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Abstract

The availability of low-cost range sensors and the development of relatively
robust algorithms for the extraction of skeleton joint locations have inspired
many researchers to develop human activity recognition methods using the 3-D
data. In this paper, an effective method for the recognition of human activities
from the normalized joint trajectories is proposed. We represent the actions
as multidimensional signals and introduce a novel method for generating action
templates by averaging the samples in a ”dynamic time” sense. Then in order to
deal with the variations in the speed and style of performing actions, we warp the
samples to the action templates by an efficient algorithm and employ wavelet
filters to extract meaningful spatiotemporal features. The proposed method
is also capable of modeling the human-object interactions, by performing the
template generation and temporal warping procedure via the joint and object
trajectories simultaneously. The experimental evaluation on several challenging
datasets demonstrates the effectiveness of our method compared to the state-
of-the-arts.

Keywords: Human Activity Recognition, RGB-D Sensors, Trajectory-based
Representation, Action Template, Dynamic Time Warping (DTW), Human
Object Interaction.

1. Introduction1

Human activity recognition (HAR) is one of the most important research2

areas in computer vision. In HAR, the purpose is to utilize human movement3

data (e.g. an RGB video), in order to identify performed activities. Based on4

the complexity, human activities are usually classified into four categories: ges-5

tures, actions, interactions, and group activities [1]. Recognition of the human6

activities enables a broad range of applications from automated surveillance sys-7

tems, patient and elderly monitoring systems, and personal assistive robotics to8
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a variety of systems that involve human-computer interaction [2]. In this pa-9

per, we concentrate on the recognition of human actions as the combination of10

elementary body part movements.11

Here we divide activity recognition challenges, into two major types. Low-12

level challenges are related to our data gathering method and environmental13

conditions. For example, view angle, size, and illumination variations, as well14

as occlusion, cluttering, and shadows are in this group. On the other side, high-15

level challenges are caused by the nature of the actions. It should be considered16

that individuals can perform the same action with different styles and different17

speeds. Even one person, depending on the situation, can perform a specific18

action in different ways.19

Development of activity recognition methods began in the early ’80s. Till20

recent years, research in this area was mainly focused on the recognition via 2-D21

video cameras. The recent availability of depth sensors with admissible preci-22

sion and reasonable cost and size, motivated the computer vision community23

to conduct more research on the 3-D based action recognition. Aggarwal et24

al. [1] divided the 3-D data acquisition methods into three categories: marker-25

based motion capture systems, multi-view stereo images, and range sensors.26

The utilization of range sensors significantly alleviates the low-level challenges27

explained previously. Based on the extracted features from the 3-D data, Aggar-28

wal et al. [3] classified recognition methods into five groups: features from 3-D29

silhouettes, features from skeletal joint locations, local spatiotemporal features,30

local occupancy patterns, and 3-D scene flow features.31

In this paper, we propose an activity recognition system, using the 3-D lo-32

cation of joints and objects, extracted from the depth image sequences. We33

represent the human action as a set of trajectories, corresponding to the skele-34

ton joints locations along time (Fig. 1). To make our method robust against the35

different styles of performing actions, we transform the joints to a human-centric36

coordinate system, in which, the trajectories are extracted. In this representa-37

tion, human object interactions can also be modeled similarly by relative object38

trajectories. Then we propose a novel algorithm for the construction of template39

joint and object trajectories to effectively represent the actions. We also present40

a template-based sequence warping approach to deal with the effect of varying41

style, speed, and acceleration of the subjects. To consider the locality in both42

time and frequency domains, wavelet features are extracted from the trajectory43

signals. The classification results demonstrate that our proposed method is effi-44

cient and gives comparable results to the state-of-the-art approaches on several45

datasets.46

The remainder of this paper is organized as follows. An overview of the47

most related methods is presented in section 2. In section 3, we first describe48

the preprocessing of the skeleton data, and motion representation steps. Then49

the template generation and temporal warping algorithms are introduced, and50

finally, the feature extraction and classification strategies are illustrated. Section51

4 is the discussion and comparison of the experimental results of our algorithm52

on multiple datasets, and section 5 is the conclusion of the paper.53
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Figure 1: Joint trajectories of the ”Rinsing Mouth” action from the “CAD-60”dataset.
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2. Related Work54

In this section, a concise review of skeleton-based activity recognition meth-55

ods is presented. More details are provided in [4], [5], and [6]. We also refer the56

interested readers to [1] and [7] for a review on RGB video-based approaches57

and [3], [6], and [8] for depth map-based approaches. In the following, we will58

review different works, from the perspective of skeletal joints representation,59

and the temporal modeling methodology.60

In the literature, different representations are proposed for human activities.61

Many methods directly use the raw joint positions. Considering the location62

of joints as random variables, Hussein et al. [9] formed vectors to describe the63

actions, and then computed the covariance matrices of the vectors, to form the64

feature vector. Inspired by the idea of temporal pyramids, multiple covariance65

matrices are calculated over different windows of frames, to maintain the tempo-66

ral order of the actions. Zanfir et al. [10] proposed the moving pose descriptor,67

which included the information of positions, as well as, speed and acceleration of68

the joints. In [11] the combination of feature vectors from the raw joint locations,69

pairwise distances between joints, and the motion of the joints are extracted and70

normalized. Then the Eigenjoints are generated by applying the Principle Com-71

ponents Analysis. To improve the recognition accuracy, Zhu et al. [12] tried72

to fuse skeletal joints features with spatiotemporal features. The authors used73

well-known image feature point detectors and descriptors, such as Histogram74

of Gradients (HOG), and Speeded-up Robust Features (SURF), to extract fea-75

tures from the depth maps. Skeletal features are extracted in the same way as76

[11], and after quantization with the k-means algorithm, histograms of features77

are fused together using the Random Forest classifier. Representation of the ac-78

tions is sometimes performed by modeling the geometric relationships between79

the body parts. Vemulapalli et al. [13] introduced the so-called R3DG features,80

i.e. a family of skeleton representations. They model the human skeleton via81

3-D body transformations and represent human actions as R3DG curves.82

Instead of using handcrafted features, deep learning methods attempt to83

explain the raw data in an automatic manner. Du et al. [14] divided human84

skeleton into five distinct body parts and utilized a hierarchical structure of85

Bidirectional Recurrent Neural Networks (BRNNs) to represent the actions. In86

the first layer of the network, raw positions of the body parts joints were fed87

into the corresponding RNNs. Then the inputs of each layer were formed by a88

combination of the outputs of the previous layer. A fully connected layer with89

softmax activation was used to perform the classification. Similarly, Zhu et90

al. [15] proposed a three layered Long Short-Term Memory (LSTM) structure91

to learn human representations from the joint trajectories. Both the spatial92

and temporal information of the skeletal joints were utilized in [16] to train93

a spatiotemporal LSTM network. A Trust Gate was also proposed, to deal94

with the noise due to the joint location extraction. Wu and Shao [17] extracted95

features from the skeleton joint locations and then adopted deep belief networks96

to estimate the emission probabilities in Hidden Markov Models (HMMs).97

Trajectory-based methods, consider an action, as a set of multiple time series98
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representing the location of different joints over time, and extract features from99

the trajectories. Gupta et al. [18] introduced a motion-based descriptor to com-100

pare the Mocap data with the trajectories extracted from videos directly and101

generates multiple motion projections as their feature. Wei et al. [19] applied102

the wavelet transform and extracted features from the trajectories to address103

the problem of concurrent action detection. The self-similarity based descrip-104

tor, proposed by Junejo et all. [20], is an encoding mechanism for the temporal105

shapes of human actions observed in the videos. Experimental evaluations have106

shown the stability of this representation under view changes. Many methods107

transform the trajectories in the Euclidean space into curves in a manifold. De-108

vanne et al. [21] proposed transforming motion trajectories into a Riemannian109

manifold and performing the classification using the Nearest Neighbor methods.110

In [22] trajectories are represented as points in the Grassmann manifold. Then111

the learning procedure is performed by the calculation of Control Tangents for112

the action clusters. Amor et al. [23] modeled trajectories on Kendalls shape113

manifold and introduced a new framework for the temporal alignment of the114

trajectories to handle the challenge of execution rate variance of the actions.115

Gong and Medioni [24] proposed a Spatio-Temporal Manifold (STM) to model116

the human joint trajectories over time. They also adapted the idea of Dynamic117

Time Warping to provide an algorithm for the alignment of time series under118

the STM model, called Dynamic Manifold Warping (DMW).119

Another group of methods, try to learn dictionaries of code-words, extracted120

from the skeleton [25], [26]. In [27] multi-layer codebooks of key poses and121

atomic motions were learned using the relative orientations of body limbs. Then122

the action patterns were represented via the codebooks of each action, and a123

pattern matching algorithm was proposed to recognize the actions. Xia et al.124

[28] calculated Histograms of 3-D Joint locations (HOJ3D), by partitioning the125

space around the body of the subject to a total number of 84 bins and counting126

the number of joints falling in each bin. The resulting histogram represents127

the posture of the body. The K-means clustering algorithm is then utilized128

for quantization and generation of the posture vocabulary. Feeding the time129

domain sequences of the code-words into Hidden Markov Models (HMMs), yields130

statistical models representing the whole actions. Similarly, Wang et al. [29]131

grouped skeletal joints into five body parts and generated spatial and temporal132

dictionaries to represent the actions, using the K-means algorithm. Combining133

the group sparsity and geometry constraints, Luo et al. [30] proposed a sparse134

coding algorithm, to learn the dictionary, based on the relative joint locations.135

Some trajectory-based approaches employ the idea of dictionary learning in136

the form of action templates. Muller and Roder [31] introduced the concept137

of motion templates to represent the actions, and then performed the recogni-138

tion by a Nearest Neighbor classifier. Pairwise distances of the skeleton joints139

were used in [32] to learn a dictionary of motion templates. Then the Structure140

Streaming Skeleton (SSS) features are computed and a sparse coding approach141

is used for the gesture modeling. Vemulapalli et al. [33] introduced a representa-142

tion for the motion trajectories, as curves in the Lie Group SE(3)×· · ·×SE(3).143

To simplify the task of classification of the curves and be able to apply standard144
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temporal modeling methods, they mapped the curves into the corresponding145

Lie Algebra. Then nominal curves for the actions were computed, and all the146

samples were warped to the curves. Following Wang et al. [34], the Fourier147

Temporal Pyramid (FTP) was applied, and a set of Support Vector Machines148

(SVMs) were adopted to perform the classification.149

Due to the different discrimination power of the body joints for the recog-150

nition of actions, many methods tried to mine for the most informative joints.151

The proposed algorithm by Chaaraoui et al. [35] attempts to find a subset152

of joints, which performs the recognition task better than all joints. Dynamic153

Time Warping (DTW) distance of the joint location trajectories was used in154

[36] to measure the similarity of the action sequences. To determine the impact155

of each joint on the total distance function, the weighting values of joints were156

computed by calculating the amount of similarity of the joints trajectories in157

each class and dissimilarities of the trajectories between distinct classes. By158

determining the most informative subset of the joints for each specific action159

class in consecutive time segments, and then concatenating them, Ofli et al.160

[37] proposed a novel representation of the actions. Pairwise distances between161

the joints as well as Local Occupancy Patterns (LOP) around the joints were162

employed as features in [34]. Then Fourier Temporal Pyramid (FTP) was ap-163

plied to make the representation robust against the temporal misalignment and164

noise. Moreover, an actionlet-based approach was introduced to mine for the165

most discriminative combination of the joints using the multiple kernel learning166

method.167

In some activities, the human object interactions play an important role. In168

the literature, many methods have been proposed to model the human object169

interaction. Inspired by the idea of dividing a high-level human activity into170

smaller atomic actions, Wei et al. [38] introduced a hierarchical graph to rep-171

resent the human pose in the 3-D space, and the motions through 1-D time.172

They defined an energy function, interpreted by the graph, which consists of173

two terms. The spatial term, includes the pose model, object model and the174

geometric relations between the skeleton and objects, and the temporal term175

includes atomic events transition and object motions. Similarly, Koppula et al.176

[39] aimed at jointly learning the human activities and object affordances, by177

defining a Markov Random Field (MRF) with two kinds of nodes, corresponding178

to the objects and the sub-activities. The motion and position of the objects179

were fed to the object node as the feature vector, and the human object inter-180

actions were modeled by the graph edges. In contrast with these works, a single181

layered approach was proposed in Tayyub et al. [40], to model the human object182

interactions, regardless of the object type. They extract qualitative and quan-183

titative features from the objects, in the spatial and temporal domains, and184

apply a feature selection technique to recognize the actions efficiently. Their185

experiments suggested that the spatial features, i.e. the relations between the186

different objects in the 3-D space, have a major impact on the discrimination187

between distinct activities.188
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Figure 2: The general framework of the proposed approach.

3. Methodology189

In this section, first, we explain the preprocessing of the raw 3-D data and190

action representation strategy. We then explain the action template generation191

and temporal warping steps, followed by the description of the feature generation192

and classification methods. An overview of our proposed framework is illustrated193

in Fig. 2.194

3.1. Action Representation195

In this paper, we use a trajectory-based action representation. We model196

an action sample, as a set of multiple time series, each representing the varia-197

tions of one coordinate of the position of one skeleton joint over time. If the198

actions include human-object interactions, we extract the 3-D positions of the199

objects and form the object trajectories. Then similar to the body joints, the200

object trajectories are also utilized for the action representation. Preprocessing201

of the raw data is usually performed to cope with the low-level challenges men-202

tioned previously. To eliminate the effect of different positions of the subject203

with respect to the camera and make our method robust against the viewpoint204

variance, we perform a skeleton alignment procedure in each frame. For this205

purpose, we transform the 3-D positions of the skeleton joints, from the camera206

coordinates to a person-centric system by moving the hip joint of the subject to207

the origin, and rotating the skeleton along the z-axis to a predefined orientation.208

This geometric transformation is identical to first calculating the displacement209

vectors from the skeleton joints and the tracked objects to the hip joint, and210

then applying the same rotation to all the resulting vectors. The same transla-211

tion and rotation are applied on the different skeleton joints. Some differences212

in the style of performing actions, such as different directions in the ”walk-213

ing” action, or minor body movements while ”drinking water” action, will be214
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Transla�on Rota�on

Figure 3: An illustration of the alignment procedure.

handled by performing the aforementioned geometric alignment on each frame.215

This alignment procedure, which is illustrated in Fig. 3, is similarly applied216

on all the tracked objects. More specifically, for each object, the locations of217

the objects 2-D bounding boxes in the RGB images are extracted by means of218

an off-the-shelf object detection and tracking algorithm. Then using the cor-219

responding depth map images and the Kinect’s camera calibration parameters,220

the real world 3-D coordinates of the object are determined along time. The221

extracted trajectories of the objects are used in the alignment procedure.222

Let J and O be the number of tracked skeleton joints, and the maximum223

number of manipulated objects between the actions, respectively. Suppose S(i,j)
224

be the j-th sample of the i-th action class. So the sample can be represented225

by the set of S(i,j) = {S(i,j)
k , k = 1, 2, · · · ,K}, where K = (J +O)× 3 denotes226

the number of time series, and each S
(i,j)
k is a single time series, corresponding227

to the variations of the x, y, and z coordinates of one skeleton joint or tracked228

object in the time domain. Since the different number of objects can be present229

in different actions, we make the number of objects equal by placing some extra230

objects in the hip joint location of the subject, when needed. For example,231

if the actions involve at most five object manipulations, and an action has232

three objects, we put two extra objects in the hip joint location to make the233

number of time series equal. Hereafter, we consider the whole set of time series,234

representing an action sample, as a multidimensional signal, and name each235

single time series as a sub-signal. Note that the trajectories of the joints and236

objects are formed in the person-centric coordinates system. Then we apply a237

Savitzky-Golay smoothing filter [41] on the sub-signals to reduce the effect of238

noise, due to the depth image extraction by the Kinect sensor and the minor239
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errors of the joints and objects position estimation. A median filter is also240

utilized to remove the joint position spikes.241

3.2. Temporal Warping242

One major issue in the action classification is the varying length and velocity243

of actions due to the different styles of performing actions. In the trajectory-244

based methods, usually Dynamic Time Warping (DTW) is utilized to deal with245

the temporal variations. DTW is an algorithm to find the optimal match be-246

tween two given time series. Warping a sequence with another one means deter-247

mining the non-linear correspondence between the time indices of the sequences,248

which best represents the shape similarity of them. DTW attempts to handle249

the deformations of the sequences in the time domain, by assigning each index250

in one sequence, to zero , one or more indices in the other sequence depending251

on the similarity between them. The output of the algorithm is the distance252

between the two sequences, which is defined to be the sum of the squared dis-253

tances between the value of the signals at their matched indices, and also the254

ordered pair of the matched indices.255

DTW can be employed to classify the sequences. As an example, a simple256

Nearest Neighbor classifier with the DTW distance measure can be adopted257

to determine the most similar pre-labeled action sequence to the input test se-258

quence. Although having enough training samples, this method yields relatively259

good results, but the DTW algorithm is very slow in practice, even when imple-260

mented with dynamic programming techniques. Therefore comparing an input261

test sample with a lot of pre-labeled samples with DTW is very time-consuming262

and probably not appropriate for many real world applications. To cope with263

this challenge, we propose to warp the samples of each action, with a corre-264

sponding pre-trained action template. We first create one template for each265

action class in the training phase, and then in the test phase, we will use the266

DTW to warp the input sample merely with the templates. Thus, instead of267

performing DTW with many samples for each action class, we just perform the268

calculation with one template per action, making it much simpler.269

Before explaining the template generation algorithm, we define the ”mean-270

sample” of an action class. Let S(i,j), j = 1, 2, · · · ,N i be the set of samples271

of the i-th action. The ”mean-sample” of an action is a set of the S
(i,j)
k sub-272

signals, which are most similar to the other corresponding sub-signals of this273

class. We find this sample by a method similar to the one proposed by Gupta274

and Bhavsar [42]. The method for finding the mean sample is described in Alg.275

1, where C, and N i are the number of action classes, and the number of training276

samples for the i-th class respectively. In Alg. 1, the distance of the S
(i,j)
k and277

S
(i,j′)
k sub-signals, is defined as the DTW distance of the two time series. The278

total distance value for each sub-signal of each training sample is defined as the279

summation of the distances from this sample to the others. The ”mean-samples”280

are then found by minimizing the total distance values of the samples within281

each class. Since we calculate the sub-signals of the ”mean-samples” separately,282

these sub-signals might come from different samples, and therefore they might283
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Algorithm 1 Mean-Sample Search Algorithm

1: Given S(i,j), ∀i, j
2: for i = 1, · · · , C do
3: for k = 1, · · · ,K do
4: for j = 1, · · · ,N i do

. Sum up the DTW distances:

5: ζj ←
∑N i

j′=1DTW (S
(i,j)
k ,S

(i,j′)
k )

6: end for
7: ĵ ← argminj{ζj}
8: M(i)

k ← S
(i,ĵ)
k

9: end for
10: end for
11: returnM(i), ∀i

have different lengths. Experimental results demonstrate the superiority of this284

algorithm over other algorithms in which one of the samples are chosen as the285

mean sample directly.286

Next, we will use the ”mean-samples”, to achieve better representations of287

the action. First, we explain the algorithm for warping of a multidimensional288

signal with another one (Alg. 2). Let S and S′ be two arbitrary action samples.289

To warp S with S′, we perform the DTW between each pair of the correspond-290

ing sub-signals, Sk and S′k, k = 1, 2, · · · ,K, and compute the optimal matching291

paths. Then for each S′k, iterating on the indices of this time series, the value of292

the matched index in Sk is used as the warped value of the corresponding index.293

If there are multiple indices assigned to one index, we’ll average the values to294

obtain the correct warped value. It is also possible that some indices of Sk,295

wouldn’t have any matching on the other side. In this case, we linearly interpo-296

late the sequence for the missing value. All of the sub-signals are warped in this297

way with the corresponding sub-signals in the base multidimensional signal. At298

the end of this procedure, we will have the new set of sub-signals, maintain-299

ing their overall shape, while matching in the length with the base sub-signals.300

Some examples of sequence warping are illustrated in Fig. 4.301

Now, for each action class, we create a new multidimensional signal, called302

”action template”, as described in Alg. 3. Although templates are being gen-303

erated on the basis of the corresponding ”mean-samples”, but, utilizing a kind304

of averaging method, we attempt to make them more similar to the training305

samples of the action. To create the template, we warp all the training sam-306

ples of the class, with the ”mean-sample”, as explained above. Then, since all307

the resulting samples are the same length, we can perform a simple averaging308

on each index of each sub-signal, to obtain the template. An example of the309

template generation algorithm is presented in Fig. 5.310

Finally, the pre-trained templates are used to warp the samples, of both311

training and testing sets. We warp each sample, regardless of its class, with the312
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Algorithm 2 Warping Algorithm

1: procedure Warp(S, S′)
2: for k = 1, · · · ,K do

. DTW returns the distance and warping paths
3: [ζ,P,P ′] ← DTW (Sk,S

′
k)

4: i ← 1
5: L ← Len(S′k)
6: for l = 1, · · · ,L do
7: σ ← 0 , n ← 0
8: while P ′(i) = l do
9: σ ← σ + Sk[P(i)]

10: n ← n+ 1 , i ← i+ 1
11: end while
12: if n ≥ 1 then Wk[l] ← σ

n
13: elseWk[l] ← linear interpolation
14: end if
15: end for
16: end for
17: return W
18: end procedure

0 lin

lb
ase

0

Input Sequence
Base Sequence
Warping Path
Warped Sequence
Warped Sequence

(a) Warping Path (b) Fine Warping

(c) Ideal Warping (d) Bad Warping

Figure 4: Examples of the sequence warping procedure.
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Figure 5: Illustration of the template generation algorithm for action ”Sit” from the “TST
Fall Detection”dataset.

Algorithm 3 Template Generation Algorithm

1: for i = 1, · · · , C do
2: for j = 1, · · · ,N i do
3: S′(i,j) ← WARP (S(i,j),M(i))
4: end for
5: for k = 1, · · · ,K do

6: L ← Len(M(i)
k )

7: for l = 1, · · · ,L do

8: T ik [l] ←
∑N i

j=1 S
′(i,j)
k [l]

N i

9: end for
10: end for
11: end for
12: return T i
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templates of all actions. So if we have C actions in total, we will have C warped313

multidimensional signals, for each input sample.314

W(i,j),ν = WARP (S(i,j), T ν),∀i, j, ν (1)

This warped samples will be used together in the next step, to form the feature315

vectors.316

3.3. Feature Generation and Classification317

The resulting warped signals of a sample, show the matching of the sample318

with different templates. We performed the warping with all possible actions,319

to train our system the response of an input sample when warped with the pos-320

itive class template and also the negative ones. To consider the localization in321

both time and frequency domains, we extract features from the warped multi-322

dimensional signals by the Wavelet decomposition. The Wavelet decomposition323

extracts features from the signal with a multilevel algorithm. At each stage,324

the approximation coefficients and the detail coefficients of the input signal are325

computed by convolving the signal with a low-pass and a high-pass filter, respec-326

tively, followed by decimation blocks. Then the approximation coefficients are327

fed to the next stage as input. The resulting sets of coefficients represent the low-328

frequency and high-frequency components of the signal, in different time scales.329

Here we apply the Wavelet decomposition to the sub-signals of the warped sam-330

ples. Let S be an arbitrary action sample. In the previous step, the warping331

of S with different templates was performed. Suppose Wν , ν = 1, · · · , C are332

the resulting warped samples. So, applying the Wavelet decomposition, we will333

have:334

Fνk = Wavedec(Wν
k ),∀ν, k (2)

The extracted coefficients from the different sub-signals are concatenated to335

form the feature vector. Since we have warped each specific sample with all of336

the templates, the extracted features from the warping results, with respect to337

the different templates, should also be concatenated to each other to form the338

total feature vector. Note that since we have warped the samples to the action339

templates previously, the corresponding input signals of the Wavelet decomposi-340

tion filters have the same length. This causes the filter outputs, and so the total341

feature vectors to be meaningful for the classification purpose. An example of342

the temporal warping and feature vector generation algorithms is illustrated in343

Fig. 6.344

F = (F1
1 , · · · ,F1

K, · · · ,FC1 , · · · ,FCK) (3)

The generated feature vectors of the training and testing samples are then345

used for classification purpose. Here we employ a Random Decision Forest346

(RDF) classifier. Random forest is an ensemble learning method that fits a347

number of simple and unpruned decision tree classifiers on various bootstrap348

samples of the data. Moreover, the split at every node of each tree is made by349

the best feature from among a random subset of all features. The final prediction350
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Figure 6: An example of the temporal warping and feature vector generation procedures for
an arbitrary action sample.

is made by the majority vote of all trees in the forest. As each tree makes a high-351

variance but approximately unbiased prediction, the ensemble of trees reduces352

the variance and produces a relatively robust and accurate prediction.353

4. Experiments354

The Wavelet decomposition has two parameters: the Wavelet filters type,355

and the number of levels. In order to choose the appropriate value for this pa-356

rameters, we perform a parameter tuning procedure within the training data.357

For this purpose, we divide the training set into two groups. Then we form the358

feature vectors with the different parameter values and compare the classifica-359

tion results between the groups. The best performing values are used for the360

original decomposition on the training and testing phases. We search for the best361

wavelet type and the number of levels between the sets of {Daubechies, Coiflet, Symlet}362

and {1, 3, 5} respectively.363

In this section, we evaluate our method on five well-known datasets: Cor-364

nell Activity Datasets (CAD-60, CAD-120), UT-Kinect dataset, UCF-Kinect365

dataset, and TST fall detection dataset. We refer the interested readers for a366

review on the Kinect activity datasets to [43] and [44]. In the following, we367

will compare the experimental results of our method, with the state-of-the-art368

skeletal-based methods on each dataset. For some datasets, there may be meth-369

ods using the depth and RGB modalities, achieving better results. In the cases,370

that k-fold cross-validation is performed, a random permutation of the subjects371

is considered. Then the whole process is repeated many times, and the results372

are averaged.373

4.1. CAD-60 Dataset374

The CAD-60 dataset [45], is a publicly available dataset captured by the375

Kinect sensor. In addition to the RGB and depth map modalities, the 3-D376

locations of the 15 tracked skeleton joints in each frame are also available in this377

dataset. It consists of 12 human daily life activities, performed by four subjects378

in five different environments. The major issue with this dataset is the problem379

of handedness. Three of the subjects are right-handed, and the other one is left-380

handed. For example, consider the action of drinking water. Performing this381
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Mirror

Figure 7: An illustration of the skeleton mirroring for the action ”Drinking Water” from the
“CAD-60”dataset.

action with the right hand, and with the left hand, will result in quite different382

joint trajectories, and so they will generate dissimilar feature vectors, while,383

they belong to the same action class. To address this issue, we adopt the well-384

known mirroring idea. We create a copy from each action sample in the training385

set, which is the mirrored version of the original sample along the bisector plane386

of the body. Therefore, the number of training sample will be twice, while in387

the test phase, merely the original samples are used. We also create two distinct388

templates for each action class, one for the left-handed samples and one for the389

right-handed ones. Then to train our system the response of the samples, to390

the correct and incorrect warping, we warp each action sample, regardless of391

its handedness, with both the templates of all classes. The final feature vectors392

are formed by concatenating the corresponding features of the two templates.393

Figures 7 and 8 give an illustration of the mirroring and warping procedures394

respectively.395

Following [45], we use the same experimental setup. Actions are classified396

into five environments: office, kitchen, bedroom, bathroom, and living room.397

Then the Leave One Subject Out (LOSubO) cross-validation is performed for398

each environment, i.e. three subjects are used for the training, and the test is399

performed on the other one, for all possible permutations. Table 1 gives the400

recognition results produced by our method for the different environments. The401

comparison with the other methods is presented in Table 2. Except for the402

recent work by Zhu et al. [27], the recognition results demonstrate that our403

method is comparable with the state-of-the-arts.404

4.2. CAD-120 Dataset405

The CAD-120 dataset [39], is originally a high-level human activity dataset.406

It includes ten complex activities, performed by four subjects for three times.407
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Table 1: Recognition results on different environments for the “CAD-60”dataset.

Environment Precision Recall

Bathroom 100.0% 100.0%

Bedroom 91.6% 93.3%

Kitchen 93.7% 95.0%

Living Room 93.7% 95.0%

Office 87.5% 88.7%

Average 93.3% 94.4%

Table 2: Comparison of the different methods on the “CAD-60”dataset.

Method Precision Recall

Sung et al. [45] 67.9% 55.5%

Zhu et al. [46] 93.2% 84.6%

Faria et al. [47] 91.1% 91.9%

Shan and Akella [48] 93.8% 94.5%

Gaglio et al. [49] 77.3% 76.7%

Parisi et al. [50] 91.9% 90.2%

Cippitelli et al. [51] 93.9% 93.5%

Zhu et al. [27] 97.4% 95.8%

our method 93.3% 94.4%

Each action consists of a sequence of atomic activities called sub-activities. Our408

motivation to choose the CAD-120 dataset was the importance of the object409

manipulations in the activities of this dataset. All of the ten high-level activities410

include human object interactions. In some cases, e.g. the stacking objects and411

unstacking objects, the discrimination between the actions is significantly caused412

by the objects. In this dataset, an object tracking algorithm was applied on the413

RGB images of the frames of all the samples, and the 2D locations of the objects414

bounding boxes were specified. We have used the bounding boxes to extract415

the 3-D location of the objects using the corresponding depth map images.416

Although our method does not concentrate on the high-level activities, the417

evaluation results on this dataset demonstrate comparable performance of our418

method with the state-of-the-arts. The confusion matrix is presented in Fig. 9.419

As this figure shows, the main trouble with this dataset is about confusing the420

activities “stacking objects”with “unstacking objects”, “microwaving food”with421

“cleaning objects”, and “arranging objects”with “picking objects”, which are422

very similar. Comparison of our method with the state-of-the-arts is shown in423

Table 3. In the dataset, the ground-truth temporal segmentation of the actions424
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Figure 9: Confusion matrix for the “CAD-120”dataset.

Table 3: Comparison of the high-level recognition accuracies of the different methods on the
“CAD-120”dataset.

Method Without ground-truth With ground-truth

Koppula et al. [39] 80.6% 84.7%

Hu et al. [52] 87.0% -

Tayyub et al. [40] 95.2% -

Taha et al. [53] - 94.4%

Koppula and Saxena [54] 83.1% 93.5%

our method 90.1% -

was provided. Some hierarchical methods have used this segmentation data to425

improve their results. Since our method recognizes the high-level actions in one426

stage, we have not used this data.427
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Table 4: Comparison of the different methods on the “UT-Kinect”dataset, using the Cross
Subject setting.

Method Accuracy

Vemulapalli et al. [33] 97.0%

Antunes et al. [57] 95.1%

Gupta and Bhavsar [42] 96.0%

our method 96.8%

4.3. UT-Kinect Dataset428

The UT-Kinect dataset was introduced in [28]. The dataset consists of ten429

actions: walk, sit down, stand up, pick up, carry, throw, push, pull, wave and430

clap hands. Each action is performed twice by ten different subjects in a lab431

environment, and 20 skeleton joints are tracked in each frame. The relatively432

high within-class variance is a considerable challenge with this dataset. The433

different actions of this dataset are performed continuously by each subject,434

and the temporal segmentation is manually provided.435

To be comparable with the previous works, we have tested our algorithm436

using 2-fold cross subject validation setting, i.e. for a random permutation of437

the subjects, half of them were used for the training and the remaining for438

testing, and then vice versa. The comparison of our method with the state-of-439

the-arts is presented in Table 4. It should be mentioned that Xia et al. [28],440

and Cippitelli et al. [51] had reported 90%, and 95.1% recognition accuracies441

respectively, using the Leave One Sequence Out (LOSeqO) experimental setup.442

Also, Liu et al. [55] and Yang et al. [56] had achieved the 95.5% and 98.8%443

accuracies, adopting the Leave One Subject Out (LOSubO) and 10-fold cross-444

validation settings, respectively. Since these experimental settings are rather445

easier in comparison with the 2-fold method, we have reported in Table 4 only446

the methods which have adopted the 2-fold setting.447

4.4. UCF-Kinect Dataset448

Ellis et al. [58] presented the UCF-Kinect dataset to evaluate their latency-449

aware learning algorithm, which focuses on reducing the recognition latency.450

The dataset was captured using a Kinect sensor with the OpenNI platform,451

which provides the 3-D coordinates of the 15 skeleton joints. It contains 16 short452

actions, performed by 16 subjects for five times. Similar to the experimental453

setting in [58], we use the 4-fold cross subject validation as evaluation protocol454

for this dataset. The comparison with the other methods is shown in Table 5.455

Slama et al. [22] reported the 97.9% recognition accuracy, for a 0.7 and 0.3 split456

on the 1280 samples of the dataset, for the training and testing sets. Also, Jiang457

et al. [59] had achieved the 98.7% accuracy, adopting the 2-fold setting on the458

samples.459
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Table 5: Comparison of the different methods on the “UCF-Kinect”dataset.

Method Accuracy

Zanfir et al. [10] 98.5%

Kerola et al. [60] 98.8%

Yang et al. [11] 97.1%

Beh et al. [61] 98.9%

Ding et al. [62] 98.0%

Lu et al. [63] 97.6%

our method 97.9%

4.5. TST Fall Detection Dataset460

This dataset was originally collected by Gasparrini et al. [64] as a part of461

a study on the human fall event detection problem. They aimed at using the462

fusion of camera and wearable sensors to detect the fall event. The dataset463

was collected using the Microsoft Kinect v2 and the Inertial Measurement Unit464

(IMU) sensors. In this dataset two groups consisting of four daily living actions465

and four fall actions were performed by 11 subjects for three times. Although the466

wearable sensors provide very valuable data, we don’t use this modality in our467

work and perform the recognition just utilizing the tracked skeleton joints data.468

Same as [64], we evaluated our method with the Leave One Subject Out cross-469

validation (LOSubO) setting. The average accuracy of our method for all the470

activities is 92.8%. Note that in [64] the 99% recognition accuracy is reported471

using the multiple modalities, including the wearable sensors, and so the results472

are not comparable. The confusion matrix of our method is illustrated in Fig.473

10.474

5. Conclusion475

In this paper, we have developed a trajectory-based activity recognition476

system. We represented a human action as a set of time series corresponding to477

the normalized coordinates of the skeleton joints. Our representation is also able478

to simultaneously model the interaction between human and objects in the scene.479

Then we introduced an algorithm to effectively construct templates for joint480

and object trajectories. Also, a DTW-based warping procedure was proposed to481

alleviate the effects of variations in the styles of performing actions. The wavelet482

filters were utilized to extract meaningful features from the signals, and the483

classification was performed by the Random Decision Forests. The experimental484

evaluation of the proposed method on several public datasets yielded comparable485

performance to the state-of-the-arts. Although our proposed method works well486

on the recognition of simple and short actions, the template-based approaches487

have problems with the more complex activities. Representing the activities488

which consist of multiple simple sub-actions using one unique template, will not489
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Figure 10: Confusion matrix for the “TST Fall Detection”dataset.
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have good recognition results, due to their nature. So next we plan to apply490

modifications to our method to make it usable for the complex human activities.491
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