
CS162 
Operating Systems and  
Systems Programming  

Lecture 12  
  

Address Translation

March 4th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 2

Recall: Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly in

use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2 
Thread B owns Res 2 and is waiting for Res 1

– Deadlock ⇒ Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 3

Recall: Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 4

Recall: Address translation

• Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (MMU) converts between the two views

• Translation essential to implementing protection
– If task A cannot even gain access to task B’s data, no way
for A to adversely affect B

• With translation, every program can be linked/loaded into
same region of user address space

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 5

Recall: General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 6

Simple Base and Bounds (CRAY-1)

• Could use base/limit for dynamic address translation –
translation happens at execution:
– Alter address of every load/store by adding “base”
– Generate error if address bigger than limit

• This gives program the illusion that it is running on its
own dedicated machine, with memory starting at 0
– Program gets continuous region of memory
– Addresses within program do not have to be relocated when
program placed in different region of DRAM

DRAM

<?

+
Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 7

Issues with Simple B&B Method

• Fragmentation problem
– Not every process is the same size
– Over time, memory space becomes fragmented

• Missing support for sparse address space
– Would like to have multiple chunks/program
– E.g.: Code, Data, Stack

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by providing multiple segments per process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10

process 11

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 8

More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space

1
4

2

3

physical
memory space

1

2

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 9

Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V
+ Physical

Address

> Erroroffset

Check Valid

Access
Error

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 10

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 11

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might
be shared

SegID = 0

SegID = 1

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 12

Example of segment translation

Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240
 Physical address? Base=0x4000, so physical addr=0x4240
 Fetch instruction at 0x4240. Get “la $a0, varx”
 Move 0x4050 → $a0, Move PC+4→PC
2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen” 

Move 0x0248 → $ra (return address!), Move 0x0360 → PC
3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0” 

Move 0x0000 → $v0, Move PC+4→PC
4. Fetch 0x364. Translated to Physical=0x4364. Get “lb $t0,($a0)” 

Since $a0 is 0x4050, try to load byte from 0x4050
 Translate 0x4050. Virtual segment #? 1; Offset? 0x50 

Physical address? Base=0x4800, Physical addr = 0x4850,
 Load Byte from 0x4850→$t0, Move PC+4→PC

0x240 main: la $a0, varx  
0x244 jal strlen
 … …
0x360 strlen: li $v0, 0 ;count  
0x364 loop: lb $t0, ($a0)  
0x368 beq $r0,$t1, done
 … …
0x4050 varx dw 0x314159

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 13

Observations about Segmentation
• Virtual address space has holes

– Segmentation efficient for sparse address spaces
– A correct program should never address gaps (except as
mentioned in moment)

» If it does, trap to kernel and dump core
• When it is OK to address outside valid range:

– This is how the stack and heap are allowed to grow
– For instance, stack takes fault, system automatically increases
size of stack

• Need protection mode in segment table
– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)
– Shared segment could be read-only or read-write

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when switched
(called “swapping”)

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 14

What if more segments than will fit into memory?

• Extreme form of Context Switch: Swapping
– In order to make room for next process, some or all of the
previous process is moved to disk

» Likely need to send out complete segments
– This greatly increases the cost of context-switching

• Desirable alternative?
– Some way to keep only active portions of a process in memory
at any one time

– Need finer granularity control over physical memory

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 15

Problems with Segmentation

• Must fit variable-sized chunks into physical memory

• May move processes multiple times to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 16

Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation: 
 00110001110001101 … 110010

» Each bit represents page of physical memory  
 1⇒allocated, 0⇒free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 17

Physical Address
Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 18

Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 19

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N
V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

This physical page
appears in address
space of both processes

page #2 V,R,W

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 20

Memory Layout for Linux 32-bit

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 21

Summary: Simple Page Table

1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table
1110 1111

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 22

Summary: Simple Page Table

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

1110 0000

What happens if
stack grows to
1110 0000?

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 23

stack

Summary: Simple Page Table

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

11111 11101
11110 11100
11101 10111
11100 10110
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 0000

Allocate new
pages where
room!

Challenge: Table size equal to # of pages
in virtual memory!

1110 0000

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 24

Page Table Discussion

• What needs to be switched on a context switch?
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (231-1).
» With 1K pages, need 4 million page table entries!

– Con: What if table really big?
» Not all pages used all the time ⇒ would be nice to have

working set of page table in memory
• How about combining paging and segmentation?

– Segments with pages inside them?
– Need some sort of multi-level translation

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 25

• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 26

What about Sharing (Complete Segment)?
Process
A

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R
V,R,W
V,R,W
N
V,R,W

Shared Segment

Process
B

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 27

Physical
Address:

OffsetPhysical
Page #

4KB

Fix for sparse address space: The two-level page table

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Valid bits on Page Table Entries
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can
reside on disk if not in use 4 bytes

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 28

stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 29

stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 30

Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we
need for application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level
• Cons:

– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly one page
in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

3/4/15 Kubiatowicz CS162 ©UCB Spring 2015 31

Summary
• Segment Mapping

– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped
through page table to physical page number

– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

