Principles of Medical Ultrasound

Zahra Kavehvash

- Introduction
- Acoustic wave propagation
- Attenuation, scattering and speckle
- Transducers
 - Generation and detection of ultrasound
 - Equivalent circuit
 - Piezoelectric materials
- Beam forming and Diffraction
 - Array beam forming
- Image formation
- Doppler modes
 - Ultrasound flow imaging
- Contrast and resolution
- Ultrasound bioeffects and safety
- Emerging technologies and trends (If time permits)
- Acousto-optic (Photo-Acoustic) imaging (If time permits)

• Reference:

- Thomas L. Szabo, *Diagnostic Ultrasound Imaging: Inside Out*, Elsevier, Academic Press Series in BME, 2004.
- Haim Azhari, Basics of Biomedical Ultrasound for Engineers, IEEE, Wiley, 2010.
- K. Kirk Shung and Gray A. Thieme, *Ultrasonic Scattering in Biological Tissues*, CRC Press, 1993.
- B. D. Steinberg, *Principles of Aperture and Array System Design*, John Wiley and Sons, 1976.
- D. H. Evans, W. N. McDicken, R. Skidmore, and J. P. Woodcock, Doppler Ultrasound, John Wiley and Sons, 1989.
- J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, 1968.

- Journals:
 - IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency control.
 - IEEE Transactions on Medical Imaging
 - Journal of Acoustical Society of America

- Grading:
 - Homework: 20 %
 - Project: 10 %
 - Mid Term: 30 %
 - Final: 40 %

History of Ultrasound Who are the smart guys?

• A long time ago:

• A long time ago:

• 1822, Lake Geneva:

• Piezoelectric effect, Pierre Curie, 1880:

Pierre and Marie Curie in the Laboratory

• 1954-1957:

A sonarlike device produces pictures of the human body's soft tissues which are invisible to X-rays

• 1954-1957:

• Doppler (1842):

Christian Andreas Doppler

• Doppler ultrasound (1959-1960):

The water-bag B-mode scanning system, the SSD-1, from Aloka in 1960

What is Medical Ultrasound?

- Prevention: actions taken to avoid diseases.
- <u>Diagnosis</u>: the process of identifying a disease by its signs, symptoms and results of various diagnostic procedures.
- <u>Treatment</u>: care by procedures or applications that are intended to relieve illness or injury.

Medical Diagnosis: Heart Attack as an Example

 Heart attack: Coronary artery disease, blockage of blood supply to the myocardium.

Blockage in right coronary artery

adam.com

 $d = c_{avg}(t_2 - t_1)/2$

• Characteristic Impedance:

 $Z = \rho \times c$

$$\rho(kg/m^3)$$
: Tissue Density

c(m/s): Propagation Speed

Amplitude of Acoustic Wave Pressure

Scan Modes

- A-mode (A-scan, 1D).
- B-mode (Gray scale, 2D).
- M-mode (motion)
- Color Doppler (2D, blood flow).
- Spectral Doppler (localized, blood flow).
- Audio Doppler.

A-Scan (Amplitude, 1D)

B-Scan (Brightness, 2D)

M-Mode (Brightness, 2D)

• A-Mode data in time

Scan Formats

3D Ultrasound

• Doppler Effect

$$T' = \frac{\lambda}{c+\nu} = \frac{c \times T_0}{c+\nu} = \frac{c}{(c+\nu)f_0}$$

$$\frac{1}{T'} = f' = (1 + \frac{v}{c})f_0 \qquad \qquad f_{Doppler} = f' - f_0 = \frac{v}{c}f_0$$

Doppler Effect

• Doppler Effect

$$f_d = 2f_0 \frac{V}{c}\cos\theta$$

- Doppler Systems:
 - Continuous Doppler
 - Pulse Doppler

- Continuous Doppler:
 - Just records the change in frequency
 - Display the changes in color or sound
- Pulse Doppler:
 - Records the reflection depth along with the Doppler frequency

Ultrasound vs. Other

Imaging Systems

Ultrasound	X-ray	MRI	СТ	
خواص مكانيكى	متوسط جذب بافت	بيوشيمى(T ₂ وT ₁)	جذب ناحیهای	خاصيت فيزيكى
	در طول مسیر		بافت	مورد کاوش
وابسته به فركانس	~1 mm	$\sim 1 \text{ mm}$	~1 mm	قدرت تفكيك
عمقی و محوری				فضایی
0/3 – 3 mm				
وابسته به فركانس	عالى	عالى	عالى	عمق نفوذ ²
(حداکثر 25 cm)				
خیلی خوب	خطر يونيزه شدن	خيلى خوب	خطر يونيزه شدن	ايمنى
تا 100 frames/sec تا	دقيقه	تا frames/sec تا	دقيقه	سرعت تصوير
				سازى
50 هزار دلار	100 هزار دلار	1/5 ميليون دلار	1 ميليون دلار	قيمت
خیلی راحت	راحت	دشوار	دشوار	قابليت حمل

Ultrasound Developements

- Harmonic imaging
- 2D Transducers for 3D imaging
- Increasing the Number of Transducer Elements
- Intra Vascular Ultrasound

Ultrasound Developements

• Contrast improvement:

 Contrast agents (containing bobbles for THI and Endothelial Dysfunction measurement)

Ultrasound Developements

- Miniaturization:
 - Decreasing the weight to a few hundred grams.
 - Leads to more invasive applications

Ultrasound Developements

- Immunity:
- Appropriate power dose for different diagnostic and therapeutic applications

Bio-Effects

- Heating
- Cavitation

Cavitation

- Formation and behavior of gas bubbles in acoustic fields.
- Transient cavitation: sudden growth and collapse of bubbles, resulting shock waves and very high temperatures.

Clinical Applications

• Cardiology, abdominal, surgical, intravascular, ...etc.

Characteristics of Diagnostic Ultrasound

- Non-invasive.
- Safe (under regulations).
- Real-time.
- Reflection mode (similar to RADAR).
- Blood flow imaging.
- Portable.
- Body type dependent.

Characteristics of Diagnostic Ultrasound

- Spatial resolution:
 - Lateral and elevational: diffraction limited.
 - Axial: transducer and system bandwidth, pulse energy.
- Contrast resolution: spatial resolution and speckle brightness variations.
- Temporal resolution: speed of sound in tissue.

Ultrasonic Transducers

Ultrasonic Array Transducers

(From www.acuson.com)

Generic Ultrasonic Imaging System

- Receiver:
 - Programmable apodization, delay control and frequency control.
 - Arbitrary receive direction.
- Image processing:
 - Pre-detection filtering.
 - Post-detection filtering.
- Scan converter: various scan format.

• Temporal frequency:

$$f = \frac{1}{T} [Hz]$$
 $\rightarrow \omega = 2\pi f [rad.s^{-1}]$; $\omega T = 2\pi$

• Spatial frequiency:

$$\widetilde{f} = \frac{|1|}{\lambda} = \frac{1}{cT} = \frac{f}{c} [\text{m}^{-1}] \qquad \Rightarrow \qquad k = 2\pi \widetilde{f} \text{ [rad.m}^{-1}] ; \quad k\lambda = 2\pi$$

$$k = 2\pi \widetilde{f} = \frac{2\pi}{\lambda} = \frac{2\pi f}{c} = \frac{2\pi}{cT}$$

• Non-propagating signal:

 $p(t) = p_0 \times \cos(\omega t)$

• Propagating signal:

 $p(t,z) = p_0 \times \cos(\omega(t-z/c)) = p_0 \times \cos(2\pi f(t-z/c))$

= $p_0 \times \cos[2\pi(\text{ft-}\widetilde{f}z)] = p_0 \times \cos(\omega t - kz)$

$$e^{j(\omega t - kz)} = e^{j2\pi(ft - \tilde{f}z)} = e^{j2\pi(ft - f\frac{z}{c})} = e^{j2\pi f(t - \frac{z}{c})}$$

• Spatial frequency as a vector:

• Spatial Fourier transform:

$$G(\widetilde{f}) = \int_{-\infty}^{+\infty} g(x) e^{-j2\pi \widetilde{f}x} dx$$

$$k_1 = k \sin(\theta)$$
$$k_3 = k \sqrt{1 - \sin^2 \theta}$$
$$k_3 = \sqrt{k^2 - k_1^2}$$

• Spatial FT for a linear source in x-z plane:

$$G(\widetilde{f}_{1}) = \int_{-\infty}^{+\infty} \prod \left(\frac{x}{L}\right) e^{j2\pi \widetilde{f}_{1}x} dx$$
$$= L \sin c (-L\widetilde{f}_{1})$$
$$= L \sin c (L\widetilde{f}_{1}) = L \sin c (L\widetilde{f} \sin(\theta))$$

Zeros at
$$L\tilde{f}\sin(\theta) = \text{integer}$$

 $\widetilde{f} = 1/(L\sin(\theta))$

Increase in L and θ compresses the spectrum

