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Expression Subspace Projection for Face
Recognition from Single Sample per Person
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Abstract—Discriminant analysis methods are powerful tools in face recognition. However, these methods are not applicable
under the single sample per person scenario because the within-subject variability cannot be estimated in this case. In the
generic learning solution, this variability is estimated using images of a generic training set, for which more than one sample
per person is available. However, because of rather poor estimation of the within-subject variability using a generic set, the
performance of discriminant analysis methods is yet to be satisfactory. This is particularly the case when images are under
drastic facial expression variation.
In this paper, we show that images with the same expression are located on a common subspace, which here we call it the
expression subspace. We show that by projecting an image with an arbitrary expression into the expression subspaces, we can
synthesize new expression images. By means of the synthesized images for subjects with one image sample, we can obtain
more accurate estimation of the within-subject variability and achieve significant improvement in recognition. We performed
comprehensive experiments on two large face databases: the Face Recognition Grand Challenge and the Cohn-Kanade AU-
Coded Facial Expression database to support the proposed methodology.

Index Terms—Face recognition, facial expression, expression variation, expression transformation, expression subspace, LDA,
generic training, single sample per person.
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1 INTRODUCTION

O VER the past two decades, significant advances
have been achieved in face recognition tech-

niques. However, there are still many challenges re-
maining. For example, face recognition in an un-
controlled environment still bears limitations due to
illumination, pose and facial expression variation be-
tween gallery and probe images. Ref. [1] presents an
excellent review of the advances and challenges in
face recognition.

Unlike illumination and pose variation problems,
the expression variation has not been given sufficient
attention. Expression variation is a serious problem in
many applications, such as surveillance and human-
computer-interaction, where there is no control over
the expression of the captured images.

The difficulty of recognizing a person’s face, whose
gallery and probe images differ in expression, origi-
nates from the fact that in the high dimensional face
space, faces with the same expression but different
identity might be closer to each other than faces with
the same identity but different expressions. In other
words, for example, the happy image of person A
might be more similar to the happy image of person
B rather than to the neutral image of person A, which
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can cause misidentification of person A.
Consequently, the face recognition methods that

do not take into account the within-class variability
of the face images, i.e., unsupervised methods, do
not perform well under expression variation. On the
other hand, supervised techniques such as discrimi-
nant analysis (DA) methods [2], [3], [4], [5], [6], [7],
[8], [9] are very powerful for face recognition under
expression variation [10], [11]. DA methods find the
features of the face that are more robust to expression
variation by learning the within-class variability of the
subjects. However, this learning requires more than
one sample per subject, and therefore, DA methods
cannot be directly used under the single sample (SS)
per subject scenario.

The SS problem exists in many face recognition ap-
plications such as law enforcement, surveillance and
forensic applications. Moreover, adding more samples
to the database is too costly, especially in large-scale
applications.

Ref. [12] discusses the problem of recognizing from
SS and reviews the existing approaches to solve this
problem. These approaches include those that ad-
dress the illumination, pose, and expression variation
problem under the SS scenario. The most important
methods addressing the expression variation problem
under the SS scenario are as follows.

Martinez [13] proposed a local eigenspace ap-
proach, which is based on the fact that each expres-
sion affects some parts of the face more than others.
He proposed to search for those areas that are less
affected by a given expressions and then weight each
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local area accordingly.
Li et al. [14] used the idea of separating texture

and shape information and projecting them into sep-
arate PCA spaces. They stated that the texture of an
individual’s face is relatively invariant, with slight
variations due to illumination changes or blushing.
On the other hand, certain shape features are also
relatively invariant under some expressions, while
some others undergo large variations. They proposed
to construct separate eigenspaces for texture and the
invariant shape features.

Lee and Kim [15] proposed a method to transform
the probe image with an arbitrary expression to its
corresponding neutral expression face. The expression
transformation is based on the tensorface concept
proposed by Vasilescu and Terzopoulos [16]. The
transformed probe image is then matched with the
gallery images which display neutral expression.

The performance of the above methods is not satis-
factory and they require some or all of the following
tasks: (1) the expression of the probe image is required
to be determined, (2) the probe image is required
to be warped to all the gallery images, (3) facial
landmark points of the stored and probe images are
required to be detected to fit 2D triangulated meshes
to them, and (4) the algorithm must be trained on
a training set in which every subject has an image of
each expression. Performing these tasks is either error-
prone and causes the propagation of the error to the
recognition stage or they are not always feasible [15].
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Fig. 1. Verification rate versus FAR for LDA trained on
a generic set and LDA trained using two samples per
gallery subject.

Another approach for recognition under the SS
scenario is to use DA methods by training them using
images of subjects different from the gallery subjects
(i.e., pool of generic people) for which more than one
sample is available [17]. In this case, the within-class
variability is being estimated from images of generic
people. Wang et al. [17] provided comprehensive ex-
aminations of the performance of state-of-the-art DA

methods using generic training sets. They reported
considerable improvement in the recognition perfor-
mance compared to unsupervised methods. However,
there is still a large gap between the performance of
DA methods when they are trained using a generic set
versus when they are trained using various images
of each gallery subject. In other words, the expres-
sionally robust features of the face found by a DA
method are relatively subject-specific. There are two
quantities that determine the discriminant projection
bases: the between-class scatter matrix and the within-
class scatter matrix. We found through experiments
that, the estimation of the between-class scatter matrix
using a generic training set is rather accurate, but
what makes the performance of the generic-trained
DA methods unsatisfactory is rather poor estimation
of the within-class scatter matrix.

Fig. 1 shows the result of an experiment we per-
formed to demonstrate the difference in the perfor-
mance of LDA when it is trained using images of a
generic set versus when it is trained using images of
the gallery subjects. To perform this experiment, we
formed a generic training set using the images of 100
subjects from the Face Recognition Grand Challenge
(FRGC) database [18]. The images contained four ex-
pressions: neutral, happy, surprise and puffy cheeks.
We used the neutral and happy images of another 150
subjects to form the gallery and probe sets. For each of
these subject, we randomly selected one of its happy
or neutral images as the gallery image. If the gallery
image for that subject was happy, we chose its neutral
images as the probe images and vice versa. The first
time, we used only the generic set to train LDA (“LDA
on generic” in Fig. 1). The second time, we augmented
the generic training set by the gallery images and
one surprise image for each gallery subject, and then
trained LDA using this set (“LDA on gallery”). Note
that, we added an image with an expression different
from the expression of the gallery and probe images
to the training set. One can clearly see the difference
in the performance when LDA is trained using images
of the gallery subjects.

The observation stated above motivated us to de-
velop a method for synthesizing new expression im-
ages of the gallery subjects and add them to the
generic set in order to obtain better estimation of
the within-class variability of the galley subjects. In
our proposed approach, the synthesis is performed by
projecting the gallery images into specific subspaces,
which here we call them expression subspaces. An
expression subspace contains face images displaying
that expression and is different from the subspace of
another expression.

Moreover, we introduce a method for estimating
the synthesis error in order to further improve the
recognition performance. An important feature of the
synthesis error is that it is orthogonal to the Euclidian
distance between an input and its synthesized image.
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This feature allows us to simply incorporate some
statistics of the synthesis error in the calculation of
the within-class scatter matrix, and thereby, further
improve the recognition performance.

The proposed method does not perform any of
the aforementioned tasks required by the existing
methods and significantly outperforms them.

The rest of the paper is organized as follows. First,
we introduce the expression subspaces and describe
how we can synthesize new expression images using
these subspaces. Next, we present the proposed face
recognition method. Finally, we conclude the paper
by presenting the experimental results.

2 EXPRESSION SUBSPACES

One of the main contributions of this work is to define
expression subspaces and use them in synthesizing
new expression images from only one image of a
subject.

For the sake of simplicity, we consider neutral or
happy expression in all the derivations throughout
this paper, but they can be readily generalized to other
expressions.

The vector representation of a p×q-pixel face image
can be obtained by row-wise or column-wise concate-
nation of the pixel values of the face image. Each such
p×q-dimensional vector represents a point in the p×q-
dimensional Euclidian space. We refer to these points
as the face points.

The face points corresponding to images of the
same expression lie on the same subspace, which we
call the subspace of that expression. For instance, the
neutral subspace contains neutral face images. An
expression subspace can be approximated by apply-
ing PCA on a set of training face images displaying
that expression. PCA finds the eigenvectors of the
covariance matrix of the face vectors. Let {n1, ...,nM}
be the set of neutral face vectors. Their covariance
matrix is obtained as

C =
1

M

M∑
i=1

(ni −m)(ni −m)T (1)

where m denotes the mean of the neutral face vectors
and C denotes the covariance matrix. Because the
dimension of the face vectors is very large, calculating
the eigenvectors of their covariance matrix is compu-
tationally difficult. To solve this problem, a method is
described in the well-known eigenface paper [19].

Let {u1, ...,uk} be the set of the eigenvectors of C
and {λ1, ..., λk} be their corresponding eigenvalues,
which are sorted in descending order. We choose k
such that 99% of the eigenvalue energy is used, i.e.,∑k

i=1 λi∑M
i=1 λi

= 0.99 (2)

The resulting neutral subspace is a subspace that
passes through the neutral mean and is in the di-
rection of the neutral eigenvectors. Every point in
this subspace can be written as the summation of
the neutral mean and a linear combination of the
eigenvectors. Note that an expression subspace is
therefore an affine subspace.

Fig. 2 shows the face points of pairs of happy and
neutral images of 85 subjects from the Cohn-Kanade
database [20] in a 3D space. The dimension of the
points was reduced to three using PCA. The two
planes represent the 2D neutral and happy subspaces.
Note that as it is seen in Fig. 2, the happy and neutral
subspaces are very different (they have different direc-
tions and zero crossings). We can further investigate
this difference in the original high dimensional space
by calculating the angles between their eigenvectors.
Some statistical analysis of the angle between the
eigenvectors of two expression subspaces is given in
Appendix A.

Fig. 2. Scatter plot of pairs of happy and neutral face
points of 85 subjects from the Cohn-Kanade database.
The two planes represent the neutral and happy sub-
spaces.

An important property of a neutral subspace is that
neutral face points are closer to it than happy face
points. In order to show this property, we calculated
the mean square error (MSE) between a large number
of happy and neutral images and their projections
into a neutral subspace using the FRGC database. The
neutral subspace was constructed using the neutral
images of 100 subjects. The MSE was then calculated
for the neutral and happy images of 300 other sub-
jects from this database. Fig. 3 shows the average of
the MSE for different proportions of the eigenvalue
energy of the neutral subspace. As it is known from
the definition of PCA [19], the MSE increases by
decreasing the eigenvalue energy of a PCA space. Fig.
3 shows that, the MSE of projection into the neutral
subspace is larger for happy images than for neutral
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images, showing that the neutral images are closer to
the neutral subspace than the happy images.
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Fig. 3. Reconstruction error for neutral and happy
faces projected to the neutral subspace versus differ-
ent eigenvalue energies.

2.1 Synthesizing New Expression Images

In the following, for simplifying the explanations, we
use the neutral subspace as an example of expression
subspaces.

We know from geometry that, the projection of
a point into a subspace is the nearest point of the
subspace to that point. Based on this fact, the projection
of a face image with an arbitrary expression into the neutral
subspace gives us an approximation of its neutral face
image.

Let x denote a face vector with an arbitrary ex-
pression. The approximation of the neutral face of
the image x is obtained by reconstructing it from its
projection coefficients into the neutral subspace as

N (x) = [u1...uk][u1...uk]
T (x−m) +m (3)

where the term [u1...uk]
T (x−m) gives the projection

coefficients and N () denotes the neutral synthesis
function. Fig. 4 illustrates the projection and recon-
struction of the image x into a 1D neutral subspace
(i.e., a line). The neutral subspace is in the direction
of the neutral eigenvector u and passing through the
neutral mean face m. Also, N(x) is the reconstruction
from the projection of x into the neutral subspace,
which is the approximation of the neutral face of x.

Throughout the rest of this paper, we refer to “the
reconstruction from the projection coefficients” of a
vector simply by “the projection” of that vector.

2.2 Estimating the Synthesis Error

We call the distance between a true neutral image
and its approximation (obtained by projecting its non-
neutral image into the neutral subspace) the synthesis

Fig. 4. Projection of an input face vector into a neutral
subspace.

error, denoted as es. We can estimate this error using a
validation set as follows. Let x be the input image and
assume that we want to synthesize its neutral image.
Also, let {zi}li=1 be the set of l nearest images to x
from the validation set and {ni}li=1 the set of their
corresponding neutral images. The synthesis error for
x is then obtained by averaging the synthesis error
for {zi}li=1 as

exs =
1

l

l∑
i=1

(ni −N (zi)) (4)

The approximation of the neutral image of x is then
obtained as

Ne(x) = N (x) + exs (5)

where Ne(x) denotes the modified neutral synthesis
function.

Fig. 5 shows some examples of the synthesized im-
ages. The first row contains the input images from the
Cohn-Kanade database. These images belong to the
few subjects who have given their permission for the
use of their images in publications. The second row
contains the synthesized images obtained by project-
ing the input image into the corresponding expression
subspace, i.e., H(x), N (x), etc. The third row shows
the synthesized images obtained by summing up the
projected images and the estimated synthesis error for
each input image, i.e., He(x), Ne(x), etc. The fourth
row shows the ground-truth images. The number of
the nearest neighbors l is 10 in this example. As seen
in Fig. 5, the images in the third row, which are
obtained using the modified synthesis function, better
approximate the ground-truth images compared to
the images in the second row.
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Fig. 5. Examples of the synthesized images. The
first (top) row: input images, the second row: pro-
jected images, the third row: projected images plus the
synthesis error, and the fourth row: the ground-truth
images.

3 FACE RECOGNITION USING SYNTHE-
SIZED IMAGES

In this section, we propose two face recognition meth-
ods. The first one is called the expression subspace
projection (ESP) method, in which no estimation of
the synthesis error is used. The second method is an
extension of the first one, in which some statistics
of the synthesis error is used to improve the estima-
tion of the within-class scatter matrix. Although both
methods are computationally simple and fast, the ESP
method is much faster.

3.1 The ESP Method
Our proposed face recognition systems work in a
generic learning framework. In these systems, generic
training images are used to create the expression sub-
spaces. New expression images are then synthesized
from the gallery images as explained in Section 2.1.
In the proposed ESP method, the generic training,
gallery and synthesized images are then used to train
LDA. LDA finds the discriminant projection bases by
maximizing the Fisher-Rao’s criterion [2] given by

|vTSbv|
|vTSwv|

(6)

where v is the projection basis, Sb =
∑c

i=1 ni(mi −
m)(mi −m)T is the between-class scatter matrix, c is
the number of classes, ni is the number of the samples
in class i, mi is the mean of the samples of class i,
and m is the global mean (mean of the samples of
all classes). Sw =

∑c
i=1 S

i
w is the within-class scatter

matrix, where Si
w =

∑ni

j=1(xij −mi)(xij −mi)
T is the

scatter matrix of class i and xij is the jth sample of
that class.

When the generic set, gallery and synthesized im-
ages are used to train LDA, it can be shown from the
definition of the within-class scatter matrix that, Sw

of the gallery subjects is estimated from

Sg
w ≈ St

w + Sg+s
w (7)

where Sg
w denotes the actual within-class scatter ma-

trix of the gallery subjects (which is unknown), St
w

denotes the within-class scatter matrix of the generic
training images and Sg+s

w denotes the within-class
scatter matrix of the gallery and synthesized images.

After obtaining the LDA projection bases, discrim-
inant features of the gallery and probe images are
extracted by projecting them into these bases. We
observed that, the performance of an LDA-based face
recognition system depends on the number of the
LDA projection bases that is used. That is, using all
of the generalized eigenvectors corresponding to all of
the non-zero eigenvalues, as suggested by Belhumeur
et al. [2], does not result in the best performance.
We found through experiments that discarding the
eigenvectors corresponding to the eigenvalues that
are smaller than a threshold results in a better per-
formance. The threshold that we used for the experi-
ments in this paper is 0.01.

The cosine metric is used here for measuring the
similarity between the feature vectors of the galley
and probe images. We experimented with different
commonly used similarity/distance measures, and
concluded that cosine produces the best results. Note
that the synthesized images are only used for training
LDA and not for matching with the probe images.
Fig. 6 shows the block diagram of the proposed ESP
method.

3.2 The ESP-SEE Method
Instead of estimating the synthesis error for individual
gallery images, we can use some statistics of the syn-
thesis error to improve the estimation of the within-
class scatter matrix as follows.

Theorem-The scatter matrix of class i can be written
as

Si
w =

1

ni

(ni
2 )∑

j=1

dijd
T
ij (8)

where dij ’s are pairwise distances of the samples
of class i and

(
ni

2

)
denotes the number of two-

combinations from a set of ni elements. The proof of
this Theorem is given in Appendix B. Fig. 7 illustrates
the pairwise distances for a class with three samples.

Now, suppose we only have the happy image h
of a gallery subject and we want to estimate the
within-class scatter matrix for this subject using its
synthesized neutral image. Fig. 8 illustrates the role of
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Fig. 6. Block diagram of the ESP method. Thick arrows
convey projection bases.

Fig. 7. Pairwise distances for a class with three sam-
ples.

a synthesized image in the estimation of the within-
class scatter matrix. In this figure, the line repre-
sents the neutral subspace, the point h represents
the gallery image, and the point n represents the
true neutral image of that gallery subject which is
unknown.(Although n may not lie exactly on the
neutral subspace, we can approximate n with its
projection into the neutral subspace given that the
neutral subspace contains enough eigenvalue energy
. That is, we can assume that n lies on the neutral
subspace.) Also, the point N(h) represents the synthe-
sized neutral image, which is the approximation of n.
According to the theorem, the actual scatter matrix of
class i is

Si
w =

1

2
ddT (9)

where as shown in Fig. 8, d = n − h. In the ESP
method, by using N (h) and h to train LDA, according
to the theorem, the scatter matrix of class i is esti-
mated from

Si
w ≈ 1

2
d̃d̃T (10)

where d̃ = N (h) − h, which we call the synthesized
pairwise distance.

Fig. 8. Geometric view of a synthesized image.

The synthesis error is also depicted in Fig. 8. It
is shown in Appendix C that, the synthesis error is
orthogonal to the synthesized pairwise distance,

d̃⊥es (11)

This orthogonality allows us to simply use some
statistics of the synthesis error to improve the esti-
mation of the within-class scatter matrix. As seen in
Fig. 8, the pairwise distance d can be written as the
summation of the synthesized pairwise distance and
the synthesis error,

d = d̃+ es (12)

Then, using (11) and (12), it can be easily shown
that

ddT = d̃d̃T + ese
T
s (13)
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where the second term on the right represents the
second moment of the synthesis error.

In the next section, we describe an approach for
estimating the second moment of the synthesis error
using a validation set. For now, let Me = ese

T
s be

the estimation of the second moment of the synthesis
error. By substituting (13) in (8), it can be easily shown
that, the within-class scatter matrix of the gallery
subjects can be estimated as

Sg
w ≈ Sg+s

w + (
c∑

i=1

ni − 1

2
)Me (14)

where c denotes the number of the gallery subjects
and ni denotes the number of the images of class i
consisting of the gallery and synthesized images (i.e.,
ni − 1 is the number of synthesized images for class
i).

Finally, by adding the generic training images to the
set of gallery and synthesized images, the estimation
of the within-class scatter of the gallery subjects is
obtained from

Sg
w ≈ St

w + Sg+s
w + (

c∑
i=1

ni − 1

2
)Me (15)

Once the within-class scatter matrix is calculated,
the calculation of the between-class scatter matrix and
the remaining steps are the same as those in the ESP
method. Fig. 9 shows the block diagram of the ESP-
SEE method.

Fig. 9. Block diagram of the ESP-SEE method. Thick
arrows convey projection bases.

3.2.1 Estimating the Second Moment of the Synthe-
sis Error
We estimate the second moment of the synthesis error
using a validation set as follows. To create a validation
set, we divide the subjects of the generic training set
into two sets: the training set, which is used to create
the expression subspaces, and the validation set.

Let ni and hi be the neutral and happy images of
class i in the validation set. Also, let N (hi) be the
synthesized neutral image of hi. Then, the synthesis
error is obtained as

eis = ni −N (hi) (16)

The estimation of the second moment of the syn-
thesis error can then be obtained by averaging as

Me =
1∑V

i=1 wi

V∑
i=1

wi∑
j=1

eijs (e
ij
s )

T (17)

where V is the number of validation subjects, eijs ’s are
the synthesis errors for class i, and wi is the number
of the synthesis errors obtained for class i.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of
our face recognition methods and compare them with
the generic learning method proposed by Wang et al.
[17], which to the best of our knowledge produces
the best results compared to other published methods.
This method, in which LDA is trained using only the
images of the generic people, is called here as “generic
LDA”.

We also compare the performance of our proposed
methods with the adaptive generic learning method
[21], which has been recently proposed to address the
problem of applying DA methods under SS scenario.
In this method, the within-class variability and the
class mean of the subjects with SS are inferred by
a predicting model learned from the generic training
set. The overall within-class and between-class scatter
matrices for the gallery subjects are then estimated
using the predicted within-class variability and class
means.

We denote our proposed framework for training
LDA as “GGS LDA”, as in that, LDA is trained using
the images of a generic training set, the gallery and the
synthesized images from the gallery. This framework
can be used in conjunction with other expression
synthesis/transformation methods.

To the best of our knowledge, the only expression
synthesis/transformation method existing in the lit-
erature, is the transformation method of Lee et al.
[15], in which the tensorface concept [16] is used to
transform the expression of an image. In the face
recognition method proposed by Lee et al. [15], the
gallery images are assumed to be neutral and the
probe images are assumed to be non-neutral. The
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expression of the probe images is then transformed
to neutral to match them with the gallery images.
Lee et al. used various neutral images per subject
to train LDA for recognition. Therefore, in fact, they
tried to solve the problem of recognizing from single
expression, but not recognizing from SS. We found
through experiments that the performance of their
method, when it is used for recognition from SS, is
very poor.

We implemented the transformation method of Lee
et al. and used it in our GGS-LDA framework (de-
noted here as “Lee+GGS LDA”), in order to compare
the performance of our proposed synthesis method
with their transformation method.

4.1 Datasets
We performed our experiments on the Cohn-Kanade
AU-Coded Facial Expression database [20] and the
Face Recognition Grand Challenge (FRGC) v2.0 [18]
database, which are, to the best of our knowledge, the
most comprehensive facial expression databases with
a large number of subjects and various expressions.

The FRGC database contains 4007 images from
464 subjects displaying various expressions. The most
displayed expressions are neutral, happy, surprise and
puffy cheeks.

The Cohn-Kanade database contains video se-
quences from 97 people, each performing a series
of one to six facial expressions. The facial expres-
sions include happy, surprise, fear, disgust, anger and
sadness. Each subject might have one to six video
sequences and each video sequence starts with a
neutral expression and ends to a target non-neutral
expression. The last frame in each video sequence dis-
plays the target expression with its utmost intensity.

In order to use the Cohn-Kanade database, we
created an image dataset from the video sequences
in this database. This dataset consists of two to seven
images from each subject with different expressions.
For each subject, we selected the last frame of each of
its video sequences as the non-neutral images and the
first frame of one of its videos sequences as the neutral
image. The resulting dataset consists of 497 images
from 96 subjects with as many as seven expressions
per subject.

In order to align face images, we detected the
eye region of the images using the PCA technique
described in [22]. In order to implement this method,
first we manually detect the eye coordinates in a
few images to be used for training. We then rotate,
scale and shift the training images so that their eye
centers locate at the same pixel coordinates across
all of the images. The resulting eye regions are then
used to construct a PCA space representing the eye
region (so-called the eigen-eye space). Now, in order
to detect the eye region in an image, we search for the
region that has the smallest distance from the eigen-
eye space, i.e., the smallest reconstruction error. The

candidate eye region is also required to be rotated
and scaled until its reconstruction error is minimized.
After the eye region is detected, the same rotation and
scaling is applied to the entire image and the image is
shifted so that its eye region locates at the same pixel
coordinates across all of the images.

After aligning face images, we mask and normal-
ize them to have zero mean and unit variance. The
normalization is required to reduce the illumination
variation of the images.

4.2 Experimental setup
For each dataset, we randomly selected one third of
the subjects as the test set, one third as the validation
set and one third as the generic training set. Note that,
there was no overlap between the subjects used for
these three sets. We also experimented with different
numbers of subjects (out of the selected one third) for
the generic training set to investigate the effect of the
size of this set on each algorithm.

We formed the gallery and probe sets using the
images of the test subjects as described in the next
paragraph. We then performed face recognition using
each algorithm by calculating the similarity scores for
every pair of gallery and probe images. We repeated
the random division of the dataset and performing
face recognition for 60 times. Finally, for each algo-
rithm, we calculated the verification rates at different
thresholds using the similarity scores over all the
trials.

In order to provide a comprehensive analysis, we
performed the face recognition test on each pair of
expressions separately. For example, once we used
only neutral and happy expressions for the test set.
In this case, for each testing subject, we randomly
selected one of its happy or neutral images for the
gallery set. If the gallery image for that subject was a
happy one, we chose its neutral image for the probe
set and vice versa. Note that, only one image per
subject is used to form the gallery set. For the sake
of brevity, we only report experiments where either
the gallery or probe image for each subject is neutral.
However, in applying the proposed method, both of
the gallery and probe images can be non-neutral. Note
that, this means that unlike many face recognition
systems, enrollment is not required to be performed
under neutral expression.

4.2.1 Calculating the Statistical Significance of the
Results
In order to determine whether the difference between
the performance rates of two methods is significant,
we perform hypothesis testing [23]. Let x1 and x2,
where x1 > x2, be the number of true positives for
the methods A and B, respectively and n be the total
number of positive samples (i.e., x1

n and x2

n are the
verification rates.). Also, let p1 and p2 be the actual
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probabilities of correctly verifying a positive sample
using the methods A and B, respectively. We wish to
test the assumption that p1−p2 = 0 (the null hypothesis)
against the assumption that p1 > p2 (the alternative
hypothesis). That is, we wish to test whether the ob-
served numbers of true positive samples x1 and x2 for
the given number of samples n support the rejection
of the null hypothesis. If these numbers support the
rejection of the null hypothesis, we conclude that the
difference between the observed verification rates is
significant.

The number of true positives x for a given method
can be viewed as a random variable with binomial
distribution, where the probability of success p is the
probability of correctly verifying a positive sample
and the number of trials is equal to the total number
of positive samples n. We know that, for a sufficiently
large sample size n, the binomial distribution con-
verges to the normal distribution N(np, np(1 − p)).
Let x1 and x2 be two random variables with binomial
distributions with probabilities of success p1 and p2
and the numbers of trials n1 and n2, respectively. It
can be shown that, under the assumption that p1 = p2,

q =
x1

n1
− x2

n2√
(n1+n2

n1n2
)( x1+x2

n1+n2
)(1− x1+x2

n1+n2
)

(18)

has approximately a standard normal distribution
(i.e., N(0, 1)). We use q as the test statistic for our
hypothesis testing. In our case, n1 = n2, and therefore,
q simplifies as

q =
x1 − x2√

( (x1+x2)(2n−x1−x2)
2n )

(19)

In the hypothesis testing, we find a region on the
real line where under the null hypothesis, the density
of the test statistic is negligible. This region is called
the critical region of the test. If the observed test
statistic falls in the critical region, we reject the null
hypothesis. The critical region is obtained according
to the chosen level of significance. For 95% level
of significance, the critical region for our hypothesis
test is q > z0.95, where z0.95 is the standard normal
percentile and is equal to 1.64.

4.3 Results
Fig. 10 shows the ROC curves for the experiment on
the Cohn-Kanade database using both of our meth-
ods: ESP and ESP-SEE, and the generic LDA (“Gen
LDA”). The number of the subjects in the generic
training set was 30 for this experiment. We were
unable to apply the transformation method of Lee
et al. [15] for the Cohn-Kanade database because
this method requires every training subject to have
an image of each expression. In both of the Cohn-
Kanade and FRGC databases, each subject may not
have images of every expression. We need a large

number of generic training subjects in order to have
enough subjects with every expression. As seen in
Fig. 10, our proposed methods achieve significant
improvement over the generic LDA.

Fig. 11 shows the ROC curves for the experiment on
the FRGC database using the two proposed methods
and the generic LDA. The number of the subjects
in the generic training set was 30 for this experi-
ment. Again it can be seen that, the proposed meth-
ods achieve significant improvement over the generic
LDA.

Fig. 12 shows the ROC curves for the experiment on
the FRGC database using 100 subjects for the generic
training set. In this case, we were able to apply the
transformation method of Lee et al. As mentioned be-
fore, for applying this method, we used our proposed
GGS-LDA framework. As it can be seen in Fig. 12, the
Lee+GGS-LDA method outperforms the generic LDA,
showing the success of our GGS-LDA framework
in conjunction with other transformation/synthesis
methods. However, our proposed synthesis methods
outperform the transformation method of Lee et al.
Other advantages of our proposed synthesis method
over the transformation method of Lee et al. are: (1)
the simplicity of the proposed synthesis methods, i.e.,
the expression of an image is transformed simply
by projecting it into another subspace, (2) it is not
required to determine the expression of the input
image, and (3) the algorithm is not required to be
trained on a training set in which every subject has
an image of each expression.

For implementing the proposed ESP-SEE method,
we estimated the second moment of the synthesis
error using the validation set. We also experimented
with estimating the synthesis error for each individual
image using its nearest neighbors from the valida-
tion set and then training LDA using the modified
synthesized images (as described in Section 2.2). The
performance of the ESP-SEE method using these two
implementation approaches is the same, but the for-
mer requires much less computations.

To summarize the results, the verification rate at
0.1% false acceptance rate (FAR) for each expression
on the Cohn-Kanade and FRGC database are shown
in Tables 1 and 2, respectively. Also, the results using
some other sizes of the generic training set are shown
in these tables.

The verification rates using the adaptive generic
learning method (denoted as “Adapted LDA”) are
also shown in Tables 1 and 2. While the adapted
LDA method outperforms the generic LDA on the
FERET and a passport database as reported in [21], the
generic LDA outperforms the adapted LDA method
here on the FRGC and Cohn-Kanade database. One
possible explanation for this observation is that, the
adapted LDA method might be more suitable for
situations with less expression variations as it is the
case for the images in the FERET and the passport
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Fig. 10. ROC curves for the two proposed methods and generic LDA method on the Cohn-Kanade database.
The number of subjects in the generic training set is 30. Expressions used for the test set are: (a) neutral and
happy, (b) neutral and surprise, (c) neutral and fear, (d) neutral and disgust, (e) neutral and anger, and (f) neutral
and sadness.
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Fig. 11. ROC curves for the two proposed methods and the generic LDA on the FRGC database. The number of
subjects in the generic training set is 30. Expressions used for the test set are: (a) neutral and happy, (b) neutral
and surprise, and (c) neutral and puffy cheeks.

database used for the experiments in [21].

To determine the statistical significance of the re-
sults, the test statistic for our proposed methods ver-
sus the generic LDA and Lee+GGS-LDA methods are
shown in Tables 3 and 4. The decision to reject or
accept the null hypothesis is based on the 95% level
of significance, i.e., if q > z0.95 = 1.64, we reject the
null hypothesis and conclude that the improvement in
the performance is significant, otherwise, we conclude
that the observed results do not support the rejection
of the null hypothesis (i.e., accept).

To calculate the test statistic (see (19)) for each
experiment, we set the total number of positive sam-
ples n equal to the total number of subjects in the
database that display the corresponding expression
(this number is shown inside the brackets in Tables
3 and 4). It should be noted that, although in each
trial of our resampling approach, one third of the
subjects are used for the test set, by repeating the trials
for numerously enough number of times, we can be
confident that all of the subjects in the database have
been used for the test set. Moreover, for calculating

the verification rates, we concatenate the similarity
scores from all of the trials. Therefore, the number of
independent positive samples for each experiment is
equal to the total number of subjects in the database
that display the corresponding expression.

As shown in Tables 3 and 4, the performance im-
provement achieved by the proposed methods over
the generic LDA and Lee+GGS-LDA methods is sig-
nificant in most of the experiments. The only excep-
tion is the experiment using the puffy-cheeks expres-
sion on the FRGC database for our proposed ESP-
SEE method versus Lee+GGS-LDA method, which
is due to the insufficient number of subjects in the
database which display this expression. However, the
performance improvement in this case is significant
at 90% level of significance (q > z0.90 = 1.28).

In addition, in Tables 1 and 2, we have shown the
verification results using PCA. The low verification
rates for PCA shows the difficulty of recognition
under the SS scenario using unsupervised methods.

As shown in Table 2, recognizing happy images is
more difficult than the other expressions in the FRGC
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Fig. 12. ROC curves for the two proposed methods, generic LDA, and Lee+GGS LDA on the FRGC database.
The number of subjects in the generic training set is 100. Expressions used for the test set are: (a) neutral and
happy, (b) neutral and surprise, and (c) neutral and puffy cheeks.

TABLE 1
Verification rates at 0.1% FAR for the Cohn-Kanade database.

Expression Training Subjects PCA Gen LDA Adapted LDA Lee+GGS LDA ESP ESP-SEE

Happy 20 0.04 0.57 0.48 NA 0.85 0.90
30 0.06 0.72 0.61 NA 0.85 0.90

Surprise 20 0.00 0.34 0.28 NA 0.55 0.64
30 0.01 0.50 0.46 NA 0.68 0.76

Fear 20 0.21 0.58 0.45 NA 0.85 0.87
30 0.26 0.72 0.56 NA 0.88 0.89

Disgust 20 0.08 0.46 0.29 NA 0.73 0.77
30 0.11 0.56 0.40 NA 0.74 0.77

Anger 20 0.35 0.60 0.43 NA 0.90 0.90
30 0.43 0.64 0.54 NA 0.92 0.92

Sadness 20 0.47 0.78 0.68 NA 0.98 0.98
30 0.47 0.86 0.75 NA 0.98 0.98

Average 20 0.19 0.55 0.43 NA 0.81 0.84
30 0.22 0.67 0.55 NA 0.84 0.87
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TABLE 2
Verification rates at 0.1% FAR for the FRGC ver2.0 database.

Expression Training Subjects PCA Gen LDA Adapted LDA Lee+GGS LDA ESP ESP-SEE

Happy

30 0.08 0.33 0.31 NA 0.65 0.72
50 0.08 0.46 0.41 NA 0.70 0.76
100 0.10 0.59 0.53 0.66 0.71 0.76
150 0.10 0.61 0.58 0.66 0.71 0.76

Surprise

30 0.11 0.35 0.33 NA 0.74 0.82
50 0.13 0.50 0.46 NA 0.78 0.84
100 0.16 0.68 0.63 0.80 0.83 0.86
150 0.16 0.74 0.71 0.82 0.84 0.88

Puffy Cheeks

30 0.17 0.38 0.35 NA 0.77 0.83
50 0.18 0.52 0.45 NA 0.80 0.86
100 0.21 0.65 0.60 0.81 0.83 0.87
150 0.22 0.70 0.63 0.81 0.83 0.87

Average

30 0.12 0.35 0.33 NA 0.72 0.79
50 0.13 0.49 0.44 NA 0.76 0.82
100 0.15 0.64 0.59 0.76 0.79 0.83
150 0.16 0.68 0.64 0.76 0.79 0.84

TABLE 3
Statistical significance for the verification results on the Cohn-Kanade database.

Expression Training Subjects ESP vs. Gen LDA ESP-SEE vs. Gen LDA
(No. of Subjects)

Happy (85) 20 4.00 (Reject) 4.87 (Reject)
30 2.05 (Reject) 3.00 (Reject)

Surprise (88) 20 2.80 (Reject) 3.98 (Reject)
30 2.42 (Reject) 3.57 (Reject)

Fear (61) 20 3.29 (Reject) 3.57 (Reject)
30 2.22 (Reject) 2.36 (Reject)

Disgust (47) 20 2.66 (Reject) 3.09 (Reject)
30 1.82 (Reject) 1.92 (Reject)

Anger (38) 20 3.01 (Reject) 3.01 (Reject)
30 2.92 (Reject) 2.92 (Reject)

Sadness (79) 20 3.86 (Reject) 3.86 (Reject)
30 2.74 (Reject) 2.74 (Reject)

TABLE 4
Statistical significance for the verification results on the FRGC ver2.0 database.

Expression Training ESP vs. ESP-SEE vs. ESP-SEE vs.
(No. of Subjects) Subjects Gen LDA Gen LDA Lee+GGS LDA

Happy (246)

30 7.09 (Reject) 8.66 (Reject) NA
50 5.39 (Reject) 6.82 (Reject) NA

100 2.79 (Reject) 4.02 (Reject) 2.44 (Reject)
150 2.34 (Reject) 3.58 (Reject) 2.44 (Reject)

Surprise (215)

30 8.11 (Reject) 9.88 (Reject) NA
50 6.05 (Reject) 7.50 (Reject) NA

100 3.60 (Reject) 4.43 (Reject) 1.66 (Reject)
150 2.54 (Reject) 3.69 (Reject) 1.73 (Reject)

Puffy Cheeks (122)

30 6.15 (Reject) 7.18 (Reject) NA
50 4.61 (Reject) 5.73 (Reject) NA

100 3.19 (Reject) 4.01 (Reject) 1.29 (Accept)
150 2.38 (Reject) 3.21 (Reject) 1.28 (Accept)
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database. In the Cohn-Kanade database, the most
difficult expression for recognition is “disgust” and
the easiest one is “sadness”. Clearly, the level of the
deformation of the face is highest under the disgust
expression and lowest under the sadness expression.

The intensity of the surprise expression is much
higher in the Cohn-Kanade database compared to the
FRGC database, which resulted in higher verification
rates for the latter. Another difference between the
two databases is that, for the Cohn-Kanade database,
all the images of each subject were taken under the
same illumination condition. This makes the recogni-
tion task easier compared to when there is illumina-
tion variation between images of each subject, which
is the case in the FRGC database. It might be for
this reason that the verification rates for the happy
expression are higher for the Cohn-Kanade database
compared to that for the FRGC database.

It is clear from the verification rates shown in Tables
1 and 2 that, the proposed methods are very useful
especially when the size of the generic training set is
small. When the number of the subjects in the generic
training set is small, the estimation of the within-
class scatter matrix using only the generic training set
is considerably poor and the role of the synthesized
images is more pronounced. On the other hand, as
the number of the subjects in the generic training
set increases, this set contains more variability of
subjects, and therefore, the within-class variability of
the gallery subjects can be better estimated using only
the generic training set.

To see how the estimation of the within-class scatter
matrix using the synthesized images converges to
the actual within-class scatter matrix of the gallery
images, we calculated the difference between these
two matrices using various numbers of training sub-
jects. Fig. 13 shows this difference for the FRGC
database when happy and neutral expressions are
used for the test set. The plot for other pairs of expres-
sions is similar. To calculate the actual within-class
scatter, we used both the gallery and probe image
for each subject. To measure the difference between
the synthesized and actual within-class scatter matrix
for each subject, we summed up the square of the
element-wise differences between the two matrices
and divided by the total number of the elements.
We then averaged the result over all of the testing
subjects. As it can be seen in Fig. 13, the matrix
difference decreases by increasing the number of the
training subjects, which shows the convergence of the
synthesized within-class scatter matrix to the actual
one.

For performing the above experiments, the expres-
sion subspaces were constructed by using 99% of the
eigenvalue energy. To investigate the effect of the pro-
portion of the eigenvalue energy on the recognition
performance, we experimented with the other values
of this proportion. Fig. 14 shows the results for the
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Fig. 13. Difference between the synthesized and ac-
tual within-class scatter matrix versus various number
of training subjects.

ESP-SEE method on the FRGC database when the
happy and neutral expressions are used for the test
set. As it is seen, by increasing the eigenvalue energy
better recognition performance has been achieved,
showing that better approximation of the unavailable
expression images can be obtained.
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Fig. 14. Verification rate at 0.1% FAR versus the
eigenvalue energy of the expression subspace using
the ESP-SEE method on the FRGC database.

5 CONCLUSION

In this paper, we introduced expression subspaces
for approximating new expression images from one
image of a subject. We then proposed two methods
to improve recognition of expression-variant faces
from SS. The ESP method uses the synthesized im-
ages along with the gallery images and a generic
set of images to train a DA algorithm. To improve
the performance of ESP, the ESP-SEE method was
proposed which uses a validation set to estimate the
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second moment of the synthesis error. This estimation
is used to improve the estimation of the within-
class scatter matrix obtained from synthesized images.
Using the FRGC and the Cohn-Kanade databases, we
demonstrated that the proposed methods significantly
improve the recognition rate compared to the exist-
ing methods and do not need the error-prone tasks
required by them.

An important advantage of the proposed method
is its simplicity; the expression of an image is trans-
formed simply by projecting it into another subspace.
Another advantage of the proposed methods is that
both the gallery and probe images can have non-
neutral expressions.

As a straightforward DA method, we used LDA in
this work. We expect that the use of more advanced
DA methods can provide more improvement using
the proposed approach.

The proposed solution can address other face recog-
nition problems such as recognizing occluded faces,
faces wearing glasses and age-variant faces. It can
be also used to address general pattern recognition
problems, e.g., for the problem of recognizing objects
that are misclassified under similar circumstances.
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