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Recall: SRTF Example continued:

C’s  
I/O
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RR 1ms time slice
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Disk Utilization: 
~90% but lots of 
wakeups!

Disk Utilization: 
90%

Disk Utilization: 
9/201 ~ 4.5%
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Recall: Multi-Level Feedback Scheduling

• Another method for exploiting past behavior 
– First used in CTSS 
– Multiple queues, each with different priority 

» Higher priority queues often considered “foreground” tasks 
– Each queue has its own scheduling algorithm 

» e.g. foreground – RR, background – FCFS 
» Sometimes multiple RR priorities with quantum increasing 

exponentially (highest:1ms, next:2ms, next: 4ms, etc) 
• Adjust each job’s priority as follows (details vary) 

– Job starts in highest priority queue 
– If timeout expires, drop one level 
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute 
Tasks Demoted to  

Low Priority
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Recall: Linux Completely Fair Scheduler (CFS)
• First appeared in 2.6.23, modified in 2.6.24 
• Inspired by Networking “Fair Queueing” 

– Each process given their fair share of resources 
– Models an “ideal multitasking processor” in which N processes execute 
simultaneously as if they truly got 1/N of the processor 

• Idea: Track amount of “virtual time” received by each process when it is 
executing 

- Take real execution time, scale by a factor to reflect time it would 
have gotten on ideal multiprocessor 

» So for instance, multiply real time by N 
- Keep virtual time for every process advancing at same rate 

» Time sliced to achieve multiplexing 
- Uses a red-black tree to always find process which has gotten least 
amount of virtual time 

• Automatically track interactivity: 
- Interactive process runs less frequently => lower registered virtual 
time => will run immediately when ready to run
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Recall: Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential: 

– Real-time is about enforcing predictability, and does not equal to 
fast computing!!! 

• Hard Real-Time 
– Attempt to meet all deadlines 
– EDF (Earliest Deadline First), LLF (Least Laxity First), RMS 

(Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling) 
• Soft Real-Time 

– Attempt to meet deadlines with high probability 
– Minimize miss ratio / maximize completion ratio (firm real-time) 
– Important for multimedia applications 
– CBS (Constant Bandwidth Server)
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A Final Word On Scheduling

• When do the details of the scheduling policy and fairness 
really matter? 
– When there aren’t enough resources to go around 

• When should you simply buy a faster computer? 
– (Or network link, or expanded highway, or …) 
– One approach: Buy it when it will pay  
for itself in improved response time 

» Assuming you’re paying for worse  
response time in reduced productivity,  
customer angst, etc… 

» Might think that you should buy a  
faster X when X is utilized 100%,  
but usually, response time goes  
to infinity as utilization⇒100% 

• An interesting implication of this curve: 
– Most scheduling algorithms work fine in the “linear” portion of 
the load curve, fail otherwise 

– Argues for buying a faster X when hit “knee” of curve

Utilization

Response 
tim

e 100%
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Resources

• Resources - passive entities needed by threads to do 
their work 

– CPU time, disk space, memory 
• Two types of resources 

– Preemptable - can take it away 
» CPU 

– Non-preemptable - must leave it with the thread 
» Disk space, plotter, chunk of virtual address space 
» Mutual exclusion - the right to enter a critical section 

• Resources may require exclusive access or may be 
sharable 

– Read-only files are typically sharable 
– Printers are not sharable during time of printing 

• One of the major tasks of an operating system is to 
manage resources
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Starvation vs Deadlock
• Starvation vs. Deadlock 

– Starvation: thread waits indefinitely 
» Example, low-priority thread waiting for resources constantly in 

use by high-priority threads 
– Deadlock: circular waiting for resources 

» Thread A owns Res 1 and is waiting for Res 2 
Thread B owns Res 2 and is waiting for Res 1 

– Deadlock ⇒ Starvation but not vice versa 
» Starvation can end (but doesn’t have to) 
» Deadlock can’t end without external intervention

Res 2Res 1

Thread 
B

Thread 
A Wait 

For

Wait 
For

Owned 
By

Owned 
By
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Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes: 
  Thread A Thread B 

  x.P(); y.P(); 
  y.P(); x.P(); 
  y.V(); x.V(); 
  x.V(); y.V(); 

– Deadlock won’t always happen with this code 
» Have to have exactly the right timing (“wrong” timing?) 
» So you release a piece of software, and you tested it, and there 

it is, controlling a nuclear power plant… 
• Deadlocks occur with multiple resources 

– Means you can’t decompose the problem 
– Can’t solve deadlock for each resource independently 

• Example: System with 2 disk drives and two threads 
– Each thread needs 2 disk drives to function 
– Each thread gets one disk and waits for another one
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Bridge Crossing Example

• Each segment of road can be viewed as a resource 
– Car must own the segment under them 
– Must acquire segment that they are moving into 

• For bridge: must acquire both halves  
– Traffic only in one direction at a time  
– Problem occurs when two cars in opposite directions on bridge: 
each acquires one segment and needs next 

• If a deadlock occurs, it can be resolved if one car backs up 
(preempt resources and rollback) 
– Several cars may have to be backed up  

• Starvation is possible 
– East-going traffic really fast ⇒ no one goes west

Ho
n
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Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant) 
– Free-for all: Lawyer will grab any one they can 
– Need two chopsticks to eat 

• What if all grab at same time? 
– Deadlock! 

• How to fix deadlock? 
– Make one of them give up a chopstick (Hah!) 
– Eventually everyone will get chance to eat 

• How to prevent deadlock? 
– Never let lawyer take last chopstick if no “hungry lawyer” 
has two chopsticks afterwards
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Four requirements for Deadlock

• Mutual exclusion 
– Only one thread at a time can use a resource. 

• Hold and wait 
– Thread holding at least one resource is waiting to 
acquire additional resources held by other threads 

• No preemption 
– Resources are released only voluntarily by the thread 
holding the resource, after thread is finished with it 

• Circular wait 
– There exists a set {T1, …, Tn} of waiting threads 

» T1 is waiting for a resource that is held by T2 

» T2 is waiting for a resource that is held by T3 
» … 
» Tn is waiting for a resource that is held by T1
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Symbols
Resource-Allocation Graph

• System Model     
– A set of Threads T1, T2, . . ., Tn 

– Resource types R1, R2, . . ., Rm 
 CPU cycles, memory space, I/O devices 

– Each resource type Ri has Wi instances. 

– Each thread utilizes a resource as follows: 
» Request() / Use() / Release() 

• Resource-Allocation Graph: 
– V is partitioned into two types: 

» T = {T1, T2, …, Tn}, the set threads in the system. 

» R = {R1, R2, …, Rm}, the set of resource types in system 

– request edge – directed edge T1 → Rj 

– assignment edge – directed edge Rj → Ti

R1
R2

T1 T2
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Resource Allocation Graph Examples

T T T

R R

R
R

Simple Resource 
Allocation Graph

T T T

R R

R
R

Allocation Graph  
With Deadlock

T

T

T

R

R

T

Allocation Graph  
With Cycle, but 
No Deadlock

• Recall: 
– request edge – directed edge T1 → Rj 
– assignment edge – directed edge Rj → Ti
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Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover 
– Requires deadlock detection algorithm 
– Some technique for forcibly preempting resources 
and/or terminating tasks 

• Ensure that system will never enter a deadlock 
– Need to monitor all lock acquisitions 
– Selectively deny those that might lead to deadlock 

• Ignore the problem and pretend that deadlocks 
never occur in the system 
– Used by most operating systems, including UNIX
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• Only one of each type of resource ⇒ look for loops 
• More General Deadlock Detection Algorithm 

– Let [X] represent an m-aray vector of non-negative  
integers (quantities of resources of each type): 

 [FreeResources]:  Current free resources each type 
[RequestX]: Current requests from thread X 
 [AllocX]: Current resources held by thread X 

– See if tasks can eventually terminate on their own 
  [Avail] = [FreeResources]  

 Add all nodes to UNFINISHED   
 do { 

   done = true  
  Foreach node in UNFINISHED {  
   if ([Requestnode] <= [Avail]) {  
    remove node from UNFINISHED  
    [Avail] = [Avail] + [Allocnode]  
    done = false  
   }  
  }  
 } until(done)     
– Nodes left in UNFINISHED ⇒ deadlocked

16

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
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What to do when detect deadlock?
• Terminate thread, force it to give up resources 

– In Bridge example, Godzilla picks up a car, hurls it into the 
river.  Deadlock solved! 

– Shoot a dining lawyer 
– But, not always possible – killing a thread holding a mutex leaves 
world inconsistent 

• Preempt resources without killing off thread  
– Take away resources from thread temporarily 
– Doesn’t always fit with semantics of computation 

• Roll back actions of deadlocked threads  
– Hit the rewind button on TiVo, pretend last few minutes never 
happened 

– For bridge example, make one car roll backwards (may require 
others behind him) 

– Common technique in databases (transactions) 
– Of course, if you restart in exactly the same way, may reenter 
deadlock once again 

• Many operating systems use other options
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Techniques for Preventing Deadlock
• Infinite resources 

– Include enough resources so that no one ever runs out of 
resources. Doesn’t have to be infinite, just large 

– Give illusion of infinite resources (e.g. virtual memory) 
– Examples: 

» Bay bridge with 12,000 lanes.  Never wait! 
» Infinite disk space (not realistic yet?) 

• No Sharing of resources (totally independent threads) 
– Not very realistic 

• Don’t allow waiting  
– How the phone company avoids deadlock 

» Call to your Mom in Toledo, works its way through the phone 
lines, but if blocked get busy signal.  

– Technique used in Ethernet/some multiprocessor nets 
» Everyone speaks at once.  On collision, back off and retry 

– Inefficient, since have to keep retrying 
» Consider: driving to San Francisco; when hit traffic jam, suddenly 

you’re transported back home and told to retry!
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Techniques for Preventing Deadlock (con’t)

• Make all threads request everything they’ll need at the 
beginning. 
– Problem: Predicting future is hard, tend to over-estimate 
resources 

– Example: 
» If need 2 chopsticks, request both at same time 
» Don’t leave home until we know no one is using any intersection 

between here and where you want to go; only one car on the 
Bay Bridge at a time 

• Force all threads to request resources in a particular 
order preventing any cyclic use of resources 
– Thus, preventing deadlock 
– Example (x.P, y.P, z.P,…) 

» Make tasks request disk, then memory, then… 
» Keep from deadlock on city center by requiring everyone to go 

clockwise
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• Toward right idea:  
– State maximum resource needs in advance 
– Allow particular thread to proceed if: 

 (available resources - #requested) ≥ max  
remaining that might be needed by any thread 

• Banker’s algorithm (less conservative): 
– Allocate resources dynamically 

» Evaluate each request and grant if some  
ordering of threads is still deadlock free afterward  

» Technique: pretend each request is granted, then run 
deadlock detection algorithm 

» Keeps system in a “SAFE” state, i.e. there exists a sequence 
{T1, T2, … Tn} with T1 requesting all remaining resources, 
finishing, then T2 requesting all remaining resources, etc.. 

– Algorithm allows the sum of maximum resource needs of all 
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock
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Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers 
– “Safe” (won’t cause deadlock) if when try to grab chopstick 
either: 

» Not last chopstick 
» Is last chopstick but someone will have  

two afterwards 
– What if k-handed lawyers? Don’t allow if: 

» It’s the last one, no one would have k 
» It’s 2nd to last, and no one would have k-1 
» It’s 3rd to last, and no one would have k-2 
» …
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Virtualizing Resources

• Physical Reality:  
Different Processes/Threads share the same hardware 
– Need to multiplex CPU (Just finished: scheduling) 
– Need to multiplex use of Memory (Today) 
– Need to multiplex disk and devices (later in term) 

• Why worry about memory sharing? 
– The complete working state of a process and/or kernel is defined by 
its data in memory (and registers) 

– Consequently, cannot just let different threads of control use the 
same memory 

» Physics: two different pieces of data cannot occupy the same locations 
in memory 

– Probably don’t want different threads to even have access to each 
other’s memory (protection)
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Next Objective

• Dive deeper into the concepts and mechanisms of memory 
sharing and address translation 

• Enabler of many key aspects of operating systems 
– Protection 
– Multi-programming 
– Isolation 
– Memory resource management 
– I/O efficiency 
– Sharing 
– Inter-process communication 
– Debugging 
– Demand paging 

• Today: Linking, Segmentation, Paged Virtual Address 
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Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency 
– “Active” component of a process 

• Address spaces encapsulate protection 
– Keeps buggy program from trashing the system 
– “Passive” component of a process
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Important Aspects of Memory Multiplexing

• Controlled overlap: 
– Separate state of threads should not collide in physical memory.  
Obviously, unexpected overlap causes chaos! 

– Conversely, would like the ability to overlap when desired (for 
communication) 

• Translation:  
– Ability to translate accesses from one address space (virtual) to 
a different one (physical) 

– When translation exists, processor uses virtual addresses, 
physical memory uses physical addresses 

– Side effects: 
» Can be used to avoid overlap 
» Can be used to give uniform view of memory to programs 

• Protection: 
– Prevent access to private memory of other processes 

» Different pages of memory can be given special behavior (Read 
Only, Invisible to user programs, etc). 

» Kernel data protected from User programs 
» Programs protected from themselves
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Recall: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection 
Boundary

Ctrlr
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0x0300 00000020 
   …    … 
0x0900 8C2000C0 
0x0904 0C000280 
0x0908 2021FFFF 
0x090C 14200242 
 … 
0x0A00

data1: dw  32 
  …  
start: lw r1,0(data1)  
 jal checkit 
loop: addi r1, r1, -1 
 bnz  r1, loop  
… 
checkit: … 

Process view of memory Physical addresses
8C2000C0 
0C000340 
2021FFFF 
14200242

0x0900

0xFFFF

0x0300

0x0000

00000020

Physical 
Memory

Binding of Instructions and Data to Memory
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Second copy of program from previous example

0x300 00000020 
   …    … 
0x900 8C2000C0 
0x904 0C000280 
0x908 2021FFFF 
0x90C 14200242 
 … 
0x0A00

data1: dw  32 
  …  
start: lw r1,0(data1)  
 jal checkit 
loop: addi r1, r1, -1 
 bnz  r1, r0, loop  
… 
checkit: … 

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

?
App X

Need address translation!
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0x1300 00000020 
   …    … 
0x1900 8C2004C0 
0x1904 0C000680 
0x1908 2021FFFF 
0x190C 14200642 
 … 
0x1A00

data1: dw  32 
  …  
start: lw r1,0(data1)  
 jal checkit 
loop: addi r1, r1, -1 
 bnz  r1, r0, loop  
… 
checkit: … 

Process view of memory Processor view of memory
0x0900

0xFFFF

0x0300

0x0000

Physical  
Memory

App X

8C2004C0 
0C000680 
2021FFFF 
14200642

000000200x1300

0x1900

• One of many possible translations! 
• Where does translation take place? 

Compile time, Link/Load time, or Execution time? 

Second copy of program from previous example
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Multi-step Processing of a Program for Execution

• Preparation of a program for execution 
involves components at: 
– Compile time (i.e., “gcc”) 
– Link/Load time (UNIX “ld” does link) 
– Execution time (e.g., dynamic libs) 

• Addresses can be bound to final values 
anywhere in this path 
– Depends on hardware support  
– Also depends on operating system 

• Dynamic Libraries 
– Linking postponed until execution 
– Small piece of code, stub, used to locate 
appropriate memory-resident library 
routine 

– Stub replaces itself with the address of 
the routine, and executes routine
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Recall: Uniprogramming

• Uniprogramming (no Translation or Protection) 
– Application always runs at same place in physical memory 
since only one application at a time 

– Application can access any physical address 

– Application given illusion of dedicated machine by giving it 
reality of a dedicated machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

A
dd

re
ss

es
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Multiprogramming (primitive stage)
• Multiprogramming without Translation or Protection 

– Must somehow prevent address overlap between threads 

– Use Loader/Linker: Adjust addresses while program loaded into 
memory (loads, stores, jumps) 

» Everything adjusted to memory location of program 
» Translation done by a linker-loader (relocation) 
» Common in early days (… till Windows 3.x, 95?) 

• With this solution, no protection: bugs in any program can 
cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000
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Multiprogramming (Version with Protection)

• Can we protect programs from each other without translation? 

– Yes: use two special registers BaseAddr and LimitAddr to 
prevent user from straying outside designated area 

» If user tries to access an illegal address, cause an error 
– During switch, kernel loads new base/limit from PCB (Process 

Control Block) 
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000
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Recall: General Address translation

• Recall: Address Space: 
– All the addresses and state a process can touch 
– Each process and kernel has different address space 

• Consequently, two views of memory: 
– View from the CPU (what program sees, virtual memory) 
– View from memory (physical memory) 
– Translation box (MMU) converts between the two views 

• Translation makes it much easier to implement protection 
– If task A cannot even gain access to task B’s data, no way 
for A to adversely affect B 

• With translation, every program can be linked/loaded into 
same region of user address space

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write
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Example of General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap & 
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
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Simple Example: Base and Bounds (CRAY-1)

• Could use base/limit for dynamic address translation – 
translation happens at execution: 
– Alter address of every load/store by adding “base” 
– Generate error if address bigger than limit 

• This gives program the illusion that it is running on its 
own dedicated machine, with memory starting at 0 
– Program gets continuous region of memory 
– Addresses within program do not have to be relocated when 
program placed in different region of DRAM

DRAM

<?

+
Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!
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Issues with Simple B&B Method

• Fragmentation problem 
– Not every process is the same size 
– Over time, memory space becomes fragmented 

• Missing support for sparse address space 
– Would like to have multiple chunks/program 
– E.g.: Code, Data, Stack 

• Hard to do inter-process sharing 
– Want to share code segments when possible 
– Want to share memory between processes 
– Helped by providing multiple segments per process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10

process 11
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Summary

• Starvation vs. Deadlock 
– Starvation: thread waits indefinitely 
– Deadlock: circular waiting for resources 

• Four conditions for deadlocks 
– Mutual exclusion 

» Only one thread at a time can use a resource 
– Hold and wait 

» Thread holding at least one resource is waiting to acquire additional 
resources held by other threads 

– No preemption 
» Resources are released only voluntarily by the threads 

– Circular wait 
» ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern 

• Techniques for addressing Deadlock 
– Allow system to enter deadlock and then recover 
– Ensure that system will never enter a deadlock 
– Ignore the problem and pretend that deadlocks never occur in the 
system
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Summary (2)

• Memory is a resource that must be multiplexed 
– Controlled Overlap: only shared when appropriate 
– Translation: Change virtual addresses into physical 
addresses 

– Protection: Prevent unauthorized sharing of resources 

• Simple Protection through segmentation 
– Base + Limit registers restrict memory accessible to user 
– Can be used to translate as well


