
CS162 
Operating Systems and  
Systems Programming  

Lecture 11  
  

Scheduling (Finished), 
Deadlock, Address Translation

October 5th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

9/30/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Recall: Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute 
Tasks Demoted to  

Low Priority

9/30/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Recall: Linux Completely Fair Scheduler (CFS)
• First appeared in 2.6.23, modified in 2.6.24
• Inspired by Networking “Fair Queueing”

– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N processes execute
simultaneously as if they truly got 1/N of the processor

• Idea: Track amount of “virtual time” received by each process when it is
executing

- Take real execution time, scale by a factor to reflect time it would
have gotten on ideal multiprocessor

» So for instance, multiply real time by N
- Keep virtual time for every process advancing at same rate

» Time sliced to achieve multiplexing
- Uses a red-black tree to always find process which has gotten least
amount of virtual time

• Automatically track interactivity:
- Interactive process runs less frequently => lower registered virtual
time => will run immediately when ready to run

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Recall: Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– Real-time is about enforcing predictability, and does not equal to
fast computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First), RMS

(Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
• Soft Real-Time

– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 6

A Final Word On Scheduling

• When do the details of the scheduling policy and fairness
really matter?
– When there aren’t enough resources to go around

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay  
for itself in improved response time

» Assuming you’re paying for worse  
response time in reduced productivity,  
customer angst, etc…

» Might think that you should buy a  
faster X when X is utilized 100%,  
but usually, response time goes  
to infinity as utilization⇒100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve

Utilization

Response
tim

e 100%

9/30/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Resources

• Resources - passive entities needed by threads to do
their work

– CPU time, disk space, memory
• Two types of resources

– Preemptable - can take it away
» CPU

– Non-preemptable - must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

• Resources may require exclusive access or may be
sharable

– Read-only files are typically sharable
– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to
manage resources

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly in

use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2 
Thread B owns Res 2 and is waiting for Res 1

– Deadlock ⇒ Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 9

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:
 Thread A Thread B

 x.P(); y.P();
 y.P(); x.P();
 y.V(); x.V();
 x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and there

it is, controlling a nuclear power plant…
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 10

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on bridge:
each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast ⇒ no one goes west

Ho
n

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no “hungry lawyer”
has two chopsticks afterwards

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 13

Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm
 CPU cycles, memory space, I/O devices

– Each resource type Ri has Wi instances.

– Each thread utilizes a resource as follows:
» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.

» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 → Rj

– assignment edge – directed edge Rj → Ti

R1
R2

T1 T2

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Resource Allocation Graph Examples

T T T

R R

R
R

Simple Resource
Allocation Graph

T T T

R R

R
R

Allocation Graph  
With Deadlock

T

T

T

R

R

T

Allocation Graph  
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1 → Rj
– assignment edge – directed edge Rj → Ti

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for forcibly preempting resources
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks
never occur in the system
– Used by most operating systems, including UNIX

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015

• Only one of each type of resource ⇒ look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-aray vector of non-negative  
integers (quantities of resources of each type):

 [FreeResources]: Current free resources each type 
[RequestX]: Current requests from thread X 
 [AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
 [Avail] = [FreeResources]  

 Add all nodes to UNFINISHED  
 do {

 done = true  
 Foreach node in UNFINISHED {  
 if ([Requestnode] <= [Avail]) {  
 remove node from UNFINISHED  
 [Avail] = [Avail] + [Allocnode]  
 done = false  
 }  
 }  
 } until(done)
– Nodes left in UNFINISHED ⇒ deadlocked

16

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 17

What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into the
river. Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a mutex leaves
world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few minutes never
happened

– For bridge example, make one car roll backwards (may require
others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may reenter
deadlock once again

• Many operating systems use other options

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

– Inefficient, since have to keep retrying
» Consider: driving to San Francisco; when hit traffic jam, suddenly

you’re transported back home and told to retry!

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Techniques for Preventing Deadlock (con’t)

• Make all threads request everything they’ll need at the
beginning.
– Problem: Predicting future is hard, tend to over-estimate
resources

– Example:
» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any intersection

between here and where you want to go; only one car on the
Bay Bridge at a time

• Force all threads to request resources in a particular
order preventing any cyclic use of resources
– Thus, preventing deadlock
– Example (x.P, y.P, z.P,…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on city center by requiring everyone to go

clockwise

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 20

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

 (available resources - #requested) ≥ max  
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some  
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm

» Keeps system in a “SAFE” state, i.e. there exists a sequence
{T1, T2, … Tn} with T1 requesting all remaining resources,
finishing, then T2 requesting all remaining resources, etc..

– Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

Banker’s Algorithm for Preventing Deadlock

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab chopstick
either:

» Not last chopstick
» Is last chopstick but someone will have  

two afterwards
– What if k-handed lawyers? Don’t allow if:

» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Virtualizing Resources

• Physical Reality:  
Different Processes/Threads share the same hardware
– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (Today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is defined by
its data in memory (and registers)

– Consequently, cannot just let different threads of control use the
same memory

» Physics: two different pieces of data cannot occupy the same locations
in memory

– Probably don’t want different threads to even have access to each
other’s memory (protection)

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Next Objective

• Dive deeper into the concepts and mechanisms of memory
sharing and address translation

• Enabler of many key aspects of operating systems
– Protection
– Multi-programming
– Isolation
– Memory resource management
– I/O efficiency
– Sharing
– Inter-process communication
– Debugging
– Demand paging

• Today: Linking, Segmentation, Paged Virtual Address

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Important Aspects of Memory Multiplexing

• Controlled overlap:
– Separate state of threads should not collide in physical memory.
Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when desired (for
communication)

• Translation:
– Ability to translate accesses from one address space (virtual) to
a different one (physical)

– When translation exists, processor uses virtual addresses,
physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Recall: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 27

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, loop
…
checkit: …

Process view of memory Physical addresses
8C2000C0
0C000340
2021FFFF
14200242

0x0900

0xFFFF

0x0300

0x0000

00000020

Physical
Memory

Binding of Instructions and Data to Memory

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Second copy of program from previous example

0x300 00000020
 … …
0x900 8C2000C0
0x904 0C000280
0x908 2021FFFF
0x90C 14200242
 …
0x0A00

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, r0, loop
…
checkit: …

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

?
App X

Need address translation!

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 29

0x1300 00000020
 … …
0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
 …
0x1A00

data1: dw 32
 …
start: lw r1,0(data1)
 jal checkit
loop: addi r1, r1, -1
 bnz r1, r0, loop
…
checkit: …

Process view of memory Processor view of memory
0x0900

0xFFFF

0x0300

0x0000

Physical  
Memory

App X

8C2004C0
0C000680
2021FFFF
14200642

000000200x1300

0x1900

• One of many possible translations!
• Where does translation take place?

Compile time, Link/Load time, or Execution time?

Second copy of program from previous example

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Multi-step Processing of a Program for Execution

• Preparation of a program for execution
involves components at:
– Compile time (i.e., “gcc”)
– Link/Load time (UNIX “ld” does link)
– Execution time (e.g., dynamic libs)

• Addresses can be bound to final values
anywhere in this path
– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to locate
appropriate memory-resident library
routine

– Stub replaces itself with the address of
the routine, and executes routine

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Recall: Uniprogramming

• Uniprogramming (no Translation or Protection)
– Application always runs at same place in physical memory
since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving it
reality of a dedicated machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

A
dd

re
ss

es

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Multiprogramming (primitive stage)
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (… till Windows 3.x, 95?)

• With this solution, no protection: bugs in any program can
cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Multiprogramming (Version with Protection)

• Can we protect programs from each other without translation?

– Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area

» If user tries to access an illegal address, cause an error
– During switch, kernel loads new base/limit from PCB (Process

Control Block)
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 34

Recall: General Address translation

• Recall: Address Space:
– All the addresses and state a process can touch
– Each process and kernel has different address space

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (MMU) converts between the two views

• Translation makes it much easier to implement protection
– If task A cannot even gain access to task B’s data, no way
for A to adversely affect B

• With translation, every program can be linked/loaded into
same region of user address space

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 35

Example of General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Simple Example: Base and Bounds (CRAY-1)

• Could use base/limit for dynamic address translation –
translation happens at execution:
– Alter address of every load/store by adding “base”
– Generate error if address bigger than limit

• This gives program the illusion that it is running on its
own dedicated machine, with memory starting at 0
– Program gets continuous region of memory
– Addresses within program do not have to be relocated when
program placed in different region of DRAM

DRAM

<?

+
Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Issues with Simple B&B Method

• Fragmentation problem
– Not every process is the same size
– Over time, memory space becomes fragmented

• Missing support for sparse address space
– Would like to have multiple chunks/program
– E.g.: Code, Data, Stack

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by providing multiple segments per process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10

process 11

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 38

Summary

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire additional
resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
» ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never occur in the
system

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 39

Summary (2)

• Memory is a resource that must be multiplexed
– Controlled Overlap: only shared when appropriate
– Translation: Change virtual addresses into physical
addresses

– Protection: Prevent unauthorized sharing of resources

• Simple Protection through segmentation
– Base + Limit registers restrict memory accessible to user
– Can be used to translate as well

