid == 0) { /* child process */
 close(lstnsockfd); /* let go of listen socket */

 server(consockfd);

 close(consockfd);
 exit(EXIT_SUCCESS); /* exit child normally */
 }
 }
close(lstnsockfd);

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Server Address - itself

• Simple form
• Internet Protocol
• accepting any connections on the specified port
• In “network byte ordering”

 memset((char *) &serv_addr,0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Client: getting the server address

struct hostent *buildServerAddr(struct sockaddr_in *serv_addr,
 char *hostname, int portno) {
 struct hostent *server;

 /* Get host entry associated with a hostname or IP address */
 server = gethostbyname(hostname);
 if (server == NULL) {
 fprintf(stderr,"ERROR, no such host\n");
 exit(1);
 }

 /* Construct an address for remote server */
 memset((char *) serv_addr, 0, sizeof(struct sockaddr_in));
 serv_addr->sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&(serv_addr->sin_addr.s_addr), server->h_length);
 serv_addr->sin_port = htons(portno);

return server;
}

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 9

BIG OS Concepts so far

• Processes
• Address Space
• Protection
• Dual Mode
• Interrupt handlers (including syscall and trap)
• File System

– Integrates processes, users, cwd, protection
• Key Layers: OS Lib, Syscall, Subsystem, Driver

– User handler on OS descriptors
• Process control

– fork, wait, signal, exec
• Communication through sockets
• Client-Server Protocol

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 10

introO
S

Con Add
Fi
le

Di
R

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Recall: Traditional UNIX Process

• Process: Operating system abstraction to represent
what is needed to run a single program
– Often called a “HeavyWeight Process”
– No concurrency in a “HeavyWeight Process”

• Two parts:
– Sequential program execution stream

» Code executed as a sequential stream of execution (i.e.,
thread)

» Includes State of CPU registers
– Protected resources:

» Main memory state (contents of Address Space)
» I/O state (i.e. file descriptors)

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Process  
Control
Block

How do we Multiplex Processes?

• The current state of process held in a
process control block (PCB):
– This is a “snapshot” of the execution and
protection environment

– Only one PCB active at a time
• Give out CPU time to different

processes (Scheduling):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Example mechanisms:

» Memory Mapping: Give each process their
own address space

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 13

CPU Switch From Process to Process

• This is also called a “context switch”
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Lifecycle of a Process

• As a process executes, it changes state:
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are
Scheduling decisions

– Many algorithms possible (few weeks from now)

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Ready Queue And Various I/O Device Queues

• Thread not running ⇒ TCB is in some scheduler queue
– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
TCB2

Link
Registers

Other
State
TCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

USB
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Other
State
TCB8

Link
Registers

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 17

Administrivia

• Group signups: 4 members/group
– Groups need to be finished by next Wednesday!

• Finding info on your own is a good idea!
– Learn your tools, like “man”
– Can even type “man xxx” into google!

» Example: “man ls”

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Modern Process with Threads

• Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a number of
different concurrent activities

• Why separate the concept of a thread from that of a
process?
– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (protection)
– Heavyweight Process ≡ Process with one thread

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system

• Why have multiple threads per address space?

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 20

Thread State

• State shared by all threads in process/addr space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc)

• State “private” to each thread
– Kept in TCB ≡ Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=2
 ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
 ret=exit

B: ret=A+2

C: ret=b+1

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Motivational Example for Threads

• Imagine the following C program:  

 main() {
 ComputePI(“pi.txt”);
 PrintClassList(“clist.text”);
 }

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Use of Threads

• Version of program with Threads (loose syntax): 

 main() {
 ThreadFork(ComputePI(“pi.txt”));
 ThreadFork(PrintClassList(“clist.text”));
 }

• What does “ThreadFork()” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Memory Footprint: Two-Threads

• If we stopped this program and examined it with a
debugger, we would see
– Two sets of CPU registers
– Two sets of Stacks

• Questions:
– How do we position stacks relative to  
each other?

– What maximum size should we choose 
for the stacks?

– What happens if threads violate this?
– How might you catch violations? Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Actual Thread Operations

• thread_fork(func, args)
– Create a new thread to run func(args)
– Pintos: thread_create

• thread_yield()
– Relinquish processor voluntarily
– Pintos: thread_yield

• thread_join(thread)
– In parent, wait for forked thread to exit, then return

• thread_exit
– Quit thread and clean up, wake up joiner if any
– Pintos: thread_exit

• pThreads: POSIX standard for thread programming

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Dispatch Loop

• Conceptually, the dispatching loop of the operating system
looks as follows: 

 Loop {
 RunThread();
 ChooseNextThread();
 SaveStateOfCPU(curTCB);
 LoadStateOfCPU(newTCB);
 }

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Running a thread

Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

 computePI() {
 while(TRUE) {
 ComputeNextDigit();
 yield();
 }
 }

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Stack for Yielding Thread

• How do we run a new thread?
 run_new_thread() {
 newThread = PickNewThread();
 switch(curThread, newThread);
 ThreadHouseKeeping(); /* Do any cleanup */

 }

• How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 30

What do the stacks look like?

• Consider the following
code blocks:

 proc A() {
 B();
 }
 proc B() {
 while(TRUE) {
 yield();
 }
 }

• Suppose we have 2
threads:
– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Saving/Restoring state (often called “Context Switch)
 Switch(tCur,tNew) {
 /* Unload old thread */
 TCB[tCur].regs.r7 = CPU.r7;
 …
 TCB[tCur].regs.r0 = CPU.r0;
 TCB[tCur].regs.sp = CPU.sp;
 TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

 /* Load and execute new thread */
 CPU.r7 = TCB[tNew].regs.r7;
 …
 CPU.r0 = TCB[tNew].regs.r0;
 CPU.sp = TCB[tNew].regs.sp;
 CPU.retpc = TCB[tNew].regs.retpc;
 return; /* Return to CPU.retpc */
 }

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 4
– Get intermittent failures depending on when context switch
occurred and whether new thread uses register 4

– System will give wrong result without warning
• Can you devise an exhaustive test to test switch code?

– No! Too many combinations and inter-leavings
• Cautionary tail:

– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented!

» Only works As long as kernel size < 1MB
– What happened?

» Time passed, People forgot
» Later, they added features to kernel (no one removes features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Some Numbers

• Frequency of performing context switches: 10-100ms
• Context switch time in Linux: 3-4 µsecs (Current  

Intel i7 & E5).
– Thread switching faster than process switching (100 ns).
– But switching across cores about 2x more expensive than
within-core switching.

• Context switch time increases sharply with the size of the
working set*, and can increase 100x or more.  
 
* The working set is the subset of memory used by the
process in a time window.

• Moral: Context switching depends mostly on cache limits and
the process or thread’s hunger for memory.

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 34

What happens when thread blocks on I/O?

• What happens when a thread requests a block of data
from the file system?
– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

Stack growth

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 35

External Events

• What happens if thread never does any I/O,
never waits, and never yields control?
– Could the ComputePI program grab all resources
and never release the processor?

– Must find way that dispatcher can regain control!
• Answer: Utilize External Events

– Interrupts: signals from hardware or software that
stop the running code and jump to kernel

– Timer: like an alarm clock that goes off every some
many milliseconds

• If we make sure that external events occur
frequently enough, can ensure dispatcher runs

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed

– Programs must be designed to work with any schedule

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Programmer vs. Processor View

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 38

Possible Executions

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 39

Thread Lifecycle

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 40

Shared vs. Per-Thread State

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 41

Per Thread Descriptor (Kernel Supported Threads)

• Each Thread has a Thread Control Block (TCB)
– Execution State: CPU registers, program counter (PC),
pointer to stack (SP)

– Scheduling info: state, priority, CPU time
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process (PCB) – user threads
– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in “kernel memory”
– In Array, or Linked List, or …
– I/O state (file descriptors, network connections, etc)

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 42

Multithreaded Processes

• PCB points to multiple TCBs:

• Switching threads within a block is a simple thread
switch

• Switching threads across blocks requires changes to
memory and I/O address tables.

9/14/15 Kubiatowicz CS162 ©UCB Fall 2015 43

Summary

• Processes have two parts
– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), I/O
operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Various Textbooks talk about processes
– When this concerns concurrency, really talking about thread
portion of a process

– When this concerns protection, talking about address space
portion of a process

