CS162
Operating Systems and
Systems Programming

Lecture 18

Queuing Theory,
File Systems

November 2nd, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: I/0 Performance

S 300 | Response
U % Time (ms)
ser = I/0
e - — —
Thread % device 200
Queue 3
[OS Paths] 100
Response Time = Queue + I/O device service time

0 5o 100%
* Performance of I/O subsystem Throughput (Utilization)
- Metrics: Response Time, Throughput (% total BW)

- Effective BW per op = transfer size / response time
» EffBW(N) =n/(S+n/B)=B/ (1 + SB/n)

- Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

- Queuing behavior:
- Can lead to big increases of latency as utilization increases
- Solutions?

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 2

A Little Queuing Theory: Some Results

Assumptions:
- System in equilibrium; No limit to the queue
- Time between successive arrivals is random and memoryless

>
Arrival Rate Service Rate
A u=1/T,,.

- Parameters that describe our system:

- A mean number of arriving customers/second

- T, mean time to service a customer ("m1”)

- C: squared coefficient of variance = ¢2/m12

- W service rate = 1/T_

- u: server utilization (O<us<1): u = My = AxT_,
- Parameters we wish to compute:

- Ty Time spent in queue

- Ly Length of queue = A xT_ (by Little’s law)

Results:

- Memoryless service distribution (C = 1):
» Called M/M/1 queue: T = T x u/(1 - u)

- General service distribution (no restrictions), 1 server:
» Called M/G/1 queue: T = T x #(1+C) x u/(1 - u)

ser

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015

When is the disk performance highest?

* When there are big sequential reads, or

- When there is so much work to do that they can be
piggy backed (reordering queues—one moment)

- OK, to be inefficient when things are mostly idle
- Bursts are both a threat and an opportunity

- <your idea for optimization goes here>
- Waste space for speed?

- Other techniques:
- Reduce overhead through user level drivers

- Reduce the impact of I/O delays by doing other useful
work in the meantime

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015

Disk Scheduling

- Disk can do only one request at a time: What order do
you choose to do queued requests?

NIONWININ Head |
User % fifiofrofa 20
Requests ©

- Scheduling algorithms:

14

0

- FIFO ol

- SSTF: Shortest seek time first o

- SCAN 3
- C-SCAN

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 5

FIFO: First In First Out

- Schedule requests in the order
they arrive in the queue

- Example:
- Request queue:
2,1,3,6,2,5
- Scheduling order:
2,1,3,6,2,5

* Pros: Fair among requesters

- Cons: Order of arrival may be to
random spots on the disk = Very
long seeks

4/6/15 Kubiatowicz €S162 ®UCB Spring 2015

PesaH XsiId

SSTF: Shortest Seek Time First

- Pick the request that's closest to

the head on the disk
- Although called SSTF, include
rotational delay in calculation, a5
rotation can be as long as seek

PesaH XsiId

- Example:
- Request queue:
2,1,3,6,2,5
- Scheduling order:
5,6,3,2,2,1

- Pros: reduce seeks

- Cons: may lead to starvation
- Greedy. Not optimal

4/6/15 Kubiatowicz €S162 ®UCB Spring 2015 7

SCAN

Implements an Elevator Algorithm:
take the closest request in the
direction of travel

Example:
- Request queue:
2,1,3,6,2,5
- Head is moving towards center

- Scheduling order:
5,3,2,2,1,6

Pros:
- No starvation
- Low seek

Cons: favors middle tracks

- May spend time on sparse tracks while

dense requests elsewhere
4/6/15 Kubiatowicz €S162 ®UCB Spring 2015

PesaH XsiId

C-SCAN

Like SCAN but only serves request in
only one direction

Example:
- Request queue:
2,1,3,6,2,5
- Head only serves request on its
way from center towards edge
- Scheduling order:
5, 6,1,2,2,3

Pros:
- Fairer than SCAN
- Accumulate work in remote region then
go get it

Cons: longer seeks on the way back

4/6/15 Kubiatowicz €S162 ®UCB Spring 2015

PesaH XsiId

Review: Device Drivers

- Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware

- Supports a standard, internal interface

- Same kernel I/0 system can interact easily with different
device drivers

- Special device-specific configuration supported with the
ioctl () system call

- Device Drivers typically divided into two pieces:

- Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open (),
close(), read(), write(), ioctl (), strategy()

» This is the kernel's interface to the device driver
» Top half will start I/0 to device, may put thread to sleep
until finished
- Bottom half: run as interrupt routine
» Gets input or transfers next block of output

» May wake sleeping threads if I/0 now complete
11/2/15 Kubiatowicz C5162 ©UCB Fall 2015 10

Kernel vs User-level I/0

- Both are popular/practical for different reasons:

- Kernel-level drivers for critical devices that must keep
running, e.g. display drivers.

» Programming is a major effort, correct operation of the
rest of the kernel depends on correct driver operation.

- User-level drivers for devices that are non-threatening,
e.g USB devices in Linux (libusb).

» Provide higher-level primitives to the programmer, avoid
every driver doing low-level I/O register tweaking.

» The multitude of USB devices can be supported by Less-
Than-Wizard programmers.

» New drivers don't have to be compiled for each version of
the OS, and loaded into the kernel.

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 11

Kernel vs User-level Programming Styles

- Kernel-level drivers

- Have a much more limited set of resources available:
» Only a fraction of libc routines typically available.

» Memory allocation (e.g. Linux kmalloc) much more limited in
capacity and required to be physically contiguous.

» Should avoid blocking calls.

» Can use asynchrony with other kernel functions but tricky with
user code.

- User-level drivers

- Similar to other application programs but:

» Will be called often - should do its work fast, or postpone it - or
do it in the background.

» Can use threads, blocking operations (usually much simpler) or
non-blocking or asynchronous.

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 12

Performance: multiple outstanding requests

:))» Queue —> ‘
/

- Suppose each read takes 10 ms to service.

- If a process works for 100 ms after each read,
what is the utilization of the disk?

-U=10ms / 110ms = 9%

* What it there are two such processes?
-U=((10ms + 10ms)/ 110ms = 18%

- What if each of those processes have two such
threads?

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 13

Recall: How do we hide I/0 latency?

- Blocking Interface: "Wait"

- When request data (e.g., read() system call), put process to
sleep until data is ready

- When write data (e.g., write() system call), put process to
sleep until device is ready for data

- Non-blocking Interface: "Don't Wait"

- Returns quickly from read or write request with count of bytes
successfully transferred to kernel

- Read may return nothing, write may write nothing

- Asynchronous Interface: "Tell Me Later”

- When requesting data, take pointer to user's buffer, return
immediately; later kernel fills buffer and notifies user

- When sending data, take pointer to user's buffer, return
immediately; later kernel takes data and notifies user

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 14

I/O & Storage Layers

Operations, Entities and Interface

Application / Service

streams

High Level I/0
Low Level I/0 handles

Syscall registers
file open, file read, .. on struct file * & void *
File System descriptors we are here
I/0 Driver Commands and Data Transfers

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 15

Recall: C Low level I/0

- Operations on File Descriptors - as OS object
representing the state of a file

- User has a "handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags| [, /mode t mode])
int creat (const char *filename, mode_ t mode)
int close (int file

Bit vector of:

Bit vector of Permission Bits:

" Access modes (Rd, Wr, ..) * User|Group|Other X R|W|X
* Open Flags (Create, ..)

* Operating modes (Appends, ...)

http://www.gnu.org/software/libc/manual/html node/Opening-and-Closing-Files.html

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 16

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

Recall: C Low Level Operations

ssize_t read (int filedes, void *buffer, size_t maxsize)

- returns bytes read, 0 => EOF, -1 => error

ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written

off t lseek (int filedes, off t offset, int whence)
int fsync (int fildes) — wait for i/o to finish

void sync (void) — wait for ALL to finish

- When write returns, data is on its way to disk and
can be read, but it may not actually be permanent!

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 17

Building a File System

- File System: Layer of OS that transforms block interface
of disks (or other block devices) into Files, Directories, etc.

- File System Components
- Disk Management: collecting disk blocks into files
- Naming: Interface to find files by name, not by blocks
- Protection: Layers to keep data secure
- Reliability/Durability: Keeping of files durable despite crashes,
media failures, attacks, etc

- User vs. System View of a File
- User's view:
» Durable Data Structures
- System'’s view (system call interface):
» Collection of Bytes (UNIX)
» Doesn’'t matter to system what kind of data structures you want
to store on disk!
- System's view (inside OS):
» Collection of blocks (a block is a logical transfer unit, while a
sector is the physical transfer unit)
» Block size = sector size; in UNIX, block size is 4KB

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 18

Translating from User to System View

- What happens if user says: give me bytes 2—12?
- Fetch block corresponding to those bytes
- Return just the correct portion of the block
- What about: write bytes 2—12?
- Fetch block
- Modify portion
- Write out Block
- Everything inside File System is in whole size blocks

- For example, getc (), putc() = buffers something like 4096
bytes, even if interface is one byte at a time

- From now on, file is a collection of blocks
11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 19

So you are going to design a file system ..

- What factors are critical to the design choices?
* Durable data store => it's all on disk
- Disks Performance Il
- Maximize sequential access, minimize seeks
- Open before Read/Write

- Can perform protection checks and look up where the actual
file resource are, in advance

- Size is determined as they are used !ll
- Can write (or read zeros) to expand the file
- Start small and grow, need to make room
- Organized into directories
- What data structure (on disk) for that?
- Need to allocate / free blocks
- Such that access remains efficient

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 20

Disk Management Policies

- Basic entities on a disk:
- File: user-visible group of blocks arranged sequentially in logical
space
- Dl?r'ector'y: user-visible index mapping names to files (next
lecture)
- Access disk as linear array of sectors. Two Options:
- Identify sectors as vectors [cylinder, surface, sector]. Sort in
cylinder-major order. Not used much anymore.
- Logical Block Addressing (LBA). Every sector has integer address
from zero up to max number of sectors.
- Controller translates from address = physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk
- Need way to track free disk blocks
- Link free blocks together = too slow today
- Use bitmap to represent free space on disk
* Need way to structure files: File Header
- Track which blocks belong at which offsets within the logical file
structure
- Optimize placement of files' disk blocks to match access and
usage patterns
11/2/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Components of a File System

— File path

11/2/15

File number
Data blocks

Kubiatowicz €S162 ©UCB Fall 2015

22

Components of a file system

file name file number y Storage block
offset directory offset IMdex structure

- Open performs name resolution
- Translates pathname into a "file number”
» Used as an “index” to locate the blocks
- Creates a file descriptor in PCB within kernel
- Returns a “handle” (another int) to user process
- Read, Write, Seek, and Sync operate on handle
- Mapped to descriptor and to blocks

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015

23

Directories

FAVORITES
o Al My Files,
T wirDrop
A\ Applicatiors
. Desktop
| %) Documents
) pownloads

DEVICES

[David's ...
() Remote s
TAGS

& Red

I DOrange

~ Yellow

. Green

U Blue
 Purple
O Gaay

b Al Tage...

11/2/15

Name

L
v [Classes
0 AlT2003

3

4 vYYyYy

-—

Lo U5 Scholars

O sEld-F08

L sE1d-F9

L oslk?

» 1 AndersorDanln
v @ fls

« vYyYyvw

»

162 arerenchec kSapta wlsx
 coursecomaar son.dax
7 CS 162 apps.adsx
L cslbZgt
[0 devel
B oams
0 gitprojects
¥ 1 groug0

v : pintes

> & src

™ gradeshestxls

TGl section Caverage. klax
[0 Lectures

© piros-nows.be
pirtas. pdf
roster-9-23 xs
roster-9-19 ws

T caffxlex
[swdert

T wuder tskxcelt e - 10-20
"~ sy labus-fal4.xsx
L wmp

-

R

» O pntos
» 00 sl
L o104

—_—

& =2k2h

Date Modiked
Yosterday, 8:71 PM

Okt 13, 2014, 10.19 PM
Oct 13,2014, 10:11 PM
Oct 13, 2014, 1011 PM
Oct 15, 2014, 10:17 PM
Oct 13,2014, 10:13 PM
Teday, 5:56 AM

Oce 13, 2014, 10:11 PM
Teday, &:26 AM

Sep 10,7074 320 PN
Aug 5, 2014, 7:50 AM
Jun 23 2014 6315 AM
Sep 23, Z014, 11.33 AM
Oct 15, 2014, 11:40 AM
et 14, 2014, 1{:172 PM
Xt 8, 201, 4.52 FM
Teday, 8:35 AM

loday, 5:4% AM

Today, 8:35 AM

Sep 19, 2014 4:48 PV
Aug 22, 2014, 1:2% Fra
Teday, 8:22 AM

Sep 14,2014 2:10 PV
Jul 21, 2014, 10:17 AN
Sep 13,2014 5:12 PM
Sep 19, 2014, 4:38 P\
Aug &, D14 7114 AM
O¢r 13, 2014, 10:12 PM
Yesterday, 9:549 AM

sep 14, JUL4, 10:00 AM
Ocr 13, 2014, 10:12 PM
Aug 8, 2014, B:06 AM
May 1<, 2014, 5.02 FM
Oct 13, 2014, 10:15 PM
Aug /. D13, /55 AM

Kubiatowicz €S162 ©UCB Fall 2015

Kird

Folder

Folde

Folder

Folde ¢

Folder

Folder

Folde 1

Fobder

Foldcr

Mic e, Khank
Micros. kkaok
Micros. khank
Folder

rolder

Fokde r

Folder

Fobder

Fokde r

Folkder

Micros. kbook
Micros. xbank
rokder

Plain Text

FOF Decument
Micros. . cbook
Micros, kbook
Micros. chank
Folder

Mucron. kbaok
Micros, . kbook
Folder

Folkder

Folder

Folder

Fodder

24

Directory

- Basically a hierarchical structure
- Each directory entry is a collection of
- Files
- Directories
» A link to another entries

- Each has a name and attributes
- Files have data

- Links (hard links) make it a DAG, not just a tree
- Softlinks (aliases) are another name for an entry

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015

25

I/O & Storage Layers

Application / Service

] streams
High Level I/0
|LOW Level I/O hGﬂdles #4 - handle
Syscall registers
File System descriptors
I/0 Driver Commands and Data Transfers Data blocks

—>

Disks, Flash, Controllers, DMA

Directory Structure

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015 26

File

- Named permanent storage

- Contains

- Data
» Blocks on disk somewhere
- Metadata (Attributes)
» Owner, size, last opened, ..
» Access rights
‘R, W, X

- Owner, Group, Other (in Unix
systems)

- Access control list in Windows
system

11/2/15 Kubiatowicz €S162 ©UCB Fall 2015

27

Our first filesystem: FAT (File Allocation Table)

- Assume (for now) we have a

way to translate a path to a “file FAT Disk Blocks
number” file number 0: O:
- i.e., a directory structure \ 31 .-1 File 31, Block 0
- Disk Storage is a collection of Blocks + |File 31, Block 1

- Just hold file data

- Example: file_read 31, < 2, x >
- Index into FAT with file number
- Follow linked list to block
- Read the block from disk intfo mem <) TFile 31, Block 2

mem
11/4/15 Kubiatowicz €S162 ©UCB Fall 2015

FAT Properties

- File is collection of disk blocks

- FAT is linked list 1-1 with blocks

- File Number is index of ;g%{'umb\
of block list for the file 31:

- File offset (o = B:x)
- Follow list to get block #
- Unused blocks « FAT free list

11/4/15

er O

free

mem
Kubiatowicz €S162 ©UCB Fall 2015

Disk Blocks

File 31, Block O

File 31, Block 1

File 31, Block 2

FAT Properties

- File is collection of disk blocks
- FAT is linked list 1-1 with blocks 4T PukBloce
file pumber 0: 0:
- File Number is index of root \ g -
of block list for the file 31 *1 File 31, Block O

- File offset (o = B:x) e 3% Bleck
- Follow list to get block #
- Unused blocks = FAT free list Ll | B
- Ex: file_write(31, <3, y>) free<=—> "
- Grab blocks from free list
- Linking them into file

o File 31, Block 2

mem
11/4/15 Kubiatowicz €S162 ©UCB Fall 2015

11/4/15

FAT Properties

Grow file by allocating free
blocks and linking them in

Ex: Create file, write, write

File is collection of disk blocks
FAT is linked list 1-1 with blocks

file pumber 0:

File Number is index of roo \
of block list for the file 31

A

A

File 2 number

mem
Kubiatowicz €S162 ©UCB Fall 2015

Disk Blocks

File 31,

Block O

File 31,

Block 1

File 63,

Block 1

File 31,

Block 3

File 63,

Block O

File 31,

Block 2

FAT Assessment

drives, ..

memory

disk?

- Zero the blocks, link up the FAT

free-list

Simple

11/4/15

Where is FAT stored? file number
- On Disk, restore on boot, copy %‘31

What happens when you format a

Used in DOS, Windows, thumb

FAT

0:

A

free'3:

7

File 2 number

mem
Kubiatowicz €S162 ©UCB Fall 2015

Disk Blocks

File 31,

Block O

File 31,

Block 1

File 63,

Block 1

File 31,

Block 3

File 63,

Block O

File 31,

Block 2

FAT Assessment

- Block layout for file ?2? o:

. file number ‘
- Sequential Access ??? \
- Random Access ??? 31

Small files ???
Big files ???

11/4/15

Fragmentation ???

Time to find block (large files) ??

FAT

A

free'3:

7

File 2 number

mem
Kubiatowicz €S162 ©UCB Fall 2015

Disk Blocks

File 31,

Block O

File 31,

Block 1

File 63,

Block 1

File 31,

Block 3

File 63,

Block O

File 31,

Block 2

Name Music Work | Free foo.txt
File Number 5268830 88026158 35002320 85200219 Space 66212871

N |

11/4/15

What about the Directory?

file 5268830
“/home/tom”

Next

Essen’rially a file containing

<file_name: file_number> mappings

Free space for new entries

In FAT: attributes kept in directory (1)
Each directory a linked list of entries
Where do you find root directory ("/")?

Kubiatowicz €S162 ©UCB Fall 2015

end
of
file

Free
Space

34

Directory Structure (Con't)

- How many disk accesses to resolve “/my/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data block for root

» Table of file name/index pairs. Search linearly - ok since
directories typically very small

- Read in file header for “"my”

- Read in first data block for "my”. search for "book”

- Read in file header for “"book”

- Read in first data block for "book”; search for “count”

- Read in file header for “count”

* Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names

- Allows user to specify relative filename instead of absolute
path (say CWD="/my/book” can resolve “count")

11/4/15 Kubiatowicz €S162 ©UCB Fall 2015 35

Big FAT security holes

- FAT has no access rights
* FAT has no header in the file blocks

- Just gives and index into the FAT
- (file number = block number)

11/4/15 Kubiatowicz €S162 ©UCB Fall 2015

36

Characteristics of Files

A Five-Year Study of File-System Metadata
* Most files are small e

and
WILLIAM). BOLOSKY JDHN A, CAOUCELR and JaCHE B, LORCH

 Most of the space is occupied -
by the rare big ones

A Five-Ymar Stody of File-Systam Matadaty ¢ 9

12000 T T T ’
200] 1850 T 1 1 1 1 ¥ 2000 '
:-:00]’ '''' 160 + S 2L <
10000 - 2002 {1 & K PR e
2003 3 uml A 2203 ;
- 2004 ‘g’ ™ ' ! %Y -----
£ 50 - 1 5 amb ; <
7 5 P4
3 8000 - | & 1000 ’ \
¥ ot ' -
£ auw - 1%
T i i &) F i
T 400F -
T F e~ e i i S S e -
0 e & 1 i 1 e P J ol A= .: 1 1 1 1 i Y e Hren
0 8 123 2K 32K 51 EM 28 12 4K 33K 286K 2aM 16M 128N 16 83 4G
Sle size (byles, lcg scale, poner<f-2 birs) Coefla ninyy We sice (Dydes log scaw, powero-2 bing)
Fig. 2. Histegrams of Jlas by size. Fig 1. Histogruzme of bytes by consauning fide <ise.

11/4/15 Kubiatowicz €S162 ©UCB Fall 2015 37

So what about a “"real” file system

- Meet the inode:

Inode Array

file_number

11/4/15

Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

File
Metadata /D

Direct \D

Pointers

(I —
Indirec£ \Po'lnter |:|
Dbl. Indirect Ptr. ‘:’

N R R
Tripl. Indrect Ptr. —D\Du:‘%\‘j

Kubiatowicz €S162 ©UCB Fall 2015

38

Unix File System

- Original inode format appeared in BSD 4.1
- Berkeley Standard Distribution Unix
- Part of Berkeley heritagel!
- Similar structure for Linux Ext2/3
- File Number is index into inode arrays
- Multi-level index structure
- Great for little and large files
- Asymmetric tree with fixed sized blocks
* Metadata associated with the file
- Rather than in the directory that points to it
- UNIX FFS: BSD 4.2: Locality Heuristics
- Block group placement
- Reserve space

- Scalable directory structure
11/4/15 Kubiatowicz 5162 ©UCB Fall 2015

39

An

“almost real” file system

» Pintos: src/filesys/file.c, inode.c

/* An open file. */
struct file
{ .
struct inode *inode; /* File's inode. */ Irect [)ata
off_t pos; /#* Current position. */ cks Blocks
bool deny_write; /* Has file_deny_write() been called? %/
¥ ///////”[]
TI n mtm z T T —
le_ /* In-memory inode. */
struct inode
{
struct list_elem elem; /* Element in inode list. */
block_sector_t sector; /* Sector number of disk location. */
int cnt; /* Number of openers. */
bool ed; /* True if deleted, false otherwise. */
int deny_write_cnt; /* B: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */
};

11/4/15

Ind

Trig

/* On-disk inode.

Must be exactly BLOCK_SECTOR_SIZE bytes long. */
struct inode_disk

{

block_sector_t start; /* First data sector. */

off_t length; /* File size in bytes. */
unsigned magic; /* Magic number. */
uint32_t unused[125]; /* Not used. */

};

File Attributes

- Inode metadata

Inode Array Triple Double
Indirect Indirect Indirect Data
yode— Blocks Blocks Blocks Blocks

File” d
Metadata /‘:\
User =

Group \‘D

9 basic access control bits

- UGO x RWX] (
Setuid bit M
[]

- execute at owner permissions o] - .
- rather than user —D\;:%\D
Getgid bit

- execute at group’s permissions

11/4/15 Kubiatowicz €S162 ©UCB Fall 2015

Data Storage

- Small files: 12 pointers direct to data blocks

Direct pointers Triple Double
Indirect Indirect Indirect Data
4kB blocks = sufficient Inode Blocks Blocks Blocks Blocks
For files up to 48KB File'
Jetadata /‘:\
Direct /D
Pointers 12000 Y Y .
2000
2001 -
12000 588‘3
. 2004
} I ot
Indirect Point .
ndirect Pointer Fa—
Dbl. Indirect Ptr. o ¥ =
Tripl. Indrect Ptr: § awwl
20 T+
0 i L 1 1 — .
0 8 123 2K WK S EM " 29M
Sle size (byles. log scale, power<f-2 birs)
11/4/15 Kubia-‘-owicz C$162 @ Fig. 2. Histograms of Tles by size.

Data Storage

- Large files: 1,2,3

Indirect pointers
- point to a disk block
containing only pointers
- 4 kB blocks => 1024 ptrs
=>4 MB @ level 2 °
=> 4 6B @ level 3
=>4 TB @ level 4

Dire¢t
ointers
A Five-vmar Stody o Cile-Systam Matasaty ¢ 9
|| O N
.)

7 1600 - ?:f?
% o - '.2'33 T .
3 1t » - tPointef
3100 - lirect Ptf.
Y b : 1 drect Ptf.
a
T eNr
*
T O400F
i
-

2 gl = H H - = ii
12 4K 32K 2K 2 16M 12N 16 83 @G
Corila virng We siew [y Jog scu'e, powero’-2 bing)

Fig 4, Histogrume of bytes by consuning file <ise,

evel indirect pointers

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Inode

11/t 19 nubiatowicz €S162 ©UCB Fall 2015 43

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file system,
headers stored in special array in outermost
cylinders

- Header not stored anywhere near the data blocks. To

read a small file, seek to get header, seek back to
data.

- Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They
were each given a unique number, called an “inumber”)

11/4/15 Kubiatowicz €S162 ©UCB Fall 2015 44

Where are inodes stored?

- Later versions of UNIX moved the header information to
be closer to the data blocks
- Often, inode for file stored in same "“cylinder group” as
parent directory of the file (makes an Is of that directory
run fast).
- Pros:

» UNIX BSD 4.2 puts a portion of the file header array on each
of many cylinders. For small directories, can fit all data, file
headers, etc. in same cylinder = no seeks!

» File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time

» Reliability: whatever happens to the disk, you can find many of
the files (even if directories disconnected)

- Part of the Fast File System (FFS)
» General optimization to avoid seeks

11/4/15 Kubiatowicz €S162 ©UCB Fall 2015 45

4.2 BSD Locality: Block Groups

- File system volume is divided into a set
of block groups

- Close set of tracks

Data blocks, metadata, and free space
interleaved within block group

- Avoid huge seeks between user da'ra‘cmd
system structure

Put directory and its files in commqn 1 |
block group

* First-Free allocation of new ?:,
file blocks |

- To expand file, first try

successive blocks in bitmap, then choose
new range of blocks

- Few little holes at start, big sequential
runs at end of group

- Avoids fragmentation
- Sequential layout for big files

- Important: keep 10% or more free!

- Reserve space in the BG
11/4/15

Kubiatowicz €S162 ©UCB Fall 2015

Block Group *

D

Block Groun 2

), e
“(3 Blocks for \

G 6 ‘aiq (7

——) i -

Block Group 0

File System Summary

File System:

- Transforms blocks into Files and Directories

- Optimize for size, access and usage patterns

- Maximize sequential access, allow efficient random access

- Projects the OS protection and security regime (UGO vs ACL)
File defined by header, called “inode”
Naming: act of translating from user-visible names to actual
system resources

- Directories used for naming for local file systems

- Linked or tree structure stored in files

Multilevel Indexed Scheme

- inode contains file info, direct pointers to blocks, indirect blocks,
doubly indirect, etc..

- NTFS uses variable extents, rather than fixed blocks, and tiny files
data is in the header

4.2 BSD Multilevel index files

- Inode contains pointers to actual blocks, indirect blocks, double
indirect blocks, etc.

- Optimizations for sequential access: start new files in open ranges of
11/4/15 free blocks, rotatipngl:Qprtimizetioncs rFa 2015 47

