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Recognizing Involuntary Actions from 3D Skeleton
Data Using Body States

Mozhgan Mokari, Hoda Mohammadzade*, Benyamin Ghojogh

Abstract—Human action recognition has been one of the most
active fields of research in computer vision over the last years.
Two dimensional action recognition methods are facing serious
challenges such as occlusion and missing the third dimension
of data. Development of depth sensors has made it feasible to
track positions of human body joints over time. This paper
proposes a novel method for action recognition which uses
temporal 3D skeletal Kinect data. This method introduces the
definition of body states and then every action is modeled as a
sequence of these states. The learning stage uses Fisher Linear
Discriminant Analysis (LDA) to construct discriminant feature
space for discriminating the body states. Moreover, this paper
suggests the use of the Mahalonobis distance as an appropriate
distance metric for the classification of the states of involuntary
actions. Hidden Markov Model (HMM) is then used to model
the temporal transition between the body states in each action.
According to the results, this method significantly outperforms
other popular methods, with recognition (recall) rate of 88.64%
for eight different actions and up to 96.18% for classifying the
class of all fall actions versus normal actions.

Index Terms—Human action recognition, involuntary action
recognition, Fisher, linear discriminant analysis (LDA), kinect,
3D skeleton data, hidden markov model (HMM).

I. INTRODUCTION

S INCE last two decades, human action recognition has
drawn lots of attention from researches in computer vision

and machine learning fields. In early attempts for action
recognition, RGB video was used as input of recognition
system. Various valuable methods and algorithms were pro-
posed for recognizing actions and activities using RGB data.
However, several problems exist in action recognition using
RGB frames such as occlusion and different orientations of
camera. Existence of other objects in addition to human bodies
and the lack of information of the third dimension can be
mentioned as other challenges in this category of methods
[45], [12], [41], [24], [24], [40], [30]. In order to address these
problems, methods for recognizing action from multiple views
have been also introduced; however, they are typically very
expensive in calculations and are not suitable for real time
recognition [15].

Due to the mentioned problems and by introducing 3D
Kinect sensors in market, researchers started to work on 3D
data for the purpose of action recognition. The Kinect sensor
provides both depth and skeleton data in addition to capturing
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RGB frames. Different methods have been proposed so far for
action recognition using either depth or skeleton data.

Action recognition has a variety of different applications.
From one point of view, all actions can be categorized in one
of the two categories of normal (voluntary) and involuntary
actions (see Fig. 1). Daily actions, actions for gaming, and
interactions between human and computer can be considered
as normal actions. On the other hand, involuntary actions can
happen in different places, such as homes, hospitals and public
places. One of the most frequent involuntary actions is falling
which can happen by patients in hospitals. Old people are also
subject to dangerous falls, which if detected by surveillance
systems for elderly cares can reduce serious injuries and fatal-
ities. Another example where proper detection of involuntary
actions can prevent problems and chaos is in public places.
In these places, involuntary actions such as falling or being
thrown can happen as a result of accident or physical fight. In
comparison to normal actions, involuntary actions usually have
larger performance variance among various trails and different
subjects. This characteristic of involuntary actions is the main
challenge in recognizing them. Although the proposed method
in this work can be applied for both normal and involuntary
actions, its focus is on involuntary actions and tries to handle
the mentioned challenge. Figure 2 depicts a human action
recognition system used for fall detection. As it is seen, it
is not possible to train the system using all various types of
fall actions over all different subjects. Therefore, the challenge
is to recognize any fall action using limited number of training
samples.

This paper proposes a new method for human action recog-
nition, especially for involuntary actions. The main contribu-
tions are as follows:
• In contrast to most of action recognition methods in

literature, this work is not feature-based but is holistic.
In other words, features (such as histogram of joints as
used in [44]) are not extracted from skeleton but the raw
features of skeletons are fed to the so called body state
classifier. Consequently, the classifier is responsible to
extract discriminant features. As it is well-known in face
recognition [48], holistic methods have more potential for
accurate recognition because of using all the information
and devolving feature extraction to classifier. Our exper-
iments verify our better performance in comparison to
feature-based methods, such as [44], in both action-vs-
action and normal-vs-fall actions scenarios.

• This work properly handles involuntary actions, which
are variously distributed in the space of joints, by taking
into account the distribution for each body state.
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• Different speeds in performing involuntary actions are
handled by using Hidden Markov Models (HMM).

• This method can be used for recognizing normal actions
as well as involuntary ones.

• Other than outperforming in recognition of each of the
various normal and involuntary actions in the dataset,
the proposed method achieves a great recognition rate
for classifying the class of all involuntary actions versus
normal actions. This scenario is particularly important
where only the involuntary action detection is important,
such as elderly or patient surveillance.

This paper is organized as follows. Section II reviews related
work. Section III proposes the main algorithm of proposed
method which includes modeling human body, and action
recognition using Fisher Linear Discriminant Analysis (LDA)
and Hidden Markov Model (HMM). Section IV introduces
the utilized dataset and experimental results. Finally, Section
V concludes the article and addresses the possible future work.

II. RELATED WORK

According to the importance of action recognition and its
large amount of applications, lots of different methods have
been proposed in this field. In [32], Peng et al. described
different kinds of bag of visual words model (BoVW) meth-
ods and investigated the effect of each of them on action
recognition. These factors were feature extraction, feature pre-
processing, codebook generation, feature encoding, pooling,
normalization, and fusing these descriptors.

Liu et al. [26] employed Genetic Programming (GP) on
spatio-temporal motion features for action recognition. Fea-
tures were extracted from both color and optical flow se-
quences. Wang et al. [42] used homography for cancella-
tion of camera motions from trajectories and optical flows.
SURF descriptors and dense optical flows were employed with
RANSAC to estimate this homography. Then, motion-based
histogram of optical flows (HOF) and motion-based histogram
(MBH) descriptors were used for action recognition.

Facing some challenges such as coverage of some part
of body by others and introducing 3D methods, encouraged
researchers to use depth map. Li et al. [21] recognized human’s
action by sampling the 3D points of depth image and creating
an action graph. In this method, they modeled the position
of human’s body by projecting the contour of body shape
onto the different planes and sampling them. Then, the state
of human body was modeled with these bags of 3D points.
The states were considered as nodes of a graph, modeling the
action. Although this method is not robust to the changing
of viewing angle and human’s body scale, it has recognized
90 percent of actions and the error was halved compared to
2D methods. Rahmani et al. [34] used Histogram of Oriented
Principal Components (HOPC) descriptor on point clouds for
cross-view action recognition.

Zhao et al. [49] classified human’s actions by utilizing
information of RGB and depth image. They obtained spatio-
temporal interest points from RGB image and used combined
descriptor of RGB and depth images.

Liu et al. [27] encoded sptial-temporal information of skele-
ton joints in depth sequences into color images. In this regard,

5D space of (x, y, z, f, n) was expressed as a 2D coordinate
space and a 3D color space, where f and n denote time
and joint labels, respectively. Convolutional neural network
was used to extract more discriminative deep features. These
features were used for action recognition.

Rahmani and Mian [35] transferred human poses to a view-
invariant high-level space and recognized action in depth
image by using deep convolutional neural network. Their
method obtained appropriate results in multi-view datasets. In
[47], Zhang et al. used 3D Histograms of Texture (3DHoTs)
from depth maps. The 3DHoTs were formed by characterizing
the salient information of action. In their method, action was
represented by texture features. classification of actions was
done by multi-class boosting classifier (MBC).

Chen et al. [7] projected depth videos on three orthogonal
Cartesian planes. Absolute difference between two consecutive
projections was accumulated creating Depth Motion Maps
(DMMs). Then action recognition was performed by distance-
weighted Tikhonov matrix with an I2-regularized classifier.
Chen et al. [8] proposed a Local Binary Patterns (LBP)
descriptor which is invariant to shape and speed for action
recognition in depth videos. They partitioned Depth Motion
Maps (DMMs) and extracted LBP for action recognition.
Liang et al. [22] applied DMMs-based Gradient Local Auto-
Correlations (GLAC) features of depth videos to capture the
shape information of sub-actions. They proposed Locality-
constrained Affine Subspace Coding (LASC) to encode the
extracted features. This method had competitive results with
less complexity.

By developing Kinect sensors and related software for
tracking humans in images and detecting positions of body
joints in 3D space, several methods were proposed to rec-
ognize action using this information. One of these methods
introduced Cov3DJ descriptor [16] which separated different
action classes by finding covariance matrix of positions of the
joints during the action, and used Support Vector Machine
(SVM) for classification.

Reddy et al. [36] recognized action by considering mean,
minimum and maximum of position of joints as features
and compared them to features obtained by using Principle
Component Analysis (PCA) on position of joints. Likewise,
Martı́nez-Zarzuela et al. [29] tried to recognize actions by tak-
ing a sequence of positions of joints as a signal and extracting
the five first Fast Fourier Transform (FFT) components as a
feature vector which was fed into a neural network. However,
this method did not perform very well for complex actions
involving different parts of body.

As different actions involve different joints, Anjum et al.
[5] selected important and effective joints in the training
level, according to the type of action. In their method, each
action was determined by three joints. Results showed that
this method performs better with less information but joints
should be selected in training for each action. Therefore,
extending this algorithm for new actions is time-consuming
and expensive.

Liu et al. [25] used tree-structure based traversal method on
3D skeleton data and extended RNN-based learning method
to spatio-temporal domain. In this way, they could analyze
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the hidden sources of information in actions. Ke et al. [19]
transformed skeleton sequences into clips consisting spatial
temporal features. They used deep convolutional neural net-
works to learn long-term temporal information. Multi-Task
Learning Network (MTLN) was used to incorporate spatial
structural information for action recognition.

In [37], Shahroudy et al. described actions by partitioning
kinetics of body parts. They used sparse set of body part
to model action as a combination of multimodal features.
Dynamics and appearance of parts were represented by hetero-
geneous set of depth and skeleton-based features. Huynh et al.
[17] proposed a new method more robust to human scale and
changes of position. They categorized joints into three classes
of stable, active and highly active joints, and utilized angles
of 10 important joints and vectors connecting moving joints
to stable joints. Their method performed better than a similar
method which uses only raw position of joints.

Luvizon et al. [28] selected subgroups of joints by Vector
of Locally Aggregated Descriptors (VLAD) algorithm. Clas-
sification accuracy was improved by the non-parametric K-
NN classifier with Large Margin Nearest Neighbor (LMNN).
Amor et al. [4] used skeleton shapes as trajectories on
Kendall’s shape manifold to represent the special dynamical
skeletons.

Xia et al. [44] used middle and side hip joints to extract a
histogram of position of other joints to be used as feature
vector. They reduced the dimension of the feature vector
using Linear Discriminant Analysis (LDA) and used K-means
method to cluster the feature vectors. Each cluster constituted
a visual word. Each action was determined as a time sequence
of these visual words and modeled by Hidden Markov Model
(HMM). Results showed that this method partially overcame
challenges such as different lengths of actions and the same
action done in different ways and view angles.

Papadopoulos et al. [31] obtained orientation of body using
the positions of shoulders and hip joints and thereby, extracted
orthogonal basis vectors for each frame. A new space was
then constructed for every person according to its orientation
of body. According to these vectors and the new space, the
spherical angles of joints were used instead of position of
joints. The use of angles instead of position of joints, made the
method more robust against human’s body scale and changes
in the shape of body. This method also used energy function
to overcome the challenge of same actions done by opposite
hands or feet.

Although there are lots of proposed methods for action
recognition, but many problems and challenges still remain
unsolved. This paper tries to tackle some of them such as
different distributions of actions in statistical feature space,
especially for involuntary actions.

III. METHODOLOGY

In order to recognize actions, at the first step, the actions
should be modeled in an appropriate way. Modeling actions
depends on various facts such as application, types of actions
and method of classification. One of the most important appli-
cations of action recognition is online recognition where the

recognition should be performed in real time. This article goals
this type of recognition. In this category, the action should be
modeled so that the model can be updated during completion
of action and finally recognize the type of performed action.
Therefore, in this article, each action is supposed to be a
sequence composed of several states of body.

In the next step, position of joints in the 3D space are
utilized in order to model the state of body. The position
of joints are prepared by the output of Kinect sensor. The
skeleton consists of several joints, which are 25 joints for the
dataset used for the experiments in this paper. A number of
these joints are, however, very close to each other without
any important difference in movements; therefore, their in-
formation are almost redundant. With respect to the actions
addressed in this paper, merely 12 important joints, which are
right and left ankles, right and left knees, right and left wrists,
right and left shoulders, head, middle spine, hip and spine
shoulder are selected out of the skeleton. Position of spine
base (hip) and right and left shoulders are used for alignment
in order to correctly describe the state of body in different
persons and runs. The selected joints and also joints required
for alignment are shown in Fig. 3. State modeling including
skeleton alignment and state classification are detailed in the
following.

A. Modeling State of Body

In order to model and describe the state of body, a proper
descriptor should be created. This descriptor models the action
as a time sequence of states and tries to recognize the action.
The body states are determined as follows. According to nature
of every action, the main body states, of which the action is
composed, are conjectured and then are manually selected and
sampled out of the training sequences of frames. Notice that
this manual selection is done merely in training phase, while
in the test phase, each input frame is automatically classified
by the classifier of body states.

1) Aligning Skeleton: Different locations and orientations
of body in the frames forces the need to aligning the skeleton.
As already mentioned, 12 joints positions are used in 3D space,
in order to describe the state of body. In order to cancel the
location of body skeleton, the position of hip joint is subtracted
from the position of all joints. This is performed for every
frame in the sequence.

Moreover, different orientations of skeleton or camera
makes recognizing similar states difficult and even wrong.
Thus, in order to cancel different orientations of body skele-
tons, the body is rotated around y axis making the projection
of the vector connecting the left and right shoulder onto the xz
plane parallel to the x axis. By performing this rotation, the
skeleton directly faces the camera. This procedure is illustrated
in Fig. 4. The axes can be seen in Fig. 3. In literature, the
alignment of skeleton is often performed, but the methods or
the joints used for that might differ. For example, in [44], left
and right hip joints are utilized rather than shoulder joints for
alignment.

2) Creating feature vector: To determine the state of body
in each frame, proper feature vectors are required. Three
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joints out of the 12 joints are used for alignment and the
remaining nine joints are used to create the feature vec-
tors. If (xm, ym, zm) denotes the coordinate of mth joint
(m = {1, . . . , 9}), the raw feature vector are obtained as
[x1, . . . , x9, y1, . . . , y9, z1, . . . , z9]

T . Fisher Linear Discrimi-
nant Analysis (LDA) [10], [14] is utilized for extracting
discriminant features from the raw feature vectors. In Fisher
LDA method, the dimension of feature vector is reduced to
C − 1, where C is the number of states. In LDA, the within-
(Sw) and between-class (Sb) scatter matrices are

Sw =

C∑
i=1

∑
xk∈Xi

(xk − µi)(xk − µi)
T , (1)

Sb =

C∑
i=1

Ni(µi − µ)(µi − µ)T , (2)

in order to minimize the within class covariance and maximize
the between class covariance [14], [6], where µi and µ denote
the mean of ith state and the mean of class means, respectively.
The Fisher projection space is created by the eigenvectors of
S−1w Sb. By its projection in this space, the feature vector F
for an input skeleton state is obtained.

After projection onto Fisher space, the obtained feature
vectors are located relative to each other such that those
relating to similar and different states, respectively fall close
and apart. By this fact, recognition of states becomes available.

There are also other methods for feature reduction which
can be used for classification. One of the most popular
methods of this category is Principle Component Analysis
(PCA) [14], [6]. However, PCA method cannot always classify
the data as well as LDA does. As an example, suppose that
the distribution of classes are similar to that depicted in Fig.
5. In this example, the Fisher LDA direction is perpendicular
to the direction of PCA. As is obvious in this figure, Fisher
LDA tries to minimize within-class variance while maximizes
between-class variance in order to classify them.

The resulting feature vectors are used for training and
testing the state of body. The action will be defined as a
time sequence of multiple specific states. The state of body is
recognized in the test phase, by finding the minimum distance
as described in the following section.

3) Finding the minimum distance: In every frame denoted
as f , the state of body should be recognized. For reaching this
goal, the distances between feature vector F of this frame and
the means of the feature vectors of all states are found. The
minimum distance determines the state of the frame f . If F̃i

denotes the mean of feature vectors of the ith class, the state
is found as,

state(f) = arg min
i
d(F, F̃i), (3)

where d is the distance measurement function which can be
one of the two followings:

• Euclidean Distance: One of the most popular methods
for calculating the distance of two vectors is Euclidean
distance, which is used as one of the distance methods

in this article. The function of Euclidean distance can be
formulated as,

d(F, F̃i) =

√∑
j

(Fj − F̃ij)2, (4)

where Fj and F̃ij are the jth components of F and F̃i,
respectively.

• Mahalanobis Distance: As the minimum distance from
the means of states is used for recognizing the state,
using a proper distance has much important influence on
the accuracy of recognition. Therefore, the distribution of
final feature vectors in the feature space should be con-
sidered and the distance measurement should be defined
accordingly.
If body states are categorized into C classes, the di-
mension of the final feature (Fisher) vectors would be
C − 1. As the dimension of the feature vectors might be
high, their distribution in each class cannot be directly
visualized for direct analysis. However, the distribution
of feature vectors can be analyzed in higher dimensions
by calculating their covariance matrices. The first two
directions of Fisher space are used here for illustrating
the distribution of each of the eight body states defined
for the TST dataset, which are discussed in more details
in Section IV. Figure. 6 illustrates the training samples
projected onto the space constructed by the first two
Fisher directions. As shown in this figure, distribution
of feature vectors for each state is different in the two
directions.
The more differently people perform an action containing
a state, the wider the distribution for the state would be.
The more widely distributed states are usually those dur-
ing the completion of an involuntary action. For instance,
as shown in Fig. 6, after projection on constructed Fisher
space, states related to normal actions such as standing
and sit states are less distributed than the states occurred
in involuntary actions, such as lay front and lay back. In
order to handle the challenge of different distributions of
projected states, a distance measurement function other
than Euclidean one should be used which considers the
distributions.
Mahalanobis distance considers variances of distributions
in its calculation, which is calculated as,

d(F, F̃i) =

√
(F − F̃i)TS−1(F − F̃i), (5)

where S denotes the covariance matrix of the feature
vectors of the class to which the distance is calculated.
As is obvious in equation (5), the covariance matrix S
acts as a weighting matrix for each class according to
its distribution. That is, the importance of distance in
a particular dimension is considered in calculating the
distances. In other words, the distance in a direction with
smaller variance is less valuable, yielding to S−1 in the
equation.
Mahalanobis distance is actually an extension to the
standard deviation from the mean, in multi-dimensional
space. Experiments reported in the following sections,



5

show outperformance of this distance in comparison with
Euclidean distance.

B. Classyfing Actions Using Hidden Markov Model

As previously mentioned, every action can be modeled as
a sequence of consequent states. After recognizing states of
body using Fisher LDA, Hidden Markov Model (HMM) is
utilized in this work to classify actions.

Every action is modeled using a separate HMM. Each
HMM has a number of hidden states with specific transition
probabilities between them. For instance, a three-state HMM
and its transition probabilities are illustrated in Fig. 7 [39].
Every hidden state has specific emission probabilities for
emitting body states. The transition and emission probabilities
of each HMM are estimated by the well-known Baum-Welch
expectation maximization algorithm [33] using the training
observations, i.e., sequences of body states. This algorithm
starts with initial assumptions for all of the parameters of
the model (i.e., transition and emission probabilities) and
then updates the parameters using corresponding expectation
maximization equations iteratively until convergence.

In order to decrease computational cost of the algorithm, the
frame per second rate has been reduced by down sampling.
Uniform down sampling with the rate of 20 is used which
was shown appropriate according to our experiments 1. After
constructing a HMM for each action, an unknown sequence is
recognized by feeding it to each HMM. After feeding the test
sequence of frames to all trained HMMs, every HMM outputs
a probability of occurrence for that sequence. The maximum
probability determines the action of that sequence.

To have more intuition, note that every period of repetitions
of a body state can be roughly associated to a HMM state.
For example, when having three-states HMMs for classifying
actions, the actions sit, grasp, and end up sit are mostly
made of the sequences {standing, crouching, sit on chair},
{standing, bend, standing}, and
{standing, crouching, sit on ground}, where body state
denotes a sub-sequence of repetitions of the body state (more
details about how body states are defined are discussed in
Section IV). Moreover, in each sub-sequence, the number of
repetitions of the corresponding body state can be different
across subjects and different trials.

For each action, the sequences that are used for training
HMM are adjusted to have the same lengths (number of body
states). This equalization is performed by manually repeating
the last state done by the person; so that the total number of
states of all actions become equal. It is important to note that
this equalization does not compensate for the different lengths
and speeds of actions performed by different people or over
different trials.

The advantage of HMM, in this work, is that it consid-
ers solely the dynamic of sequence and is not sensitive to

1Note that the sampling rate of the Kinect V2 sensor is known to be
30 frames per second (fps) in normal lighting conditions and 15 fps in
poor lighting conditions. According to the corresponding RGB images of
the dataset, the samples in this dataset should have been captured in normal
lighting condition, and hence, the original sampling rate for this dataset must
be 30 fps.

various paces and lengths of actions. For instance, there exist
sequences of lengths 75 frames upto 463 frames with different
speeds of actions in TST fall dataset [1], [11], and these
sequences have been successfully handled and recognized by
this method.

The overall structure of the proposed framework is summa-
rized in Fig. 8.

IV. EXPERIMENTAL RESULTS

To examine the proposed method, TST Fall Detection
dataset [1] is used. The details of this dataset are explained in
next section followed by the explanation on how the actions
are modeled in this dataset. At the end, the results of the
experiments are presented.

A. Dataset

TST Fall Detection dataset [1], [11] is used for verifying
the effectiveness of this method. There are two main categories
of actions in this dataset, i.e., daily living activities and fall
actions. 11 different persons perform every action for three
times. The daily living activities are sit, lay, grasp and walk
and the fall actions are falling front, back, side and end up sit.

This dataset has prepared information of 3D position of
joints and depth data obtained by the Kinect sensor V2,
which is more accurate than previous Kinect sensors. Only
the skeletal data of this dataset is used in this work for
experiments.

As previously mentioned, one of the important goals in
human action recognition is surveillance application especially
for controlling elderly or patient people. The main goal of
detecting involuntary actions and improvements of Kinect V2
encouraged this work to use the mentioned dataset. Unlike
other datasets, involuntary actions, such as falling down exist
sufficiently in this dataset, which makes this database chal-
lenging.

As fall actions are performed involuntarily, different states
and conditions from normal actions appear in different people.
Therefore, existing action recognition methods may not neces-
sarily perform as well for fall actions. Moreover, a number of
methods have been proposed to recognize fall actions, which
concentrate on using features such as speed and acceleration
recorded by accelerometer sensors. These features are not able
to effectively discriminate the normal actions from each other
nor involuntary actions from each other, and therefore do not
help recognizing the actions in general. Therefore, the main
challenge here is to develop a method which can detect and
analyze both of the normal and involuntary actions and also
recognize them from each other.

Several samples of depth images of actions in TST dataset
are shown in Fig. 9.

B. Recognition of states

In the dataset, only the actions are labeled, and therefore
labeling states should be performed manually. According to
the actions, eight different states are chosen and labeled to
be used to train and test the state classification module. The
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chosen states should include the main states of actions in the
dataset and should not contain unnecessary states which are
close to other states. The chosen states are standing, crouching,
lay back, lay front, lay side, bend, sit on chair and sit on
ground. An example of each state is shown in Fig. 10.

The “leave one subject out” cross validation is used for the
experiments. In each iteration, the entire samples of a person
is considered as test samples and the samples of other subjects
are used for training system. This type of cross validation is
fairly difficult because the system does not see any sample
from the test subject in training phase. The state recognition
experiment is repeated using both of the distance methods,
and the results are listed in Table I. Note that all the rates
reported in this paper are recall rates ( true positive

true positive+false negative ),
unless where the type of rate is mentioned.

Table I shows that the Mahalanobis distance outperforms
the Euclidean distance in general. As was expected, the
recognition rates of crouching, lay front and bend have been
improved significantly using Mahalanobis distance. The reason
is that the variances of training data for these states are huge
and this fact is not taken into account when Euclidean distance
is used.

It is worth noting that using the Mahalanobis distance, the
recognition rate of bend state has been improved at the cost
of reducing the recognition rate of standing state. Closer look
at Fig. 6 reveals that there exists an overlapping region of
distributions between the two states. Euclidean distance which
does not consider the distribution of classes, mostly recognizes
the overlapping region as the standing state. On the other hand,
the Mahalanobis distance mostly recognizes this region as the
bend state because the variance of standing state is much less
than bend. This fact can also be seen from the confusion
matrices of states for both distances which are depicted in
Fig. 11.

C. Action Recognition & Comparison

In the last step, an action is represented as a sequence of
states. Each state in this sequence is recognized by projecting
into the LDA space and utilizing a distance measure. Then,
the probability of each HMM (note that there is an HMM
for each specific action) generating the input sequence of
states is calculated and maximum probability determines the
recognized action. The number of hidden states in HMM’s
(note that hidden states are different from body states) affects
the recognition performance. Therefore, different number of
hidden states were tested for HMM’s in this work and were
compared to each other. Results of three different numbers
of hidden states for HMM’s are reported in Table II. The
experiments of this table are performed with Mahalanobis
distance. As was expected according to the nature of states and
actions in the TST Fall dataset [1], [11], HMM’s with three
hidden states perform better and hence, the number of hidden
states for HMM’s is considered to be three in this work. It is
worth nothing that, combination of optimum number of hidden
states for each action was also considered, but the experiments
showed that use of a constant number of hidden states for all
HMM’s results in better performance.

In this article, the proposed method is compared with the
method of Xia et al. [44] which has received considerable
attention in literature [2], [13], [9], [46] and has been used
for comparison in very recent methods [43], [3], [38], [18],
[23]. Note that all the above methods has experimented with
datasets created using an older version of Kinect sensor and
not containing involuntary actions.

For implementing method [44] and fairly comparing it with
the proposed method using the TST dataset, several necessary
adjustments were performed in its settings. First, for LDA, the
states are labeled in the same way as in the proposed method.
Second, the number of hidden states for HMM’s was chosen
to be three, according to the actions of the dataset. Third the
best number of clusters for histogram was experimented to be
eight, which conforms with the number of classes of states in
the proposed method.

Results are listed in Table III. The proposed method using
both of the distance methods are compared with the method of
Xia et al. [44]. Results reveal that in all actions, the proposed
method using each of the two distance measures outperforms
the method [44]. Although method [44] has utilized LDA and
clustering methods in preparing data for training HMM, it
has made several states very close to each other by using
a histogram concept, which has increased the error. As an
example, in fall actions the angular positions of joints are much
similar and the use of histogram ignores their differences.

Using Mahalanobis distance has significantly enhanced the
performance, especially in fall actions. In other words, im-
proving the performance of recognizing difficult involuntary
states such as crouching and lay front, has improved the total
recognition rate. As mentioned before, the main reason of this
fact is that the intrinsic variance of states are considered in
Mahalanobis distance.

The confusion matrix of actions is reported in Fig. 12. This
matrix shows that the actions that are similar to each other are
sometimes confused and wrongly recognized. Actions such
as falling on front, side and back are sometimes confused
with each other because their distribution (and therefore their
behavior) are similar and wider than others, as is obvious in
Fig. 6. In some scenarios such as anomaly detection in actions,
this confusion between subgroup actions might not matter.
Hence, another experiment was performed considering all fall
and all normal actions as two different high-level groups. In
this scenario, the recognition rate improves from 88.64% to
96.18%. And as can be seen in Table IV, false alarm rate
has also been significantly reduced. This result indicates that
the possibility of wrongly recognizing a normal action as fall
action is considerably low.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

A new action recognition method was proposed in this
paper which is especially useful for recognizing the actions
with some sort of complexities such as various types of
falling action. Since this method uses feature vectors with
low dimension and does not have big computational overhead,
it can be used in real time purposes. Experiments showed
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that this method outperforms the other methods especially in
scenarios where normal and involuntary actions are mixed up.

In the proposed method, a feature vector is created for
representing the state of body in each frame, using the Kinect
data. The state of body is then recognized in the corresponding
discriminative Fisher subspace. Finally, actions are classified
and recognized by feeding the sequence of recognized states
of body to HMMs. Because of using HMM, this method is
robust to different paces and lengths of actions. Moreover,
the Mahalanobis distance is utilized for considering the wider
distribution of involuntary body states in order to enhance the
recognition rate.

B. Potential Future Work

Data was preprocessed by skeleton alignment, to make the
algorithm robust against the orientation of camera. As future
work, the angles between the joints can be used instead of their
positions in order to get more robustness. In addition, recog-
nizing more complex and longer actions can be considered as
future work.

Moreover, manual selection/sampling of body states limits
the scalability of the system. Automatic selection of body
states in an approach similar to [20] which automatically
finds elementary states of higher level actions, can also be
considered as future work.

Another possible limitation of the proposed method is that
canceling the motion of body by alignment, which is necessary
for the proposed method, omits the motion information. This
cancellation might cause difficulties in recognizing actions
with close body states but different motions. Handling this
issue can be considered as another potential future work.
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Captions of figures:
• Figure 1: Applications of human action recognition.
• Figure 2: A human action recognition system for fall

detection.
• Figure 3: Selected joints out of available joints in the

skeletal data. The joints used for alignment are also
shown.

• Figure 4: Alignment of skeleton using the left and right
shoulders to cancel the orientation of skeleton.

• Figure 5: An example of Fisher and PCA directions.
• Figure 6: Projection of samples of states onto Fisher

space. As can be seen, the states have different distri-
butions.

• Figure 7: A three-state HMM model.
• Figure 8: The overall structure of proposed framework.
• Figure 9: An example of actions in TST dataset [1].

– Figure 9-a: Sit
– Figure 9-b: Grasp
– Figure 9-c: Walk
– Figure 9-d: Lay
– Figure 9-e: Fall front
– Figure 9-f: Fall back
– Figure 9-g: Fall side
– Figure 9-h: End up sit

• Figure 10: An example of the selected states.
– Standing
– Crouching
– Lay back
– Lay front
– Lay side
– Bend
– Sit on chair
– Sit on ground

• Figure 11: Confusion matrix of states.
– Figure 11-a: Euclidean
– Figure 11-b: Mahalanobis

• Figure 12: Confusion matrix of actions.
– Figure 11-a: Euclidean
– Figure 11-b: Mahalanobis

Captions of tables:
• Table 1: Correctness rate of recognizing state of body
• Table 2: Effect of number of states of HMM on the

recognition rate
• Table 3: Comparison of results of our method and method

[44] for TST dataset
• Table 4: Comparison of results, considering all abnormal

actions to be fall event

Fig. 1: Applications of human action recognition.

Fig. 2: A human action recognition system for fall detection.

Fig. 3: Selected joints out of available joints in the skeletal
data. The joints used for alignment are also shown.

Fig. 4: Alignment of skeleton using the left and right shoulders
to cancel the orientation of skeleton.
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(a) Standing (b) Crouching (c) Lay back

(d) Lay front (e) Lay side (f) Bend

(g) Sit on chair (h) Sit on ground

Fig. 10: An example of the selected states.

Fig. 5: An example of Fisher and PCA directions.
Fig. 6: Projection of samples of states onto Fisher space. As
can be seen, the states have different distributions.
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Fig. 7: A three-state HMM model.

Fig. 8: The overall structure of proposed framework.

(a) Sit (b) Grasp

(c) Walk (d) Lay

(e) Fall front (f) Fall back

(g) Fall side (h) End up sit

Fig. 9: An example of actions in TST dataset [1].

(a) Euclidean

(b) Mahalanobis

Fig. 11: Confusion matrix of states.

TABLE I: Correctness rate of recognizing state of body

State Euclidean Mahalanobis
Standing 99.38% 94.26%

Crouching 50.00% 70.00%

Lay back 80.71% 81.22%

Lay front 67.50% 85.00%

Lay side 88.89% 82.22%

Bend 62.90% 90.32%

Sit on chair 86.87% 69.70%

Sit on ground 72.15% 79.91%

Total 76.03% 81.57%
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(a) Euclidean

(b) Mahalanobis

Fig. 12: Confusion matrix of actions.

TABLE II: Effect of number of states of HMM on the
recognition rate

Action 2 states 3 states 4 states
Sit 87.88% 90.91% 90.91%

Grasp 90.91% 90.91% 87.88%

Walk 93.94% 93.94% 93.94%

Lay 84.85% 96.97% 90.91%

Fall front 84.85% 81.82% 81.82%

Fall back 84.85% 84.85% 78.79%

Fall side 81.82% 81.82% 81.82%

End up sit 84.85% 87.88% 84.85%

Total 86.74% 88.64% 86.36%

TABLE III: Comparison of results of our method and method
[44] for TST dataset

Action Euclidean Mahalanobis [44]
Sit 84.85% 90.91% 81.82%

Grasp 96.97% 90.91% 84.85%

Walk 100% 93.94% 90.91%

Lay 75.76% 96.97% 90.91%

Fall front 54.54% 81.82% 48.49%

Fall back 69.70% 84.85% 66.67%

Fall side 81.82% 81.82% 69.70%

End up sit 69.70% 87.88% 33.33%

Total 79.16% 88.64% 70.83%

TABLE IV: Comparison of results, considering all abnormal
actions to be fall event

Euclidean Mahalanobis [44]
Recognition Rate

(true positive rate) 78.78% 96.18% 77.27%
Specificity Rate

(true negative rate) 90.15% 96.21% 90.90%
False Alarm Rate

(false positive rate) 9.15% 3.78% 9.09%
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