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Recall: Scheduling
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- Question: How is the OS to decide which of several tasks to take

off a queue?

- Scheduling: deciding which threads are given access to resources
from moment to moment
- The high-level goal: Dole out CPU time to optimize some desired

parameters of system
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Recall: Scheduling Policy Goals/Criteria

- Minimize Response Time
- Minimize elapsed time to do an operation (or job)

- Response time is what the user sees:
» Time to echo a keystroke in editor

» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
- Maximize Throughput
- Maximize operations (or jobs) per second

- Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if
you only maximized throughput

- Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
- Fairness
- Share CPU among users in some equitable way
- Fairness is not minimizing average response time:
» Better average response time by making system less fair
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Recall: First-Come, First-Served (FCFS) Scheduling

- First-Come, First-Served (FCFS)
- Also "First In, First Out” (FIFO) or "Run until done”

» In early systems, FCFS meant one program
scheduled until done (including I/0)

» Now, means keep CPU until thread blocks

- Example: Process  Burst Time
P, 24
P, 3
P 3

Suppose processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30
- Waiting time for P, = 0; P, = 24; P, = 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27
- Convoy effect: short process behind long process
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Round Robin (RR)

- FCFS Scheme: Potentially bad for short jobs!
- Depends on submit order

- If you are first in line at supermarket with milk, you don't
care who is behind you, on the other hand..

- Round Robin Scheme

- Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

- After quantum expires, the process is preempted
and added to the end of the ready queue.

- n processes in ready queue and time quantum is q =
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units
* Performance
- q large = FCFS
- q small = Interleaved (really small = hyperthreading?)

- q must be large with respect to context switch, otherwise
overhead is too high (all overhead)
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Example of RR with Time Quantum = 20

* Example : Process Burst Time
P, 53
P, 8
P, 68
P, 24

The Gantt chart is:

P, P, |Ps [P, [P, [P, P, |P, |Ps |Ps

O 20 28 48 ©68 88 108 112 125 145 153
- Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)-88
- Average waiting time = (72+20+85+88)/4=66%
- Average completion time = (125+28+153+112)/4 = 1043

« Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)
- Context-switching time adds up for long jobs (-)
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Round-Robin Discussion

- How do you choose time slice?
- What if too big?
» Response time suffers
- What if infinite («)?
» Get back FIFO

- What if time slice too small?
» Throughput suffers!

- Actual choices of timeslice:

- Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.

» What if three compilations going on? 3 seconds to echo each
keystrokel

- In practice, need to balance short-job performance and
long- job throughput:
» Typical time slice today is between 10ms - 100ms
» Typical context-switching overhead is O.1ms - 1ms
» Roughly 1% overhead due to context-switching
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Comparisons between FCFS and Round Robin

- Assuming zero-cost context-switching time, is RR always
better than FCFS?

- Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s
All jobs start at the same time

- Completion Times:

Job # FIFO RR
1 100 991
2 200 992
9 900 999
10 1000 1000

- Both RR and FCFS finish at the same time
- Average response time is much worse under RR!
» Bad when all jobs same length
- Also: Cache state must be shared between all jobs with RR
but can be devoted to each job with FIFO

- Total time for RR longer even for zero-cost switch!
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Earlier Example with Different Time Quantum

P, Py P, Py
Best FCFS: 18] |[24] [53] [68]
0 8 32 85 153
Quantum P, P, P, P, Average
Best FCFS (32 |0 85 8 312
Q-1 84 |22 85 57 62
| Q-5 82 |20 85 58 612
1\?:::;' Q-8 80 |8 85 56 574
Q = 10 82 |10 85 68 612
Q = 20 72 |20 85 88 66
Worst FCFS |68 145 0 121 832
Best FCFS |85 |8 153 |32 691
Q-1 137 |30 153 |81 1003
_la=5 135 |28 153 |82 994
f_‘i’:z'em" Q-8 133 |16 153 |80 95+
Q = 10 135 |18 153 |92 994
Q= 20 125 |28 153|112 1043
Worst FCFS 121|153 |68 145 1212
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Handling differences in importance:
Strict Priority Scheduling

Priority 3

Priority 2

'—:-.--

Priority 1

Priority O

—>30b 5 |—*Tob 6 |~>{7ob 7 |

- Execution Plan

- Always execute highest-priority runable jobs to completion
- Each queue can be processed in Round-Robin fashion with some time-quantum

- Problems:
- Starvation:

» Lower priority jobs don't get to run because higher priority tasks always

running

- Deadlock: Priority Inversion

» Not strictly a problem with priority scheduling, but happens when low priority
task has lock needed by high-priority task

» Usually involves third, intermediate priority task that keeps running even
though high-priority task should be running

- How to fix problems?

- Dynamic priorities - adjust base-level priority up or down based on heuristics

about interactivity,

9/30/15

locking, burst behavior, etc...
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Scheduling Fairness

* What about fairness?
- Strict fixed-priority scheduling between queues is unfair (run
highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job

- Must give long-running jobs a fraction of the CPU even when
there are shorter jobs to run

- Tradeoff: fairness gained by hurting avg response timel

- How to implement fairness?
- Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?

» Like express lanes in a supermarket—sometimes express lanes get
so long, get better service by going into one of the other lines

- Could increase priority of jobs that don't get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?

» And, as system gets overloaded, no job gets CPU time, so
everyone increases in priority=Interactive jobs suffer
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Lottery Scheduling

- Yet another alternative: Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket

- On average, CPU time is proportional to number of tickets
given to each job

- How to assign tickets?

- To approximate SRTF, short running jobs get more, long
running jobs get fewer

- To avoid starvation, every job gets at least one ticket
(everyone makes progress)

- Advantage over strict priority scheduling: behaves
gracefully as load changes

- Adding or deleting a job affects all jobs proportionally,
independent of how many tickets each job possesses
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Lottery Scheduling Example

- Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

- What if too many short jobs to give reasonable
response time?

» If load average is 100, hard to make progress
» One approach: log some user out
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How to Evaluate a Scheduling algorithm?

- Deterministic modeling

- takes a predetermined workload and compute the performance
of each algorithm for that workload

- Queueing models
- Mathematical approach for handling stochastic workloads

- Implementation/Simulation:

- Build system which allows actual algorithms to be run against
actual data. Most flexible/general.
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Recall: CPU Burst Behavior
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- Execution model: programs alternate between bursts of CPU and
I/0

- Program typically uses the CPU for some period of time, then does
I/0, then uses CPU again

- Each scheduling decision is about which job to give to the CPU for
use by its next CPU burst

- With timeslicing, thread may be forced to give up CPU before
finishing current CPU burst
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How to handle simultaneous mix of different types of applications?

Can we use Burst Time (observed) to decide which application gets
CPU time?
Consider mix of interactive and high throughput apps:
- How to best schedule them?
- How to recognize one from the other?
» Do you trust app to say that it is “interactive”?

- Should you schedule the set of apps identically on servers, workstations,
pads, and cellphones?

Assumptions encoded info many schedulers:

- Apps that sleep a lot and have short bursts must be interactive apps -
they should get high priority

- Apps that compute a lot should get low(er?) priority, since they won't
notice intermittent bursts from interactive apps

Hard to characterize apps:

- What about apps that sleep for a long time, but then compute for a
long time?

- Or, what about apps that must run under all circumstances (say
periodically)
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What if we Knew the Future?

- Could we always mirror best FCFS?

- Shortest Job First (SJF):

- Run whatever job has the least amount of
computation to do

- Sometimes called "Shortest Time to
Completion First” (STCF)
- Shortest Remaining Time First (SRTF):

- Preemptive version of SJF: if job arrives and has a shorter time
to completion than the remaining time on the current job,
immediately preempt CPU

- Sometimes called "Shortest Remaining Time to Completion
First” (SRTCF)
- These can be applied either to a whole program or the
current CPU burst of each program
- Idea is to get short jobs out of the system
- Big effect on short jobs, only small effect on long ones
- Result is better average response time
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Discussion

- SJF/SRTF are the best you can do at minimizing
average response time

- Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

- Since SRTF is always at least as good as SJF, focus on
SRTF

- Comparison of SRTF with FCFS and RR

- What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

- What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones
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Example to illustrate benefits of SRTF

AorB C

|
— — —
Cs CCs C's
I/0 I/0 I/0

- Three jobs:

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B could
use 100% of the CPVU

- With FIFO:
- Once A or B get in, keep CPU for two weeks

- What about RR or SRTF?
- Easier to see with a timeline
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SRTF Example continued: .
Disk Utilization: J

C A B 9/201 ~ 4.5%
| |
| I
C's RR 100ms time slice D|Sko Utilization:
I/0 ~90% but lots of
CABAB. ¢ wakeups! y

11111
(T
—  —

RR 1ms time slice

C's C's
/0 1/0 Disk Utilization:
C A A A 90%
e

SRTF
C's C's
I/0 I/0
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SRTF Further discussion

- Starvation
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run

- Somehow need to predict future
- How can we do this?

- Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

- But: Even non-malicious users have trouble predicting runtime of
their jobs
- Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better
* SRTF Pros & Cons
- Optimal (average response time) (+)
- Hard to predict future (-)
- Unfair (-)
9/30/15 Kubiatowicz €5162 ©UCB Fall 2015




Predicting the Length of the Next CPU Burst

- Adaptive: Changing policy based on past behavior
- CPU scheduling, in virtual memory, in file systems, etc

- Works because programs have predictable behavior
» If program was I/0 bound in past, likely in future
» If computer behavior were random, wouldn't help

- Example: SRTF with estimated burst length

- Use an estimator function on previous bursts:
Let t,_,, t..,, t,_.5, etc. be previous CPU burst lengths.

Estimate next burst t, = f(t,_,, t,.,. .5, --)

n-2¢ "n-3¢

- Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

- For instance, —
exponential averaging N %
T, = ot _+(1-a)t,_, SO I I I
with (O<o<1)
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Multi-Level Feedback Scheduling

> quantum &8

-ong-Running Compute
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- Another method for exploiting past behavior

- First used in CTSS

- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks

- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1ms, next:2ms, next: 4ms, etc)

- Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level

- If timeout doesn't expire, 5push uy one level (or to top)
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Scheduling Details

- Result approximates SRTF:
- CPU bound jobs drop like a rock

- Short-running I/0 bound jobs stay near top

- Scheduling must be done between the queues
- Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
- Time slice:
» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
- Countermeasure: user action that can foil intent of the OS
designer
- For multilevel feedback, put in a bunch of meaningless I/0 to
keep job's priority high
- Of course, if everyone did this, wouldn't work!
- Example of Othello program:

- Playing against competitor, so key was to do computing at
higher priority than the competitors.
» Put in printf's, ran much faster!
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Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0] 100 139

* Priority-based scheduler: 140 priorities
- 40 for “user tasks” (set by "nice”), 100 for "Realtime/Kernel”
- Lower priority value = higher priority (for nice values)
- Highest priority value = Lower priority (for realtime values)

- All algorithms O(1)

» TimesIlices/pr'ior'i'ries/inter'ac'rivi‘ry credits all computed when job finishes
time slice

» |140i-bi1 bit mask indicates presence or absence of job at given priority
eve

- Two separate priority queues: "active” and “expired”

- All tasks in the active queue use up their timeslices and get placed on
the expired queue, after which queues swapped

- Timeslice depends on priority - linearly mapped onto timeslice range

- Like a multi-level queue (one queue per priority) with different
timeslice at each level

- Execution split into "Timeslice Granularity” chunks - round robin
through priority
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O(1) Scheduler Continued

* Heuristics
- User-task priority adjusted +5 based on heuristics
» p->sleep_avg = sleep_time - run_time

» Highe)r sleep_avg = more I/O bound the task, more reward (and vice
versa

- Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time

» IC is used to provide hysteresis to avoid changing interactivity for
temporary changes in behavior

- However, “interactive tasks” get special dispensation
» To try to maintain interactivity

» Placed back into active queue, unless some other task has been starved
for too long...

- Real-Time Tasks
- Always preempt non-RT tasks
- No dynamic adjustment of priorities
- Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit

» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of
same priority
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Linux Completely Fair Scheduler (CFS)

- First appeared in 2.6.23, modified in 2.6.24

- "CFS doesn't track sleeping time and doesn't use
heuristics to identify interactive tasks—it just makes sure
every process gets a fair share of CPU within a set
amount of time given the number of runnable processes on
the CPU.”

- Inspired by Networking “"Fair Queueing”
- Each process given their fair share of resources

- Models an "ideal multitasking processor” in which N
processes execute simultaneously as if they truly got 1/N of
the processor

» Tries to give each process an equal fraction of the processor

- Priorities reflected by weights such that increasing a task's
priority by 1 always gives the same fractional increase in
CPU time - regardless of current priority
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Real-Time Scheduling (RTS)

- Efficiency is important but predictability is essential:

- We need to be able to predict with confidence the worst case response
times for systems

- In RTS, performance guarantees are:
» Task- and/or class centric
» Often ensured a priori

- In conventional systems, performance is:
» System oriented and often throughput oriented
» Post-processing (... wait and see ...)

- Real-time is about enforcing predictability, and does not equal to fast
computing!l!

- Hard Real-Time
- Attempt to meet all deadlines

- EDF (Earliest Deadline First), LLF (Least Laxity First), RMS (Rate-
Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

- Soft Real-Time
- Attempt to meet deadlines with high probability
- Minimize miss ratio / maximize completion ratio (firm real-time)
- Important for multimedia applications
- CBS (Constant Bandwidth Server)
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Example: Workload Characteristics

- Tasks are preemptable, independent with arbitrary
arrival (=release) times

- Times have deadlines (D) and known computation times
©)
- Example Setup:

A
Lt D
. |
T2 (e D, l
. rC, D
5] '

h (."_ D
. ]
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Example: Round-Robin Scheduling Doesn't Work

Missed
deadline!!

—]
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ﬂ
e

—
'S
—
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Earliest Deadline First (EDF)

- Tasks periodic with period P and computation C in
each period: (P, C)

* Preemptive priority-based dynamic scheduling

- Each task is assigned a (current) priority based on
how close the absolute deadline is.

- The scheduler always schedules the active task with
the closest absolu1'e deadline.

r-en WL M .t i
(52)T—- - M—
(72)T : - | % | - — .

0 5 10 15
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EDF: Schedulability Test

Theorem (Utilization- based Schedulability Test):

A task set 10T, with Di=1 is schedulable
by the earliest deadline first (EDF) scheduling

algorithm if
D

i=1

Exact schedulability test (necessary + sufficient)
Proof: [Liu and Layland, 1973]
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Resources

- Resources - passive entities needed by threads to do
their work

- CPU time, disk space, memory
- Two types of resources

- Preemptable - can take it away
» CPU
- Non-preemptable - must leave it with the thread
» Disk space, plotter, chunk of virtual address space
» Mutual exclusion - the right to enter a critical section

- Resources may require exclusive access or may be
sharable
- Read-only files are typically sharable
- Printers are not sharable during time of printing
- One of the major tasks of an operating system is to
manage resources
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Starvation vs Deadlock

- Starvation vs. Deadlock

- Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly in
use by high-priority threads
- Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and.is waiting for Res 1

Owned Wait
For
BY
Wait Ov;ned
For Y

- Deadlock = Starvation but not vice versa
» Starvation can end (but doesn't have to)
» Deadlock can't end without external intervention
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Summary

Round-Robin Scheduling:

- Give each thread a small amount of CPU time when it executes; cycle
between all ready threads

- Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

- Run whatever job has the least amount of computation to do/least
remaining amount of computation to do

- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair
Multi-Level Feedback Scheduling:
- Multiple queues of different priorities and scheduling algorithms

- Automatic promotion/demotion of process priority in order to approximate
SJF/SRTF

Lottery Scheduling:

- Give each thread a priority-dependent number of tokens (short
tasks=more tokens)

Linux CFS Scheduler: Fair fraction of CPU
- Approximates a “ideal” multitasking processor

Realtime Schedulers such as EDF
- Guaranteed behavior by meeting deadlines
- Realtime tasks defined by tuple of compute time and period

- Schedulability test: is it possible to meet deadlines with proposed set of

processes?
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