CS162
Operating Systems and
Systems Programming

Lecture 21

Filesystem Transactions (Con't),
End-to-End Argument,
Distributed Decision Making

April 6t 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the

bottom of that slide, in which case a full list of references is provided on the last
slide.

4/16/20

Recall: The ACID properties of Transactions

Atomicity: all actions in the transaction happen, or none happen

Consistency: transactions maintain data integrity, e.g,,
— Balance cannot be negative

— Cannot reschedule meeting on February 30

Isolation: execution of one transaction iIs isolated from that of all
others; no problems from concurrency

Durability: if a transaction commits, its effects persist despite
crashes

Kubiatowicz CS162 © UCB Spring 2020

Concept of a log

* One simple action is atomic — write/append a basic item

 Use that to seal the commitment to a whole series of actions

< @ > X|[>
- -
= + < | + 2
= = 3 cl =
2 o b= o 3| 3 <
Q 8 %] off © <]
- Q 3 Q Qff O
g © S| | S 18| |~
- £ £ £ olo| | £
t £ S| | & tlE| | E
% \.— q_ k'- oo || camm g
+ A A | A
0 o ﬁ' ™ 10 || 10 ©
- -y o) || i
-
- o + | 4=
Q =1l=
S © O a|a

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

Transactional File Systems

* Better reliability through use of log
— All changes are treated as transactions

— A transaction is committed once 1t Is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

— @Ithlough File system may not be updated immediately, data preserved in
e log

 Difference between “Log Structured” and “Journaled”
— In a Log Structured filesystem, data stays in log form
— In a Journaled filesystem, Log used for recovery

* Journaling File System
— Applies updates to system metadata using transactions (using logs, etc.)

— Updates to non-directory files (i.e., user stuff) can be done in place
(without logs), full logging optional

— BExX: NTFS, Apple HFSH, Linux XFS, JFS, ext3, ext4

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 4

Journaling File Systems

Instead of modifying data structures on disk directly, write changes to a
journal/log

— Intention list: set of changes we intend to make
— Log/|ournal is append-only
— Single commit record commits transaction

Once changes are in the log, it is safe to apply changes to data structures on
disk
— Recovery can read log to see what changes were intended

— Can take our time making the changes
» As long as new requests consult the log first

Once changes are copied, safe to remove log
But, ...

— If the last atomic action is not done ... poof ... all gone
Basic assumption:

— Updates to sectors are atomic and ordered

— Not necessarily true unless very careful, but key assumption

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 5

* Find dirent insertion point

* Write map (i.e., mark used)

4/16/20

Example: Creating a File

Find free inode entry

Write inode entry to point to block(s)

Find free data block(s)

Write dirent to point to inode

Kubiatowicz CS162 © UCB Spring 2020

Free space
map

Data blocks

Inode table

Directory
entries

Ex: Creating a file (as a transaction)

Find free data block(s)

* Find free inode entry

* Find dirent insertion point

* [log] Write map (used)
* [log] Write inode entry to point to
block(s)

* [log] Write dirent totﬁoint to inoﬂ

&
ead

done

\!—L%EJ

4/16/20

Free space
map

Data blocks

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)
Kubiatowicz CS162 © UCB Spring 2020

commit
~N

“Redo Log ™ — Replay Transactions

o After Commit

* All access to file system first looks In Free space
log map
Data blocks
» Eventually copy changes to disk Inode table
Directory
entries
tail tail ta tail ¢aj| head
ﬁ & /—&H ¢
done et k=
S — £
@ O
-
pending . Q
Log: in non-volatile storage (Flash or Disk)
4/16/20 Kubiatowicz CS162 © UCB Spring 2020 8

4/16/20

Crash During Logging — Recover

Upon recovery scan the log

Detect transaction
commit

Discard log entries

Disk remains unchanged

start with no

tail head

done

Free space
map

Data blocks

Inode table

Directory
entries

W/

e

Log: in non-volatile storage (Flash or on Disk)

Kubiatowicz CS162 © UCB Spring 2020

[\

Recovery After Commit

* Scan log, find start

* Find matching commit Free space

map
* Redo it as usual
— Orjust let it happen later

Data blocks

Inode table

Directory
entries

head
| y

- -

Log: in non-volatile storage (Flash or on Disk)
4/16/20 Kubiatowicz CS162 © UCB Spring 2020 10

tail

done

commit

Journaling Summary

Why go through all this trouble?

* Updates atomic, even if we crash:
— Update erther gets fully applied or discarded
— All physical operations treated as a logical unit

Isn't this expensive!

* Yesl We're now writing all data twice (once to log, once to
actual data blocks in target file)

* Modern filesystems offer an option to journal metadata
updates only

— Record modifications to file system data structures
— But apply updates to a file's contents directly

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 I

4/16/20

Going Further — Log Structured File Systems

The log IS what Is recorded on disk

— File system operations logically replay log to get result

— Create data structures to make this fast

— On recovery, replay the log
Index (inodes) and directories are written into the log too
Large, important portion of the log is cached in memory
Do everything in bulk: log is collection of large segments

Fach segment contains a summary of all the operations within the
segment

— Fast to determine if segment is relevant or not
Free space is approached as continual cleaning process of segments
— Detect what is live or not within a segment
— Copy live portion to new segment being formed (replay)
— Garbage collection entire segment
— No brt map

Kubiatowicz CS162 © UCB Spring 2020 12

Example Use of LFS:
F2FS: A Flash File System

File system used on many mobile devices
— Including the Pixel 3 from Google
— Latest version supports block-encryption for security
— Has been “mainstream” in linux for several years now

Assumes standard SSD interface
— With built-in Flash Translation Layer (FTL)
— Random reads are as fast as sequential reads
— Random writes are bad for flash storage
» Forces FTL to keep moving/coalescing pages and erasing blocks
» Sustained write performance degrades/lifetime reduced

Minimize Writes/updates and otherwise keep writes “sequential”
— Start with Log-structured file systems/copy-on-write file systems
— Keep writes as sequential as possible
— Node Translation Table (NAT) for “logical” to “physical” translation
» Independent of FTL

For more details, check out paper in Readings section of website
— "“"F2FS: A New File System for Flash Storage™ (from 2015)
— Design of file system to leverage and optimize NAND flash solutions
— Comparison with Ext4, Btrfs, Nilfs2, etc

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

Societal Scale Information Systems

-
1 -

- Microprocessors in everything gt
- Vast infrastructure behind | =

.....
......

Internet

Connectivity Scalable, Reliable,

Secure Services

"Information Collection
Remote Storage
Online Games
Commerce

L, u*, :

MEMS Tor

Sensor Nets
4/16/20 Kubiatowicz CS162 © UCB Spring 2020 14

Client/Server Model

Peer-to-Peer Model

* Centralized System: System in which major functions are performed
by a single physical computer
— Oniginally, everything on single computer
— Later: client/server model

* Distributed System: physically separate computers working together
on some task

— Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

— Later models: peer-to-peer/wide-spread collaboration

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 I5

Distributed Systems: Motivation/Issues/Promise

* Why do we want distributed systems!?
— Cheaper and easier to build lots of simple computers
— Easier to add power incrementally
— Users can have complete control over some components
— Collaboration: much easier for users to collaborate through network
resources (such as network file systems)

* The promise of distributed system:s:
— Higher availability: one machine goes down, use another
— Better durability: store data in multiple locations
— More security: each piece easier to make secure

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 16

Distributed Systems: Reality

* Reality has been disappointing

— Worse availability: depend on every machine being up

» Lamport:"A distributed system is one in which the
fallure of a computer you didn't even know existed
can render your own computer unusable.”

— Worse reliability: can lose data if any machine crashes
— Worse security: anyone in world can break into system

e Coordination is more difficult

— Must coordinate multiple copies of shared state
information (using only a network)

Leslie Lamport

— What would be easy in a centralized system becomes
a lot more difficult

 Trust/Security/Privacy/Denial of Service
— Many new variants of problems arise as a result of distribution

— Can you trust the other members of a distributed application enough to even
perform a protocol correctly?

— Corollary of Lamport's quote:"A distributed system is one where you can't do
work because some computer you didn't even know existed is successfully
coordinating an attack on my system!”

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 |7

Distributed Systems: Goals/Requirements

* Transparency: the ability of the system to mask its complexity behind a
simple interface

 Possible transparencies:
— Location: Can't tell where resources are located
— Migration: Resources may move without the user knowing
— Replication: Can't tell how many copies of resource exist
— Concurrency: Can't tell how many users there are
— Parallelism: System may speed up large jobs by splitting them into smaller
pieces
— Fault Tolerance: System may hide various things that go wrong
* Transparency and collaboration require some way for different
processors to communicate with one another

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 18

How do entities communicate! A Protocol!

Stable Stable
Storage Storage

* A protocol is an agreement on how to communicate, including:

— Syntax: how a communication is specified & structured
» Format, order messages are sent and received

— Semantics: what a communication means
» Actions taken when transmitting, receiving, or when a timer expires
* Described formally by a state machine
— Often represented as a message transaction diagram

— (Can be a partitioned state machine: two parties synchronizing duplicate sub-
state machines between them

— Stability in the face of failures!

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 19

4/16/20

Examples of Protocols in Human Interactions

Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing ... \
5. Callee: “Hello?”
6. Caller: “Hi, it’s John....” —
Or: “Hi, it's me” (< what’s that about?)
7. Caller: “Hey, do you think ... blah blah blah ...” pause
1. Callee: “Yeah, blah blah blah ...” pause
2. Caller: Bye \
3. Callee: Bye
4. Hang up

Kubiatowicz CS162 © UCB Spring 2020 20

Global Communication: The Problem

Application Skype HTTP

o N\ -

Fiber Packet
optic Radio

Transmission Coaxial
Media cable

Many different applications
— emall, web, P2P etc.

Many different network styles and technologies
— Wireless vs. wired vs. optical, etc.

How do we organize this mess!
— Re-implement every application for every technology!

No! But how does the Internet design avoid this?

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

21

Solution: Intermediate Layers

Application Skype | |SSH | | NFS | [HTTP

T ki}‘ T/_/“_/ “Narrow Waist”

Internet Protocol

Intermediate

layers - ’_/_ \x _____

R
Transmission Coaxial Fiber Packet
Media cable optic radio

* Introduce intermediate layers that provide set of abstractions for
various network functionality & technologies

— A new app/media implemented only once
— Variation on “add another level of indirection”

o (Goal: Reliable communication channels on which to build distributed
applications

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 22

The Internet Hour_glass

DNS| | NTP

UDP

Waist

|

SONET 802.11

\ \
— Fiber Radio The Hourglass Model

There Is just one network-layer protocol, IP

The “narrow waist’ facilitates interoperabllity.

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 23

Implications of Hourglass

Single Internet-layer module (IP):
* Allows arbrtrary networks to interoperate

— Any network technology that supports IP can exchange
packets

* Allows applications to function on all networks
— Applications that can run on IP can use any network
e Supports simultaneous innovations above and below [P

— But changing IP itself, i.e., IPv6, very involved

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

24

Drawbacks of Layering

* Layer N may duplicate layer N-1 functionality
— kg, error recovery to retransmit lost data
 Layers may need same information
— E.g, timestamps, maximum transmission unit size
* Layering can hurt performance
— E.g, hiding detalls about what is really going on
* Some layers are not always cleanly separated
— Inter-layer dependencies for performance reasons
— Some dependencies in standards (header checksums)
* Headers start to get really big
— Sometimes header bytes >> actual content

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 25

End-To-End Argument

* Hugely influential paper:“End-to-End Arguments in System
Design” by Saltzer, Reed, and Clark (‘84)

* “Sacred Text” of the Internet
— Endless disputes about what it means
— Everyone cites it as supporting their position

* Simple Message: Some types of network functionality can only be
correctly implemented end-to-end

— Reliability, security, etc.
* Because of this, end hosts:
— Can satisfy the requirement without network’s help

— Will/must do so, since can't rely on network’s help

Therefore don't go out of your way to implement them in the
network

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

26

Example: Reliable File Transfer

B
* Solution |: make each step reliable, and then concatenate them

* Solution 2: end-to-end check and try again if necessary

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 27

4/16/20

Discussion

* Solution | is incomplete
— What happens if memory is corrupted!
— Recelver has to do the check anyway!

* Solution 2 i1s complete

— Full functionality can be entirely implemented at application layer
with no need for reliability from lower layers

* s there any need to implement reliability at lower layers?
— Well, it could be more efficient

Kubiatowicz CS162 © UCB Spring 2020 28

End-to-End Principle

Implementing complex functionality in the network:

4/16/20

Doesn't reduce host implementation complexity
Does increase network complexity

Probably imposes delay and overhead on all applications, even
it they don't need functionality

However, implementing in network can enhance performance
In some cases

—e.g, very lossy link

Kubiatowicz CS162 © UCB Spring 2020

29

Conservative Interpretation of E2E

* Don't implement a function at the lower levels of the
system unless it can be completely implemented at this
level

* Or:Unless you can relieve the burden from hosts, dont
bother

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

30

Moderate Interpretation

* Think twice before implementing functionality in the network

* If hosts can implement functionality correctly, implement it in a
lower layer only as a performance enhancement

* But do so only if it does not impose burden on applications that do
not require that functionality

* This is the interpretation we are using

e |s this still valid?
— What about Denial of Service!

— What about Privacy against Intrusion?

— Perhaps there are things that must be in the network???

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 31

Distributed Applications

* How do you actually program a distributed application?
— Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

— One Abstraction: send/receive messages

» Already atomic: no receiver gets portion of a message and two receivers
cannot get same message

* Interface:

— Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

— Send (message, mbox)
» Send message to remote mailbox identified by mbox

— Receive (buffer, mbox)
» Wait until mbox has message, copy into buffer; and return
» If threads sleeping on this mbox, wake up one of them

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 32

Using Messages: Send/Receive behavior

 When should send (message, mbox) return?
— When receiver gets message! (i.e. ack received)
— When message Is safely buffered on destination!?
— Right away, If message Is buffered on source node!?

* Actually two questions here:

— When can the sender be sure that receiver actually received the
message!

— When can sender reuse the memory containing message!
« Mailbox provides |-way communication from T |—=T2
— TI—buffer—=T2

— Very similar to producer/consumer
» Send =V, Receive = P
» However, can't tell if sender/receiver is local or not!

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

33

Messaging for Producer-Consumer Style

* Using send/receive for producer-consumer style:

Producer:
int msgl[1000];
while (1) { Send
prepare message; Message
send (msgl, mbox) ;
}
Consumer:

int buffer[1000];

while (1) ({ :
receive (buffer, mbox) ; Receive
process message; Messaae

}

* No need for producer/consumer to keep track of space in mailbox:

handled by send/receive

— Next time: will discuss fact that this is one of the roles the window In

TCP: window s size of buffer on far end
— Restricts sender to forward only what will fit in buffer

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

Messaging for Request/Response communication

* What about two-way communication?
— Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
— Also called: client-server
» Client = requester, Server = responder
» Server provides “service” (file storage) to the client

* Example: File service

Client: (requesting the file) Request
char response[1000]; File
send (“read rutabaga”, server mbox)",
receilve (response, cllent _mbox)
Server: (responding with the file) [RCSEOHSC]
char command[1000], answer[1000]
recelve (command, server mbox); Receive
decode command;
read file into answer; Request

send (answer, client mbox) ;
' - Send
4/16/20 Kubiatowicz CS162 © UCB Spring 2020 Response

Distributed Consensus Making

* Consensus problem
— All nodes propose a value
— Some nodes might crash and stop responding

— Eventually, all remaining nodes decide on the same value from set of
proposed values

* Distributed Decision Making
— Choose between “true” and “false”
— Or Choose between “commit’” and “abort”

* Equally important (but often forgotten!): make it durable!

— How do we make sure that decisions cannot be forgotten?
» This is the "D" of “"ACID" in a regular database

— In a global-scale system!?
» What about erasure coding or massive replication?
» Like BlockChain applications!

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 36

General’s Paradox

* General's paradox:
— Constraints of problem:

» Two generals, on separate mountains

» Can only communicate via messengers
» Messengers can be captured
— Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

— Named after Custer, who died at Little Big Horn because he
arrived a couple of days too early

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 37

General’s Paradox (con’t)

» Can messages over an unreliable network be used to guarantee
two entrties do something simultaneously?

— Remarkably,“no”, even If all messages get through

— No way to be sure last message gets throughl!
— In real life, use radio for simultaneous (out of band) communication

* 50, clearly, we need something other than simultaneity!

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 38

Two-Phase Commit

* Since we can't solve the General’s Paradox
(l.e. simultaneous action), let’s solve a related problem

* Distributed transaction: Two or more machines agree to do something,

or not do It, atomically
— No constraints on time, just that it will eventually happen!

* [wo-Phase Commit protocol: Developed by

Turing award winner Jim Gray
— (first Berkeley CS PhD, 1969)
— Many important DataBase breakthroughs
also from Jim Gray

Jim Gray

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 39

2PC Algorithm

One coordinator

N workers (replicas)

High level algorithm description:
— Coordinator asks all workers if they can commit

— If all workers reply “VOTE-COMMIT", then coordinator broadcasts
“GLOBAL-COMMIT”

Otherwise coordinator broadcasts “GLOBAL-ABORT”
— Workers obey the GLOBAL messages

* Use a persistent, stable log on each machine to keep track of what
you are doing

— If 2 machine crashes, when it wakes up it first checks its log to recover
state of world at time of crash

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 40

4/16/20

Two-Phase Commit: Setup

One machine (coordinator) initiates the protocol

It asks every machine to vote on transaction

Two possible votes:

— Commit
— Abort

Commit transaction only If unanimous approval

Kubiatowicz CS162 © UCB Spring 2020

41

Two-Phase Commit: Preparing

Agree to Commit
* Machine has guaranteed that it will accept transaction

* Must be recorded In log so machine will remember this
decision If it fails and restarts

Agree to Abort

* Machine has guaranteed that it will never accept this
transaction

* Must be recorded In log so machine will remember this
decision If it fails and restarts

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

42

Two-Phase Commiit: Finishing

Commit Transaction

» Coordinator learns all machines have agreed to commit

* Record decision to commit in local log

* Apply transaction, inform voters

Abort Transaction

» Coordinator learns at least on machine has voted to abort
* Record decision to abort in local log

* Do not apply transaction, inform voters

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

43

Two-Phase Commit: Finishing

Commit Transaction
« Coordinator learns all machines have agreed to commi 0\6@ %
* Record decision to commit in local log 0(\‘ 0(\
* Apply transaction, inform voters o ¢ (:g\"\
Abort Transaction ("(\\(\ @.,_0
» Coordinator learns at least on mags O o(\. 0}\
* Record decision to abort in g (\o \‘7\ QQ

: @(’ \\0
* Do not apply transactio 0 o A

e ‘\’*9)

\ ot e
0o R

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 44

Detailed Algorithm

Coordinator Algorithm Worker Algorithm

Coordinator sends VOTE-REQ to all

workers
— Wit for VOTE-REQ from coordinator
— If ready, send VOTE-COMMIT to
coordinator
|- If not ready, send VOTE-ABORT to
— If receive VOTE-COMMIT from all N coordinator
workers, send GLOBAL-COMMIT to — And immediately abort
all workers

— |If doesn’t receive VOTE-COMMIT
from all N workers, send GLOBAL-

ABORT to all workers
— If receive GLOBAL-COMMIT then

commit

— If receive GLOBAL-ABORT then abort

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 45

Failure Free Example Execution

coordinator

VOTE- GLOBAL
REQ COMMIT
worker |

R\ R\

\ VOTE- / \
COMMIT
worker 3

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

time

46

State Machine of Coordinator

* Coordinator implements simple state machine:

[INIT]

Recv: START
¥ Send: VOTE-REQ
WAIT
Recv: VOTE-ABORT Recv: all VOTE-COMMIT
Send: GLOBAL-ABMend: GLOBAL-COMMIT

[ABORT] [COMMIT]

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

4/16/20

State Machine of Workers

[INIT]

Egr?clli Y,SEZREQ Recv: VOTE-REQ
Send: |Send: VOTE-COMMIT

/ EADY]

Recv: GL . _
ABORT /B/ / \Recv. GLOBAL-COMMIT

[ABORT [COMMIT]

Kubiatowicz CS162 © UCB Spring 2020 48

Dealing with Worker Failures

[INIT]

Recv: START
v Send: VOTE-REQ

[WAIT]

Recv: VOTE-ABORT Recv: VOTE-COMMIT
Send: GLOBAL- nd: GLOBAL-
ABORT [

ABORT] COMMIT

* Failure only affects states in which the coordinator is
waiting for messages

» Coordinator only waits for votes in “WAIT" state
e In WAIT, if doesn't receive N votes, it times out and sends

GLOBAL-ABORT

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 49

Example of Worker Failure

%

WAIT

coordinator ABORT (COMM| timeout

GLOBAL-
VOTE-REQ ABORT
worker |
VOTE-
worker 2 COMMIT X

X
worker 3 7‘ > time

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 50

Dealing with Coordinator Failure

[INIT]

Recv: VOTE-REQ Recv: VOTE-REQ
Send: VOTE-ABO Send: VOTE-COMMIT

Jreaov |

Recv: GLOB Recv: GLOBAL-

COMMIT

* Worker waits for VOTE-REQ in INIT

— Worker can time out and abort (coordinator handles it)

* Worker waits for GLOBAL-* message in READY

— If coordinator fails, workers must BLOCK waiting for coordinator
to recover and send GLOBAL_* message

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 51

Example of Coordinator Failure #|

coordinator > ABORT | | COMM |

WOl kel I I
//

timeout /
worker 3 S

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

52

Example of Coordinator Failure #2
INIT

READY

<

ABORT COMM
coordinator restarted

>
\\\2"“’ [\\\
worker | S
VOTE- GLOBAL-
worker 2 COMMIT BORT
>

block waiting for
worker 3 coordinator

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 53

Durability

* All nodes use stable storage to store current state

— stable storage is non-volatile storage (e.g. backed by disk) that
guarantees atomic writes.

— E.g.: 55D, NVRAM

* Upon recovery, It can restore state and resume:
— Coordinator aborts in INIT, WAIT, or ABORT
— Coordinator commits in COMMIT
— Worker aborts in INIT, ABORT
— Worker commits in COMMIT
— Worker “asks” Coordinator in READY

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 54

Blocking for Coordinator to Recover

* A worker waiting for global decision can ask fellow workers about
their state
— If another worker is in ABORT or

COMMIT state then coordinator [INIT]
must have sent GLOBAL-* Recv: VOTE-REQ

» Thus, worker can safely Send: VOTE-A
abort or commit, respectively

Recv: VOTE-REQ
Send: VOTE-COMMIT

— If another worker is still in
INIT state then both workers
can decide to abort

— If all workers are in ready, need to BLOCK (don't know if
coordinator wanted to abort or commit)

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 55

Distributed Decision Making Discussion (1/2)

* Why is distributed decision making desirable?
— Fault Tolerance!

— A group of machines can come to a decision even if one or
more of them fail during the process

» Simple fallure mode called “failstop” (different modes later)

— After decision made, result recorded in multiple places

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 56

Distributed Decision Making Discussion (2/2)

* Undesirable feature of Two-Phase Commit: Blocking

— One machine can be stalled until another site recovers:

» Site B writes "prepared to commit” record to its log, sends a "yes"
vote to the coordinator (site A) and crashes

» Site A crashes

» Site B wakes up, check its log, and realizes that it has voted "yes" on
the update. It sends a message to site A asking what happened. At
this point, B cannot decide to abort, because update may have
committed

» B is blocked until A comes back

— A blocked site holds resources (locks on updated items, pages
pinned in memory, etc) until learns fate of update

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 57

Alternatives to 2PC

Three-Phase Commit: One more phase, allows nodes to fail or block
and still make progress.

PAXOS: An alternative used by Google and others that does not have
2PC blocking problem
— Develop by Leslie Lamport (Turing Award Winner)

— No fixed leader, can choose new leader on fly, deal with failure
— Some think this is extremely complex!

RAFT: PAXOS alternative from John Osterhout (Stanford)

— Simpler to describe complete protocol

* What happens if one or more of the nodes is malicious?
— Malicious: attempting to compromise the decision making

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 58

Byzantine General’s Problem

Lieutenant

> Lieutenant

Gl

General .
(‘\gl\ ‘

Malicious! ‘ L

* Byazantine General's Problem (n players):
— One General and n-| Lieutenants

Lieutenant

— Some number of these (f) can be insane or malicious

* The commanding general must send an order to his n-1 lieutenants such
that the following Integrity Constraints apply:

— ICI: All loyal lieutenants obey the same order

— |C2: If the commanding general is loyal, then all loyal lieutenants obey the
order he sends

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 59

Byzantine General’s Problem (con’t)

* |Impossibility Results:

— Cannot solve Byzantine General's Problem with n=3 because one malicious
player can mess up things

Attack!

— With f faults, need n > 3f to solve problem

* Various algorithms exist to solve problem
— Original algorithm has #messages exponential in n

— Newer algorithms have message complexity O(n2)
» One from MIT, for instance (Castro and Liskoy, 1999)
* Use of BFT (Byzantine Fault Tolerance) algorithm
— Allow multiple machines to make a coordinated decision even if some subset of

them (< n/3) are malicious OOO

OO » Distributed
‘ Decision

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 60

Request —

Is a BlockChain a Distributed Decision Making Algorithm?

[
41Ten1'a1'ive Head #1
Root 7 ¢—T"Tentative Head #?2
Block Hash Ptr
_ The “Block Chain” J

* BlockChain: a chain of blocks connected by hashes to root block
— The Hash Pointers are unforgeable (assumption)
— The Chain has no branches except perhaps for heads

— Blocks are considered “authentic” part of chain when they have authenticity
info in them

* How is the head chosen?
— Some consensus algorithm

— In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by
solving hard problem

» This is the job of “miners’ who try to find “nonce” info that makes hash over block
have specified number of zero bits in it

» The result is a “Proof of Work™ (POW)
» Selected blocks above (green) have POW in them and can be included in chains

— Longest chain wins

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 6l

Is a Blockchain a Distributed Decision Making Algorithm? (Con’t)

|
ﬁ Observer:
I:'|":’I":’!;=ll ||||||||||||||||||||||||||||| N -|-|'=l‘:l<!; !;1:211:62 <)i:
_| BlockChain

— \
Block Hash Ptr Root
Block A Hash Ptr
L . Epidemic

:

L Replication

Observer:
Tracks state of
' BIockCham \

Root
Block Hash Ptr

Root ; ;
4 Block Hash Ptr

* Decision means: Proposal is locked into BlockChain

— Could be Commit/Abort decision

— Could be Choice of Value, State Transition, Proposal
* NAK: Didn't make it into the block chain (must retry!)

Anyone in world can verify the result of decision making!
4/16/20 Kubiatowicz CS162 © UCB Spring 2020 62

Summary (1/2)

* Protocol: Agreement between two parties as to how information is to
be transmitted

* E2E argument encourages us to keep Internet communication simple

— It higher layer can implement functionality correctly, implement it in a
lower layer only if:

» it improves the performance significantly for application that need that
functionality, and

» It does not iImpose burden on applications that do not require that
functionality

* [wo-phase commit: distributed decision making

— First, make sure everyone guarantees that they will commit if asked
(prepare)
— Next, ask everyone to commit

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 63

Summary (2/2)

* Byzantine General's Problem: distributed decision making with
malicious failures

— One general, n-| lieutenants: some number of them may be malicious
(often “f" of them)

— All non-malicious lieutenants must come to same decision
— If general not malicious, lieutenants must follow general
— Only solvable if n = 3+

* BlockChain protocols
— Could be used for distributed decision making

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 64

