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Recall: Starvation vs Deadlock
• Starvation vs. Deadlock 

– Starvation: thread waits indefinitely 
» Example, low-priority thread waiting for resources constantly in 

use by high-priority threads 
– Deadlock: circular waiting for resources 

» Thread A owns Res 1 and is waiting for Res 2 
Thread B owns Res 2 and is waiting for Res 1 

– Deadlock ⇒ Starvation but not vice versa 
» Starvation can end (but doesn’t have to) 
» Deadlock can’t end without external intervention

Res 2Res 1

Thread 
B

Thread 
A Wait 

For

Wait 
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Owned 
By

Owned 
By
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Recall: Four requirements for Deadlock

• Mutual exclusion 
– Only one thread at a time can use a resource. 

• Hold and wait 
– Thread holding at least one resource is waiting to 
acquire additional resources held by other threads 

• No preemption 
– Resources are released only voluntarily by the thread 
holding the resource, after thread is finished with it 

• Circular wait 
– There exists a set {T1, …, Tn} of waiting threads 

» T1 is waiting for a resource that is held by T2 

» T2 is waiting for a resource that is held by T3 
» … 
» Tn is waiting for a resource that is held by T1
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Recall: Address translation

• Address Space: 
– All the addresses and state a process can touch 
– Each process and kernel has different address space 

• Consequently, two views of memory: 
– View from the CPU (what program sees, virtual memory) 
– View from memory (physical memory) 
– Translation box (MMU) converts between the two views 

• Translation essential to implementing protection 
– If task A cannot even gain access to task B’s data, no way 
for A to adversely affect B 

• With translation, every program can be linked/loaded into 
same region of user address space

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write
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Recall: General Address Translation
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Simple Base and Bounds (CRAY-1)

• Could use base/limit for dynamic address translation – 
translation happens at execution: 
– Alter address of every load/store by adding “base” 
– Generate error if address bigger than limit 

• This gives program the illusion that it is running on its 
own dedicated machine, with memory starting at 0 
– Program gets continuous region of memory 
– Addresses within program do not have to be relocated when 
program placed in different region of DRAM

DRAM
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Address
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Address

No: Error!
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Issues with Simple B&B Method

• Fragmentation problem 
– Not every process is the same size 
– Over time, memory space becomes fragmented 

• Missing support for sparse address space 
– Would like to have multiple chunks/program 
– E.g.: Code, Data, Stack 

• Hard to do inter-process sharing 
– Want to share code segments when possible 
– Want to share memory between processes 
– Helped by providing multiple segments per process
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process 2
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More Flexible Segmentation

• Logical View: multiple separate segments 
– Typical: Code, Data, Stack 
– Others: memory sharing, etc 

• Each segment is given region of contiguous memory 
– Has a base and limit 
– Can reside anywhere in physical memory
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Implementation of Multi-Segment Model

• Segment map resides in processor 
– Segment number mapped into base/limit pair 
– Base added to offset to generate physical address 
– Error check catches offset out of range 

• As many chunks of physical memory as entries 
– Segment addressed by portion of virtual address 
– However, could be included in instruction instead: 

» x86 Example: mov [es:bx],ax.  
• What is “V/N” (valid / not valid)? 

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V
+ Physical

Address

> Erroroffset

Check Valid

Access
Error



3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 10

Intel x86 Special Registers

Typical Segment Register 
Current Priority is RPL 
Of Code Segment (CS)

80386 Special Registers
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Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might 
be shared

SegID = 0

SegID = 1
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Example of segment translation

Let’s simulate a bit of this code to see what happens (PC=0x240): 
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240 
 Physical address? Base=0x4000, so physical addr=0x4240 
 Fetch instruction at 0x4240. Get “la $a0, varx” 
 Move 0x4050 → $a0, Move PC+4→PC 
2. Fetch 0x244. Translated to Physical=0x4244.  Get “jal strlen” 

Move 0x0248 → $ra (return address!), Move 0x0360 → PC 
3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0” 

Move 0x0000 → $v0, Move PC+4→PC 
4. Fetch 0x364. Translated to Physical=0x4364. Get “lb $t0,($a0)” 

Since $a0 is 0x4050, try to load byte from 0x4050 
 Translate 0x4050. Virtual segment #? 1; Offset? 0x50 

Physical address? Base=0x4800, Physical addr = 0x4850,  
 Load Byte from 0x4850→$t0, Move PC+4→PC

0x240 main: la $a0, varx  
0x244  jal strlen 
  …     … 
0x360 strlen: li  $v0, 0  ;count  
0x364 loop: lb  $t0, ($a0)  
0x368  beq $r0,$t1, done 
  …     … 
0x4050 varx dw 0x314159

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000
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Observations about Segmentation
• Virtual address space has holes 

– Segmentation efficient for sparse address spaces 
– A correct program should never address gaps (except as 
mentioned in moment) 

» If it does, trap to kernel and dump core 
• When it is OK to address outside valid range: 

– This is how the stack and heap are allowed to grow 
– For instance, stack takes fault, system automatically increases 
size of stack 

• Need protection mode in segment table 
– For example, code segment would be read-only 
– Data and stack would be read-write (stores allowed) 
– Shared segment could be read-only or read-write 

• What must be saved/restored on context switch? 
– Segment table stored in CPU, not in memory (small) 
– Might store all of processes memory onto disk when switched 
(called “swapping”)
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What if more segments than will fit into memory?

• Extreme form of Context Switch: Swapping 
– In order to make room for next process, some or all of the 
previous process is moved to disk 

» Likely need to send out complete segments  
– This greatly increases the cost of context-switching 

• Desirable alternative? 
– Some way to keep only active portions of a process in memory 
at any one time 

– Need finer granularity control over physical memory
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Problems with Segmentation

• Must fit variable-sized chunks into physical memory 

• May move processes multiple times to fit everything 

• Limited options for swapping to disk 

• Fragmentation: wasted space 
– External: free gaps between allocated chunks 
– Internal: don’t need all memory within allocated chunks
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Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments? 
– Allocate physical memory in fixed size chunks (“pages”) 
– Every chunk of physical memory is equivalent 

» Can use simple vector of bits to handle allocation: 
 00110001110001101 … 110010 

» Each bit represents page of physical memory  
 1⇒allocated, 0⇒free 

• Should pages be as big as our previous segments? 
– No: Can lead to lots of internal fragmentation 

» Typically have small pages (1K-16K) 
– Consequently: need multiple pages/segment
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Physical Address
Offset

How to Implement Paging?

• Page Table (One per process) 
– Resides in physical memory 
– Contains physical page and permission for each virtual page 

» Permissions include: Valid bits, Read, Write, etc 
• Virtual address mapping 

– Offset from Virtual address copied to Physical Address 
» Example: 10 bit offset ⇒ 1024-byte pages 

– Virtual page # is all remaining bits 
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries 
» Physical page # copied from table into physical address 

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #



3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 18

Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!
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PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N
V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

This physical page 
appears in address 
space of both processes

page #2 V,R,W
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Memory Layout for Linux 32-bit

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png
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Summary: Simple Page Table

1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table
1110 1111
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Summary: Simple Page Table

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

1110 0000

What happens if 
stack grows to 
1110 0000?
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stack

Summary: Simple Page Table

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

11111   11101
11110   11100
11101   10111
11100   10110
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111    null
01110    null
01101    null
01100    null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111    null
00110    null
00101    null 
00100    null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 0000

Allocate new 
pages where 
room!

Challenge: Table size equal to # of pages 
in virtual memory!

1110 0000
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Page Table Discussion

• What needs to be switched on a context switch?  
– Page table pointer and limit 

• Analysis 
– Pros 

» Simple memory allocation 
» Easy to Share 

– Con: What if address space is sparse? 
» E.g. on UNIX, code starts at 0, stack starts at (231-1). 
» With 1K pages, need 4 million page table entries! 

– Con: What if table really big? 
» Not all pages used all the time ⇒ would be nice to have 

working set of page table in memory 
• How about combining paging and segmentation? 

– Segments with pages inside them? 
– Need some sort of multi-level translation
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• What about a tree of tables? 
– Lowest level page table⇒memory still allocated with bitmap 
– Higher levels often segmented 

• Could have any number of levels. Example (top segment): 

• What must be saved/restored on context switch? 
– Contents of top-level segment registers (for this example) 
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual  
Address:

OffsetVirtual 
Page #

Virtual 
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access 
Error>

page #2 V,R,W
Physical 
Page #

Check Perm

Access 
Error



3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 26

What about Sharing (Complete Segment)?
Process 
A

OffsetVirtual 
Page #

Virtual 
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R
V,R,W
V,R,W
N
V,R,W

Shared Segment

Process 
B

OffsetVirtual 
Page #

Virtual 
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V
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Physical 
Address:

OffsetPhysical 
Page #

4KB

Fix for sparse address space: The two-level page table

10 bits 10 bits 12 bits
Virtual  
Address:

OffsetVirtual 
P2 index

Virtual 
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables 
• Tables fixed size (1024 entries) 

– On context-switch: save single 
PageTablePtr register 

• Valid bits on Page Table Entries  
– Don’t need every 2nd-level table 
– Even when exist, 2nd-level tables can 
reside on disk if not in use 4 bytes
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stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111       
110   null
101   null
100   
011   null
010   
001   null
000   

11   11101    
10   11100
01   10111
00   10110

11   01101    
10   01100
01   01011
00   01010

11   00101    
10   00100
01   00011
00   00010

11     null  
10   10000
01   01111
00   01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000
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stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111       
110   null
101   null
100              
011   null
010   
001   null
000   

11   11101    
10   11100
01   10111
00   10110

11   01101    
10   01100
01   01011
00   01010

11   00101    
10   00100
01   00011
00   00010

11     null  
10   10000
01   01111
00   01110

Page Tables
(level 2)

Page Table
(level 1)
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Multi-level Translation Analysis

• Pros: 
– Only need to allocate as many page table entries as we 
need for application 

» In other wards, sparse address spaces are easy 
– Easy memory allocation 
– Easy Sharing 

» Share at segment or page level 
• Cons: 

– One pointer per page (typically 4K – 16K pages today) 
– Page tables need to be contiguous 

» However, previous example keeps tables to exactly one page 
in size 

– Two (or more, if >2 levels) lookups per reference 
» Seems very expensive!



3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 31

Summary
• Segment Mapping 

– Segment registers within processor 
– Segment ID associated with each access 

» Often comes from portion of virtual address 
» Can come from bits in instruction instead (x86) 

– Each segment contains base and limit information  
» Offset (rest of address) adjusted by adding base 

• Page Tables 
– Memory divided into fixed-sized chunks of memory 
– Virtual page number from virtual address mapped 
through page table to physical page number 

– Offset of virtual address same as physical address 
– Large page tables can be placed into virtual memory 

• Multi-Level Tables 
– Virtual address mapped to series of tables 
– Permit sparse population of address space


