
CS162 
Operating Systems and 
Systems Programming 

Lecture 15 
  

Demand Paging

March 17th, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the
bottom of that slide, in which case a full list of references is provided on the last
slide.

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: Caching Applied to Address Translation

• Question is one of page locality: does it exist?

– Instruction accesses spend a lot of time on the same page (since

accesses sequential)

– Stack accesses have definite locality of reference

– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?

– Sure: multiple levels at different sizes/speeds

Data Read or Write

(untranslated)

CPU Physical

Memory

TLB

Translate

(MMU)

No

Virtual

Address

Physical

Address

Yes
Cached?

Sav
e

Resu
lt

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: Current x86 (Skylake, Cascade Lake)

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Recall: Putting Everything Together:  
Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Recall: Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Recall: Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 7

Recall: Page Fault ⇒ Demand Paging

virtual address

MMU
PT

instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 8

Demand Paging

• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their

code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

pagingcaching

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 9

Demand Paging as Caching, …

• What “block size”? - 1 page (e.g, 4 KB)

• What “organization” ie. direct-mapped, set-assoc., fully-associative?

– Any page in any frame of memory, i.e., fully associative: arbitrary virtual
→ physical mapping

• How do we locate a page?

– First check TLB, then page-table traversal

• What is page replacement policy? (i.e. LRU, Random…)

– This requires more explanation… (kinda LRU)

• What happens on a miss?

– Go to lower level to fill miss (i.e. disk)

• What happens on a write? (write-through, write back)

– Definitely write-back – need dirty bit!

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 10

Page

Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒

– In-use virtual memory can be bigger than physical memory

– Combined memory of running processes much larger than physical

memory

» More programs fit into memory, allowing more concurrency

• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data

» Data could be on disk or somewhere across network

– Variable location of data transparent to user program

» Performance issue, not correctness issue

Physical

Memory

512 MB

Disk

500GB

∞

Virtual

Memory

4 GB

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 11

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page

– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:

– 2-level page tabler (10, 10, 12-bit offset)

– Intermediate page tables called “Directories”

P: 	 Present (same as “valid” bit in other architectures)
W: 	 Writeable

U: 	 User accessible

PWT:	 Page write transparent: external cache write-through

PCD:	 Page cache disabled (page cannot be cached)

A: 	Accessed: page has been accessed recently

D: 	 Dirty (PTE only): page has been modified recently
PS: 	 Page Size: PS=1⇒4MB page (directory only). 
Bottom 22 bits of virtual address serve as offset

Page Frame Number

(Physical Page Number)

Free

(OS) 0

PS D A

PCD
PW

T U WP

01234567811-931-12

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020

• PTE makes demand paging implementable

– Valid ⇒ Page in memory, PTE points at physical page

– Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when

necessary

• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:

» Choose an old page to replace

» If old page modified (“D=1”), write contents back to disk

» Change its PTE and any cached TLB to be invalid

» Load new page into memory from disk

» Update page table entry, invalidate TLB for new entry

» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!

– While pulling pages off disk for one process, OS runs another process

from ready queue

» Suspended process sits on wait queue

12

Cache

Demand Paging Mechanisms

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Origins of Paging

Disks provide
most of the
storage

Relatively small
memory, for
many processes

P

. . .

Many clients on
dumb terminals
running different
programs

Keep memory full
of the frequently
accesses pages

Keep most of the
address space on
disk

Actively swap
pages to/from

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 14

Very Different Situation Today

Powerful system

Huge memory

Huge disk

Single user

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 15

A Picture on one machine

• Memory stays about 75% used, 25% for dynamics

• A lot of it is shared 1.9 GB

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 16

Many Uses of Virtual Memory and “Demand Paging” …

• Extend the stack

– Allocate a page and zero it

• Extend the heap (sbrk of old, today mmap)

• Process Fork

– Create a copy of the page table

– Entries refer to parent pages – NO-WRITE

– Shared read-only pages remain shared

– Copy page on write

• Exec

– Only bring in parts of the binary in active use

– Do this on demand

• MMAP to explicitly share region (or to access a file as RAM)

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 17

Classic: Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries and symbols
– OS loads it into memory, initializes registers (and initial stack pointer)
– program sets up stack and heap upon initialization:  

crt0 (C runtime init)

disk (huge) memory

code

data

info

exe

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 18

Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk

– Called the backing store or swap file

– Typically in an optimized block store, but can think of it like a file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel code
& data

user page

frames

user
pagetable

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 19

Create Virtual Address Space of the Process

• User Page table maps entire VAS

• All the utilized regions are backed on disk

– swapped into and out of memory as needed

• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel code
& data

user page

frames

user
pagetable

code

data

heap

stack

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 20

Create Virtual Address Space of the Process

• User Page table maps entire VAS

– Resident pages to the frame in memory they occupy

– The portion of it that the HW needs to access must be resident in

memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS – per process

kernel code
& data

user page

frames

user
pagetable

code

data

heap

stack

PT

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 21

Provide Backing Store for VAS

• User Page table maps entire VAS

• Resident pages mapped to memory frames

• For all other pages, OS must record where to find them on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel code
& data

user page

frames

user
pagetable

code

data

heap

stack

VAS – per process

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 22

What Data Structure Maps Non-Resident Pages to Disk?

• FindBlock(PID, page#) → disk_block

– Some OSs utilize spare space in PTE for paged blocks

– Like the PT, but purely software

• Where to store it?

– In memory – can be compact representation if swap storage is

contiguous on disk

– Could use hash table (like Inverted PT)

• Usually want backing store for resident pages too

• May map code segment directly to on-disk image

– Saves a copy of code to swap file

• May share code segment with multiple instances of the program

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Provide Backing Store for VAS

disk (huge, TB)
memory

kernel
code &
data

user
page

frames

user
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 24

On page Fault …

disk (huge, TB)
memory

kernel
code

& data

user
page

frames

user
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 25

On page Fault … find & start load

disk (huge, TB)
memory

kernel
code &
data

user
page

frames

user
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 26

On page Fault … schedule other P or T

disk (huge, TB)
memory

kernel
code &
data

user
page

frames

user
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 27

On page Fault … update PTE

disk (huge, TB)
memory

kernel
code &
data

user
page

frames

user
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Eventually reschedule faulting thread

disk (huge, TB)
memory

kernel
code &
data

user
page

frames

user
pagetablecode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Summary: Steps in Handling a Page Fault

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Some questions we need to answer!

• During a page fault, where does the OS get a free frame?

– Keeps a free list

– Unix runs a “reaper” if memory gets too full

» Schedule dirty pages to be written back on disk

» Zero (clean) pages which haven’t been accessed in a while

– As a last resort, evict a dirty page first

• How can we organize these mechanisms?

– Work on the replacement policy

• How many page frames/process?

– Like thread scheduling, need to “schedule” memory resources:

» Utilization? fairness? priority?

– Allocation of disk paging bandwidth

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Working Set Model

• As a program executes it transitions through a sequence of
“working sets” consisting of varying sized subsets of the address
space

Time

A
dd

re
ss

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Cache Behavior under WS model

• Amortized by fraction of time the Working Set is active

• Transitions from one WS to the next

• Capacity, Conflict, Compulsory misses

• Applicable to memory caches and pages.

H
it

R
at

e

Cache Size

new working set fits

0

1

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 33

Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α 1/ra

• Although rare to access items below the top few, there are so many that it yields a “heavy
tailed” distribution

• Substantial value from even a tiny cache

• Substantial misses from even a very large cache

P access(rank) = 1/rank

Es
tim

at
ed

 H
it

R
at

e

0

0.225

0.45

0.675

0.9

Po
pu

la
ri

ty
 (

%

ac
ce

ss
es

)

0%

5%

10%

15%

20%

Rank

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

pop a=1
Hit Rate(cache)

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 34

Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time!

(“Effective Access Time”)

– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:

– Memory access time = 200 nanoseconds

– Average page-fault service time = 8 milliseconds

– Suppose p = Probability of miss, 1-p = Probably of hit

– Then, we can compute EAT as follows:

EAT 	 = 200ns + p x 8 ms

 	 = 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then  
EAT = 8.2 μs:

– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?

– EAT < 200ns x 1.1 ⇒ p < 2.5 x 10-6

– This is about 1 page fault in 400,000!

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 35

What Factors Lead to Misses in Page Cache?
• Compulsory Misses:

– Pages that have never been paged into memory before

– How might we remove these misses?

» Prefetching: loading them into memory before needed

» Need to predict future somehow! More later

• Capacity Misses:

– Not enough memory. Must somehow increase available memory size.

– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage of

memory allocated to each one!

• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, since it is a “fully-
associative” cache

• Policy Misses:

– Caused when pages were in memory, but kicked out prematurely

because of the replacement policy

– How to fix? Better replacement policy

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 36

Page Replacement Policies
• Why do we care about Replacement Policy?	

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory for same

amount of time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 37

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time

– Programs have locality, so if something not used for a while, unlikely to

be used in the near future.

– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list!

– On each use, remove page from list and place at head

– LRU page is at tail

• Problems with this scheme for paging?

– Need to know immediately when each page used so that can change

position in list…

– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 38

• Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

– A B C A B D A D B C B
• Consider FIFO Page replacement:

• FIFO: 7 faults

• When referencing D, replacing A is bad choice, since need A

again right away

Example: FIFO (strawman)

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 39

• Suppose we have the same reference stream:

– A B C A B D A D B C B

• Consider MIN Page replacement:

• MIN: 5 faults

– Where will D be brought in? Look for page not referenced

farthest in future
• What will LRU do?

– Same decisions as MIN here, but won’t always be true!

Example: MIN / LRU

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 40

• Consider the following: A B C D A B C D A B C D

• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!

• Fairly contrived example of working set of N+1 on N frames

D

Is LRU guaranteed to perform well?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 41

• Consider the following: A B C D A B C D A B C D

• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!

• MIN Does much better :

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

BADCBADCBA C D

3

2

1

Ref:
Page:

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 42

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the miss
rate drops

– Does this always happen?
– Seems like it should, right?

• No: Bélády’s anomaly

– Certain replacement algorithms (FIFO) don’t have this obvious

property!

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 43

Adding Memory Doesn’t Always Help Fault Rate

• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Bélády’s anomaly)

• After adding memory:

– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBA	EBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 44

Implementing LRU
• Perfect:

– Timestamp page on each reference

– Keep list of pages ordered by time of reference

– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with single clock hand

– Approximate LRU (approximation to approximation to MIN)

– Replace an old page, not the oldest page

• Details:

– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference

» If use bit isn’t set, means not referenced in a long time

– On page fault:

» Advance clock hand (not real time)

» Check use bit: 	 1→used recently; clear and leave alone 

0→selected candidate for replacement

– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop around ⇒ FIFO

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 45

Clock Algorithm: Not Recently Used

Set of all pages

in Memory

Single Clock Hand:

Advances only on page fault!

Check for pages not used recently

Mark pages as not used recently

• What if hand moving slowly?

– Good sign or bad sign?

» Not many page faults and/or find page quickly

• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old

– Why not partition into more than 2 groups?

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 46

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps

– On page fault, OS checks use bit:

» 1 → clear use and also clear counter (used in last sweep)

» 0 → increment counter ; if count=N, replace page

– Means that clock hand has to sweep by N times without page being
used before page is replaced

• How do we pick N?

– Why pick large N? Better approximation to LRU

» If N ~ 1K, really good approximation

– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page

• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an
extra chance before replacing?

– Common approach:

» Clean pages, use N=1

» Dirty pages, use N=2 (and write back to disk when N=1)

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 47

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock algorithm
– Modified: set when page is modified, cleared when page written to disk
– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!

• Do we really need hardware-supported “modified” bit?

– No. Can emulate it (BSD Unix) using read-only bit

» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit, and marks page as

read-write.

» Whenever page comes back in from disk, mark read-only

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 48

Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:

» Mark all pages as invalid, even if in memory

» On read to invalid page, trap to OS

» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:

» On write, trap to OS (either invalid or read-only)

» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits and mark page as
invalid again

• Remember, however, clock is just an approximation of LRU!

– Can we do a better approximation, given that we have to take page faults

on some reads and writes to collect use information?

– Need to identify an old page, not oldest page!

– Answer: second chance list

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)

• Access pages in Active list at full speed

• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-
chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list, mark RW

– Not on SC list: page in to front of Active list, mark RW; page out LRU

victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

Acc
es

s

New
SC Victims

O
verflow

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 50

Second-Chance List Algorithm (continued)
• How many pages for second chance list?

– If 0 ⇒ FIFO

– If all ⇒ LRU, but page fault on every page reference

• Pick intermediate value. Result is:

– Pro: Few disk accesses (page only goes to disk if unused for a long

time)

– Con: Increased overhead trapping to OS (software / hardware

tradeoff)

• Question: why didn’t VAX include “use” bit?

– Strecker (architect) asked OS people, they said they didn’t need it, so
didn’t implement it

– He later got blamed, but VAX did OK anyway

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 51

Free List

• Keep set of free pages ready for use in demand paging

– Freelist filled in background by Clock algorithm or other technique

(“Pageout demon”)

– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list

– If page needed before reused, just return to active set

• Advantage: faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages

in Memory

Single Clock Hand: Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 52

Demand Paging (more details)

• Does software-loaded TLB need use bit?  
Two Options:

– Hardware sets use bit in TLB; when TLB entry is replaced, software
copies use bit back to page table

– Software manages TLB entries as FIFO list; everything not in TLB is
Second-Chance list, managed as strict LRU

• Core Map

– Page tables map virtual page → physical page

– Do we need a reverse mapping (i.e. physical page → virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing, then multiple
virtual-pages per physical page

» Can’t push page out to disk without invalidating all PTEs

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 53

Allocation of Page Frames (Memory Pages)

• How do we allocate memory among different processes?

– Does every process get the same fraction of memory? Different fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into memory can make

forward progress
– Example: IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages

» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:

– Global replacement – process selects replacement frame from set of all frames;

one process can take a frame from another
– Local replacement – each process selects from only its own set of allocated

frames

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 54

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes → process gets 20 frames

• Proportional allocation (Fixed Scheme)

– Allocate according to the size of process
– Computation proceeds as follows:

 = size of process and
 = total number of frames
 = (allocation for)

• Priority Allocation:

– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme

– Possible behavior : If process pi generates a page fault, select for replacement a

frame from a process with lower priority number

• Perhaps we should use an adaptive scheme instead???

– What if some application just needs more memory?

𝑠𝑖 𝑝𝑖 S = ∑ 𝑠𝑖
𝑚
𝑎𝑖 𝑝𝑖 =

𝑠𝑖

𝑆
× 𝑚

m
S
si ×

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 55

Page-Fault Frequency Allocation

• Can we reduce Capacity misses by dynamically changing
the number of pages/application?

• Establish “acceptable” page-fault rate

– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 56

Thrashing

• If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:

– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing ≡ a process is busy swapping pages in and out

• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 57

• Program Memory Access
Patterns have temporal and
spatial locality

– Group of Pages accessed along a
given time slice called the
“Working Set”

– Working Set defines minimum
number of pages needed for
process to behave well

• Not enough memory for
Working Set ⇒ Thrashing

– Better to swap out process?

Locality In A Memory-Reference Pattern

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 58

Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page references

– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages referenced in the
most recent Δ (varies in time)

– if Δ too small will not encompass entire locality

– if Δ too large will encompass several localities

– if Δ = ∞ ⇒ will encompass entire program

• D = Σ|WSi| ≡ total demand frames

• if D > m ⇒ Thrashing

– Policy: if D > m, then suspend/swap out processes

– This can improve overall system behavior by a lot!

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 59

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur the first time
that a page is seen	

– Pages that are touched for the first time

– Pages that are touched after process is swapped out/swapped back

in

• Clustering:

– On a page-fault, bring in multiple pages “around” the faulting page

– Since efficiency of disk reads increases with sequential reads, makes

sense to read several sequential pages

• Working Set Tracking:

– Use algorithm to try to track working set of application

– When swapping process back in, swap in working set

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Reverse Page Mapping  
(Sometimes called “Coremap”)

• Physical page frames often shared by many different address
spaces/page tables

– All children forked from given process

– Shared memory pages between processes

• Whatever reverse mapping mechanism that is in place must be
very fast

– Must hunt down all page tables pointing at given page frame when
freeing a page

– Must hunt down all PTEs when seeing if pages “active”

• Implementation options:

– For every page descriptor, keep linked list of page table entries that
point to it

» Management nightmare – expensive

– Linux 2.6: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser
granularity)

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Linux Memory Details?

• Memory management in Linux considerably more complex than the
examples we have been discussing

• Memory Zones: physical memory categories

– ZONE_DMA: < 16MB memory, DMAable on ISA bus

– ZONE_NORMAL: 16MB → 896MB (mapped at 0xC0000000)

– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)

• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped

• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)

– Mapped memory (backed by a file)

• Allocation priorities

– Is blocking allowed/etc

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 62

Linux Virtual memory map

Kernel 
Addresses

Empty

Space

User 
Addresses

User

Addresses

Kernel 
Addresses

0x00000000

0xC0000000

0xFFFFFFFF

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

3G
B

To
ta

l

12
8T

iB

1G
B

12
8T

iB

896MB 
Physical 64 TiB 

Physical

32-Bit Virtual Address Space 64-Bit Virtual Address Space

“Canonical Hole”

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 63

Virtual Map (Details)

• Kernel memory not generally visible to user

– Exception: special VDSO (virtual dynamically linked shared objects) facility that

maps kernel code into user space to aid in system calls (and to provide certain
actual system calls such as gettimeofday())

• Every physical page described by a “page” structure

– Collected together in lower physical memory

– Can be accessed in kernel virtual space

– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:

– When physical memory < 896MB

» All physical memory mapped at 0xC0000000

– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time

» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:

– All physical memory mapped above 0xFFFF800000000000

3/17/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end

– MIN: Replace page that will be used farthest in future

– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU

– Arrange all pages in circular list

– Sweep through them, marking as not “in use”

– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approximate LRU

– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approximate LRU

– Divide pages into two groups, one of which is truly LRU and managed on

page faults.

• Working Set:

– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory

– Need to swap out a process

