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Recall: Starvation vs Deadlock

- Starvation vs. Deadlock

- Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly in
use by high-priority threads
- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)
» Deadlock can't end without external intervention
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Recall: Four requirements for Deadlock

Mutual exclusion
- Only one thread at a time can use a resource.

Hold and wait

- Thread holding at least one resource is waiting to
acquire additional resources held by other threads

No preemption

- Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

Circular wait
- There exists a set {T,, .., T,} of waiting threads

» T, is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T,
» ..

» T, is waiting for a resource that is held by T,
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Recall: Address translation
Virtual

Physical o
ddressesl : |Addresses . N

Untranslated read or write

- Address Space:
- All the addresses and state a process can touch
- Each process and kernel has different address space

- Consequently, two views of memory:
- View from the CPU (what program sees, virtual memory)
- View from memory (physical memory)
- Translation box (MMU) converts between the two views
- Translation essential to implementing protection

- If task A cannot even gain access to task B's data, no way
for A to adversely affect B

- With translation, every program can be linked/loaded into

_same region of user address space
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Recall: General Address Translation

Prog 1 Prog 2
Virtual Virtual
Address Address
Space 1 Space 2

OS code

OS heap &
Stacks

|

Translation Map 2

Translation Map 1

Physical Address Space
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Simple Base and Bounds (CRAY-1)

_ Base
Virtual |
Address
Physical
Limit — Address
» No: Error!

- Could use base/limit for dynamic address translation -
translation happens at execution:

- Alter address of every load/store by adding "base”
- Generate error if address bigger than limit

- This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
- Program gets continuous region of memory

- Addresses within program do not have to be relocated when

program placed in different region of DRAM
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Issues with Simple B&B Method

process 6 process 6 process 6

process 6

A

process 5 process 5 process 5

process 9

process 9

process 2

process 10

OS OS

OS

OS

- Fragmentation problem
- Not every process is the same size
- Over time, memory space becomes fragmented

- Missing support for sparse address space
- Would like to have multiple chunks/program
- E.g.: Code, Data, Stack

 Hard to do inter-process sharing
- Want to share code segments when possible
- Want to share memory between processes
- Helped by providing multiple segments per process
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subroutine

Sqrt

More Flexible Segmentation
1 :
stack 4
symbol
table
2
PR 3
user view of physical :
e oIOTY SRACE. memory.space . :

logical address

- Logical View: multiple separate segments

- Typical: Code, Data, Stack

- Others: memory sharing, etc

- Each segment is given region of contiguous memory
- Has a base and limit

- Can reside anywhere in physical memory
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Implementation of Multi-Segment Model

Virtual
Address

Offset

offset

Limit0

Limit1

Limit3

Limit4

Limit5

Limit6

Limit7

< Z22(<

- Segment map resides in processor

- Segment number mapped into base/limit pair
- Base added to offset to generate physical address
- Error check catches offset out of range

Check Valid

|
v

Access
Error

- As many chunks of physical memory as entries
- Segment addressed by portion of virtual address

- However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.

* What is "V/N" (valid / not valid)?

- Can mark segments as invalid; requires check as well
Kubiatowicz €S162 ©UCB Spring 2015 9

3/4/15



Intel x86 Special Registers

15

80386 Special Registers

Seginent tegisiels

Thdok 'lf

RPL = Requestor Piivilege Level
TL=Table Indicator

(0=G0OT, 1=L0DT)
Ihdex =1hdex into table

Protected Mode seguoent selectol

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

3/4/15

ET=Einulation Ty

TS=Task Switch

EM=Einulate Coplocessol
M P=¢ath coplocessol present
PE=Protecied hMode enable
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Code Seg. Data Seg.
15 CS 0 15 DS 0
Stack Seg. Extta Seg.
15 SS 0 15 ES 0
Extra Seg. Extra. Seg
15 ES 0 15 GS 0
N|1I0O |o|D|L|T|S]|Z A P C
X|T|PL |E|F|E|F|E|F|X|F|X|F|X|F
15 1413121110 9 8 7 6 § 4+ 3 2 1 0
P E[T[TMIP
& = ls |s [¢ |g [ CRO Unused CR1
3130 S 43210 31 O Flags
Page Fault Page Ditectlor Not
Lineat Addtess CR2 Base Regiswf Used| CR3
31 0 3 ]
PG=Paging Enable %—fﬁﬁgﬁl—rm

LOPL=L'O Privilege Level
OF=Dveiflow Flag
DE=Direction Flag
[F:lnlcl'l'ugi Flag
TE=Trap Flag

SE=Sigh Flag

ZE=Zero Flag
AF=Auxiliaty Flag
PE=Pauity Flag

CE=Carry Flag
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Example: Four Segments (16 bit addresses)

-Offset

15 14 13
Virtual Address Format

0x0000 eglD=0
0x4000 SeglD = 1 I
0x8000
0xC000

Virtual

Address Space

Seg ID # Base Limit
0 (code) 0x4000 |0x0800
1 (data) 0x4800 (0x1400
2 (shared) |0xF000 |(0x1000
3 (stack) 0x0000 (0x3000
0x0000
0x4000 Miaht
> 3— Mig
> 0x4800 be shared
0x5C00
Space for
Other Apps
0xF000 Shared with
] Other Apps
Physical

Address Space
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Example of segment translation

0x240 main: la $al0, varx

0x244 jal strlen Seg ID # | Base Limit

0x§60 strlen: 1li $v0, 0 ;count O (code) 0x4000 |0x0800

0x364 loop: l1b $t0, ($a0)

0x368 beq $r0, $tl, done 1 (data) 0x4800 [0Ox1400
2 (shared) |OxFOOO [0x1000

0x4050 wvarx dw 0x314159

3 (stack) |0x0000 [O0x3000

Let's simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch Ox244. Translated to Physical=-0x4244. Get "jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch 0x360. Translated to Physical=0x4360. Get "li $v0,0"
Move 0x0000 — $vO, Move PC+4—PC

4. Fetch 0x364. Translated to Physical=0x4364. Get "Ib $10,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050

Translate 0x4050. Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—%$t0, Move PC+4—PC
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Observations about Segmentation

- Virtual address space has holes
- Segmentation efficient for sparse address spaces

- A correct program should never address gaps (except as
mentioned in moment)
» If it does, trap to kernel and dump core

- When it is OK to address outside valid range:
- This is how the stack and heap are allowed to grow

- For instance, stack takes fault, system automatically increases
size of stack

- Need protection mode in segment table
- For example, code segment would be read-only
- Data and stack would be read-write (stores allowed)
- Shared segment could be read-only or read-write
- What must be saved/restored on context switch?
- Segment table stored in CPU, not in memory (small)

- Might store all of processes memory onto disk when switched
(called "swapping”)
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What if more segments than will fit intfo memory?

operating w
system
process P,
@ swap out
) process P,
@ swap in
—_—

B
user

Speles backing store

main memorv
S R

- Extreme form of Context Switch: Swapping

- In order to make room for next process, some or all of the
previous process is moved to disk

» Likely need to send out complete segments
- This greatly increases the cost of context-switching

- Desirable alternative?

- Some way to keep only active portions of a process in memory
at any one time

- Need finer granularity control over physical memory
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Problems with Segmentation

- Must fit variable-sized chunks into physical memory
- May move processes multiple times to fit everything
- Limited options for swapping to disk

- Fragmentation: wasted space
- External: free gaps between allocated chunks
- Internal: don't need all memory within allocated chunks
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Paging: Physical Memory in Fixed Size Chunks

- Solution to fragmentation from segments?
- Allocate physical memory in fixed size chunks (“pages”)
- Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1=allocated, O=free

- Should pages be as big as our previous segments?
- No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
- Consequently: need multiple pages/segment
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How to Implement Paging?
Virtual Address: Offset

v

PageTablePtr I
e pase 0 T ), [E0Sres
é page #2__|V.RW Physical Address
[PageTableSize [~ : page #3__|V,RW Check Perm
\4
page #4 N v
é\ccess page #5 _|V,R,W Access
fror Error

- Page Table (One per process)
- Resides in physical memory
- Contains physical page and Eermission for each virtual page
» Permissions include: Valid bits, Read, Write, etc
- Virtual address mapping

- Offset from Virtual address coIied to Physical Address
» Example: 10 bit offset = 1024-byte pages

- Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

- Check Page Table bounds and permissions
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Simple Page Table Example

Example (4 byte pages)

ox00 [E}-2000 0000 0x00
b ‘
: . 0 00010000 3 gx04 [—
: d | 1 S !
: 0x04 [2—1 00000100 >1[5 0000 1100 lk 0x05
. f —
: 0000 0100 |
: 0x06? |g I—>2 | 0x08
: h
: 0x09? | Table f
: :< g | oxoE!
1 h
_ —> 0x10 ==
Virtual 0000 0110 ===3>0000 1110 g
Memory 0000 1001 ===3> 0000 0101 c
d_J
Physical
Memory
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What about Sharing?

Virtual Address
(Process A):

This physical page
appears in address
space of both processes

Virtual Address
(Process B):
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Memory Layout for Linux 32-bit

1GB

~

3GB <<

-

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

0xCc0000000 == TASK_SIZE

} Random stack offset

Stack (grows down)

1

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

ﬁ brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data
end_code

0x08048000

(%]

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png
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Summary: Simple Page Table

v | Page Table
irtual memory view Physical memory view
1111 1111 G B F LT 77707 y y
stack | 11110 11100 117
1111 0000 _2tdR 11101 | null \
11100 | null
11011 | null 110 0000
11010 | null
11001 | null
1100 0000 11000 | null
10111 | null
10110 | null
10101 | null
I 10100 [ null
10011 | null
heap \40010 10000
1000 0000 ' %}oom 01111  E—
10000 | 01110 24l
01111 | null " 0111 000
01110 | null
01101 | null
01100 | null 0101 000
01011 | 01101
0100 0000 1010 | 01100 /
1001 | 01011
1000 | 01010
00111 | null e
00110 I
code 00101 | null 0001 0000
0000 0000 oot o L 0000 0000
| Lr’ 0010 | 00100
page # offset 0001 | 00011
3/4/15 0000 | 00010 )15 21



Summary: Simple Page Table

_ _ Page Table
Virtual memory view 11111 11101 Physical memory view

1111 1111 — 11110 (11100
11101 | null

11100 | null
1110 0000 11011 | null
11010 | null
11001 | null

-
What happens if 10111 | m

10110 | null
stack grows to 10101 | null

1110 0000? 10100 | null
\_ 10011 | null
10010 | 10000
0001 | 01111 hean

10000 | 01110 . ~C4

01111 | null 0111 000
01110 | null
01101 | null
01100 | null
01011 {01101
1010 (01100
1001 | 01011
1000 (01010
00111 | null
00110 | null
00101 | null
00100 | null

0001 0000
00011 | 00101
0010 | 00100

oo 0000
0001 | 00011

0000 | 00010 115 2

|

110 0000

hQF]p

1000 0000

I

0101 000

0100 0000

A\ \\

0000 0000

)
page # O‘H:et
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Summary: Simple Page Table

Virtual memory view

Page Table

1111

1111 1111

|

— 11110

—___——"11101

1110 0000

11011

11010

11001

1100 0000

11000

10111

10110

10101

10100

10011

10010

1000 0000

0001

I

10000

01111

0100 0000

01110
01101
01100
01011
1010

1001

:

1000

00111

00110

00101

9)
Q
4]

0000 0000

00100

)
page # O‘H:et

3/4/15

00011
0010
0001
0000

o

11101
11100
10111
10110
null
null
null
null
null
null
null
null
null
10000
01111
01110
null
null
null
null
01101
01100
01011
01010
null
null
null
null
00101
00100
00011
00010

/

Physical memory view

110 0000

Allocate new
pages where

room!

)15

\\ \\

0101 000

AAAA
CVUUC

0001 0000

0000 0000
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Page Table Discussion

- What needs to be switched on a context switch?
- Page table pointer and limit

- Analysis
- Pros
» Simple memory allocation
» Easy to Share

- Con: What if address space is sparse?
» E.g. on UNIX, code starts at O, stack starts at (231-1).
» With 1K pages, need 4 million page table entries!

- Con: What if table really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

- How about combining paging and segmentation?

- Segments with pages inside them?
- Need some sort of multi-level translation
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Multi-level Translation: Segments + Pages

- What about a tree of tables?
- Lowest level page table=memory still allocated with bitmap
- Higher levels often segmented

- Could have any number of levels. Example (top segment):

Address:
W lpage #0 |V,R L]
page #1 |V.R
A age #2 VR V-foset
imi page #3 |V.R.W Physical Address
ase4 |Limi I 1
Baseb |Limits page #5 |V.R.W Checll< Perm |
Baseb |Limit6 A\ 4 1!
Base7 |Limit7 3§ )—Hccess Access
Error Error

- What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)
- Pointer to top-level table (page table)

3/4/15
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What about Sharing (Complete Segment)?

Process
A

Process
B

3/4/15

LimitO

Limit3

Base4

Limit4

Baseb

Limith

Baseb

Limité

Base7

Limit7

Z2Z2Z<IZISI<
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page #0 |V.R
page #1 |V.R
page #2 |V.R.W
page #3 |V.R.W
page #4 [N |
page #5 |V.R.W
Shared Segment
LimitO |V
Limitl |V
Base3 |[Limit3 |N
Base4 [Limit4 |V
Baseb |[Limith |N
Baseb [Limit6 |N
Base7 |Limit7 |V
Offset
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Fix for sparse address space: The two-level page table

Physical
ddress:

10 bits 10 bits 12 bits
Virtual

Address:

|PageTablePir

—> 4 bytes <+— /

Tree of Page Tables

Tables fixed size (1024 entries) % |
- On Con'l'ex*"SWi'rCh: save Single T / ;I—l
PageTablePtr register |1
Valid bits on Page Table Entries /
- Don't need every 2nd-|evel table @ [
- Even when exist, 2nd-level tables can

. . . . -—> 4 bytes €¢— -
reside on disk if not in use y
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Summary: Two-Level Paging

Virtual memory view Page Tables Physical memory view
1111 1111 (level 2)
stack 11 [11101
1111 0000 10 11100 110 0000
01 |10111
00 |10110
1100 0000 Page Table
(level 1)
11| o 11 | null
I 110 | null 10 | 10000
101 | null 01 |01111
,100 00 (01110
1000 0000 TEED 011 | null
10
001 | nol—+——o__ 0111 000
00| & 11 {01101
10 (01100
01 |01011 0101 000
00 |01010
0100 0000
11 (00101
- 10 (00100 code
age 01 |00011 | ———
bag ———— b0 Eerd O — 0001 0000
oadt')"booo _0000 0000
o L

pagel # offset
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Summary: Two-Level Paging

Virtual memory view

1001 0000
(0x90)

3/4/15

stack

111

110

eap

101

011

010

0ot

000

9)
o
Q
4]

Page Table
(level 1)

[
null

null
null

[
null
[

Page Tables

(level 2)

11
10
01
00

11101
11100
10111
10110

null

11
I.AT.MI

101111

00

01110

R

'!Fﬁqr)

11
10
01
00

01101
01100
01011
01010

11
10
01
00

00101
00100
00011
00010

AnAAa
CVUUC
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Physical memory view

%110 0000

1000 0000
(0x80)

0001 0000
0000 0000
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Multi-level Translation Analysis

* Pros:

- Only need to allocate as many page table entries as we
need for application

» In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing
» Share at segment or page level
- Cons:
- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous

» However, previous example keeps tables to exactly one page
in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensive!
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Summary

- Segment Mapping
- Segment registers within processor
- Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
- Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
* Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual page number from virtual address mapped
through page table to physical page number

- Offset of virtual address same as physical address
- Large page tables can be placed into virtual memory

- Multi-Level Tables

- Virtual address mapped to series of tables
- Permit sparse population of address space
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