
CS162 
Operating Systems and  
Systems Programming  

Lecture 1  
 

What is an Operating System?

August 26th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu
Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Greatest Artifact of Human Civilization…

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 3

 3 Billion Internet Users by …

1969

2.0 B 1/26/11

1974

RF
C

67
5

TC
P/

IP
WWW

A
RP

A
N
et Internet

H
TT

P
0.

9

1990 2010

2.8 B

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Operating Systems at the heart of it all …

• Make the incredible advance in the underlying hardware
available to a rapid evolving body of applications.
– Processing, Communications, Storage, Interaction

• The key building blocks
– Scheduling
– Concurrency
– Address spaces
– Protection, Isolation, Security
– Networking, distributed systems
– Persistent storage, transactions, consistency, resilience
– Interfaces to all devices

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Example: What’s in a Search Query?

• Complex interaction of multiple components in multiple
administrative domains

– Systems, services, protocols, …

Datacenter

Load
balancer

Ad Server

DNS
Servers

Search
Index

DNS
request

create
result
page

Page
store

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Why take CE424?

• Some of you will actually design and build
operating systems or components of them.
– Perhaps more now than ever

• Many of you will create systems that utilize the
core concepts in operating systems.
– Whether you build software or hardware
– The concepts and design patterns appear at many
levels

• All of you will build applications, etc. that utilize
operating systems
– The better you understand their design and
implementation, the better use you’ll make of them.

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Goals for Today

• What is an Operating System?
– And – what is it not?

• Examples of Operating Systems design
• What makes Operating Systems So Exciting?
• Oh, and “How does this class operate?”

Interactive is important!
 Ask Questions!

Slides courtesy of David Culler, John Kubiatowicz, AJ Shankar,
George Necula, Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica,
Doug Tygar, and David Wagner.

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 8

What is an operating system?
• Special layer of software that provides application software

access to hardware resources
– Convenient abstraction of complex hardware devices
– Protected access to shared resources
– Security and authentication
– Communication amongst logical entities

Hardware

appln
appln

appln

OS

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 9

Operator …

Switchboard Operator

Computer Operators

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 10

OS Basics: “Virtual Machine” Boundary

storage

OS Hardware Virtualization

Hardware
Software

Processor

Memory

Networks

Displays

Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

Threads

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Interfaces Provide Essential Boundaries

• Why do interfaces look the way that they do?
– History, Functionality, Stupidity, Bugs, Management
– CE323 ⇒ Machine interface
– CE227 ⇒ Human interface
– CE418 ⇒ Software engineering/management

instruction set

software

hardware

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 12

OS Basics: Program => Process

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 13

OS Basics: Context Switch

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 14

OS Basics: Scheduling, Protection

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 15

OS Basics: I/O

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 16

OS Basics: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 17

What make Operating Systems
exciting and Challenging

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Technology Trends: Moore’s Law

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 19https://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 20

People-to-Computer Ratio Over Time

• Today: Multiple CPUs/person!
– Approaching 100s?

From David Culler

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 21

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

25%/year

52%/year

??%/year

New Challenge: Slowdown in Joy’s law of Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

⇒ Sea change in chip design:
multiple “cores” or
processors per chip

3X

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 22

ManyCore Chips: The future is here

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Parallelism must be exploited at all levels

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two FP-engines / core
– Mesh-like network
– 100 million transistors
– 65nm feature size

• Intel Single-Chip Cloud  
Computer (August 2010)
– 24 “tiles” with two cores/tile
– 24-router mesh network
– 4 DDR3 memory controllers
– Hardware support for message-passing

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Another Challenge: Power Density

• Moore’s Law Extrapolation
– Potential power density reaching amazing levels!

• Flip side: Battery life very important

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Storage Capacity

• Retail hard disk capacity in GB  
(source: http://www.digitaltonto.com/2011/our-emergent-digital-future/)

http://www.digitaltonto.com/2011/our-emergent-digital-future/

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Network Capacity

(source: http://www.ospmag.com/issue/article/Time-Is-Not-Always-On-Our-Side)

http://www.ospmag.com/issue/article/Time-Is-Not-Always-On-Our-Side

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Internet Scale: .96 Billion Hosts

https://www.isc.org/solutions/survey

963,518,598996,230,757 July 2013

https://www.isc.org/solutions/survey

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Internet Scale: 2.8 Billion Users!

(source: http://www.internetworldstats.com/stats.htm)

http://www.internetworldstats.com/stats.htm

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Not Only PCs connected to the Internet

• Smartphone shipments now exceed PC shipments!

• 2011 shipments:
– 487M smartphones
– 414M PC clients

» 210M notebooks
» 112M desktops
» 63M tablets

– 25M smart TVs

• 4 billion phones in the world ! smartphone over next
decade

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Societal Scale Information Systems  
(Or the “Internet of Things”?)

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet  
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce
 …

• The world is a large
distributed system
– Microprocessors in
everything

– Vast infrastructure behind
them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Infrastructure, Textbook & Readings

• Infrastructure
– Website: http://sharif.edu/~kharrazi/courses/40424-961
– Mailing list

• Textbook: Operating Systems: Principles and Practice  
(2nd Edition) Anderson and Dahlin

• Recommend: Operating Systems Concepts,  
9th Edition Silbershatz, Galvin, Gagne

• Online supplements
– See course website
– Networking, Databases, Software Eng, Security

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Syllabus

• OS Concepts: How to Navigate as a Systems Programmer!
– Process, I/O, Networks and VM

• Concurrency
– Threads, scheduling, locks, deadlock, scalability, fairness

• Address Space
– Virtual memory, address translation, protection, sharing

• File Systems
– i/o devices, file objects, storage, naming, caching,

performance, paging, transactions, databases
• Distributed Systems (8)

– Protocols, N-Tiers, RPC, NFS, DHTs, Consistency, Scalability,
multicast

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Learning by Doing

• Individual Homework (1-2 weeks): Learn Systems
Programming
– 0. Tools, Autograding, recall C, executable
– 1. Simple Shell
– 2. Web server
– 3. Memory Management

• Three Group Projects (Pintos in C)
– 1. Threads & Scheduling
– 2. User-programs
– 3. File Systems

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Getting started
• Start homework 0 immediately

– Github account
– Vagrant virtualbox – VM environment for the course

» Consistent, managed environment on your machine
– Get familiar with all the tools

• Waitlist ???
– If you are not serious about taking the course, please drop
the course now

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 34

Group Project Simulates Industrial Environment

• Project teams have 4 members (try really hard to get 4
members – 3 members requires serious justification)
– Must work in groups in “the real world”

• Communicate with colleagues (team members)
– Communication problems are natural
– What have you done?
– What answers you need from others?
– You must document your work!!!

• Communicate with supervisor (TAs)
– What is the team’s plan?
– What is each member’s responsibility?
– Short progress reports are required
– Design Documents: High-level description for a manager!

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 35

Grading

• 15% Midterms
• 25% Final
• 25% Homework
• 40% Group HWs
• Group HWs grading

– [10 pts] Initial design
– [10 pts] Design review
– [10 pts] Design document
– [60 pts] Code (3 checkpoints)
– [10 pts] Final design

• Submission via git push to release branch
• Regular git push so TA sees your progress

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Ce 424 Collaboration Policy

Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other groups
Helping debug someone else’s code (in another group)
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from from
prior years

We compare all project submissions against prior year
submissions and online solutions and will take actions
(described on the course overview page) against offenders

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 37

What is an Operating System?

• Referee
– Manage sharing of resources, Protection, Isolation

» Resource allocation, isolation, communication

• Illusionist
– Provide clean, easy to use abstractions of physical
resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 38

Challenge: Complexity

• Applications consisting of…
– … a variety of software modules that …
– … run on a variety of devices (machines) that

» … implement different hardware architectures
» … run competing applications
» … fail in unexpected ways
» … can be under a variety of attacks

• Not feasible to test software for all possible
environments and combinations of components and
devices
– The question is not whether there are bugs but how
serious are the bugs!

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 39

A modern processor: SandyBridge

• Package: LGA 1155
– 1155 pins
– 95W design envelope

• Cache:
– L1: 32K Inst, 32K Data  

(3 clock access)
– L2: 256K (8 clock access)
– Shared L3: 3MB – 20MB  

(not out yet)

• Transistor count:
– 504 Million (2 cores, 3MB L3)
– 2.27 Billion (8 cores, 20MB L3)

• Note that ring bus is on high metal
layers – above the Shared L3 Cache

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 40

Functionality comes with great complexity!

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

SandyBridge I/O
Configuration

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 41

Increasing Software Complexity

From MIT’s 6.033 course

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 42

Example: Some Mars Rover (“Pathfinder”) Requirements
• Pathfinder hardware limitations/complexity:

– 20Mhz processor, 128MB of DRAM, VxWorks OS
– cameras, scientific instruments, batteries,  

solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!
– Must reboot itself if necessary
– Must always be able to receive commands from Earth

• Individual Programs must not interfere
– Suppose the MUT (Martian Universal Translator Module) buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally
– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:
– Need to stop before hitting something
– Must track orbit of Earth for communication

• A lot of similarity with the Internet of Things?
– Complexity, QoS, Inaccessbility, Power limitations … ?

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 43

How do we tame complexity?

• Every piece of computer hardware different
– Different CPU

» Pentium, PowerPC, ColdFire, ARM, MIPS
– Different amounts of memory, disk, …
– Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint readers
– Different networking environment

» Cable, DSL, Wireless, Firewalls,…
• Questions:

– Does the programmer need to write a single program that
performs many independent activities?

– Does every program have to be altered for every piece of
hardware?

– Does a faulty program crash everything?
– Does every program have access to all hardware?

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 44

OS Tool: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks ⇒  

 what programmers want/need
– Optimize for convenience, utilization, security, reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):
– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 45

Virtual Machines

• Software emulation of an abstract machine
– Give programs illusion they own the machine

– Make it look like hardware has features you want

• Two types of “Virtual Machine”s
– Process VM: supports the execution of a single program;
this functionality typically provided by OS

– System VM: supports the execution of an entire OS and its
applications (e.g., VMWare Fusion, Virtual box, Parallels
Desktop, Xen)

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 46

Process VMs

• Programming simplicity
– Each process thinks it has all memory/CPU time
– Each process thinks it owns all devices
– Different devices appear to have same high level interface
– Device interfaces more powerful than raw hardware

» Bitmapped display ⇒ windowing system
» Ethernet card ⇒ reliable, ordered, networking (TCP/IP)

• Fault Isolation
– Processes unable to directly impact other processes
– Bugs cannot crash whole machine

• Protection and Portability
– Java interface safe and stable across many platforms

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 47

System Virtual Machines: Layers of OSs

• Useful for OS development
– When OS crashes, restricted to one VM
– Can aid testing programs on other OSs

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 48

What is an Operating System,… Really?

• Most Likely:
– Memory Management
– I/O Management
– CPU Scheduling
– Communications? (Does Email belong in OS?)
– Multitasking/multiprogramming?

• What about?
– File System?
– Multimedia Support?
– User Interface?
– Internet Browser? ☺

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 49

Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an

operating system” is good approximation
– But varies wildly

• “The one program running at all times on the
computer” is the kernel.
– Everything else is either a system program (ships
with the operating system) or an application program

8/26/15 Kubiatowicz CS162 ©UCB Fall 2015 50

“In conclusion…”

• Operating systems provide a virtual machine
abstraction to handle diverse hardware

• Operating systems coordinate resources and
protect users from each other

• Operating systems simplify application
development by providing standard services

• Operating systems can provide an array of fault
containment, fault tolerance, and fault recovery

