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Abstract

Human action recognition from skeletal data is one of the most popular topics
in computer vision which has been widely studied in the literature, occasion-
ally with some very promising results. However, being supervised, most of the
existing methods suffer from two major drawbacks; (1) too much reliance on
massive labeled data and (2) high sensitivity to outliers, which in turn hin-
der their applications in such real-world scenarios as recognizing long-term and
complex movements. In this paper, we propose a novel unsupervised 3D action
recognition method called Sparseness Embedding in which the spatiotemporal
representation of action sequences is nonlinearly projected into an unwarped
feature representation medium, where unlike the original curved space, one can
easily apply the Euclidean metrics. Our strategy can simultaneously integrate
the characteristics of nonlinearity, sparsity, and space curvature of sequences into
a single objective function, leading to a more robust and highly compact rep-
resentation of discriminative attributes without any need to label information.
Moreover, we propose a joint learning strategy for dealing with the heterogeneity
of the temporal and spatial characteristics of action sequences. A set of exten-
sive experiments on six publicly available databases, including UTKinect, TST
fall, UTD-MHAD, CMU, Berkeley MHAD, and NTU RGB+D demonstrates
the superiority of our method compared with the state-of-the-art algorithms.

Keywords: Unsupervised action recognition, Time series analysis, Sparseness
embedding, Human computer interaction

1. Introduction

Semantic Analysis of Human Behavior (SAHB) is one of the most important
aspects of visual intelligence which is institutionalized in the very first months
of life. It is also one of the hot research topics of computer vision that has
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widespread applications in various pragmatic fields such as abnormal event de-
tection [1], human robot/computer interaction [2, 3], patient/prisoned behaviour
monitoring [4, 5, 6] as well as the analysis of consumer’s buying behavior [7].
Recent years have seen an eruption of scientific works in this area, occasionally
with some very promising achievements. Yet, due to the non-rigid nature of the
human body and varying styles of performing actions, it is still one of the most
challenging/active research topics that should make further extensive studies.

SAHB, from a broad perspective, can be performed in three different ways;
(i) recognizing actions; where the concept of a subject’s movement is evaluated
in a short period of time, (ii) classifying activities; where interactions between
human-object or multiple individuals are considered to be analyzed, and (iii)
recognizing gestures; which refers to the study of movements for some special
parts of body (eg. head, hand, or foot). While there are more benefits for com-
plicated and subtle movements, such disaggregation is not much compatible
with the SAHB’s horizon which is defined as recognizing all types of movements
in a single interpretation framework. That is why most of the existing databases
include some actions from the categories of gesture or activity.

According to the nature of sensors, motion data acquisition systems can be
broadly categorized into three groups: RGB video cameras, depth sensors, and
3D motion capture systems. Traditional methods mainly focus on RGB video
streams and use some off-the-shelf object detection and recognition algorithms
[8, 9, 10, 11, 12]. However, despite the low costs, wide availability and user-
friendliness, these methods suffer from some inherent limitations like sensitivity
to illumination variations, body shape, clothing, invasive nature (due to the
record of facial details), noisy background, and partial occlusions which hamper
their applications in many real-world scenarios.

With the advent of depth sensing devices like Microsoft Kinect [13], Intel
RealSense [14], dual camera [15], and Xtion PRO Live [16], such limitations
as sensitivity to noisy, clutter background, clothing and illumination variations
and privacy issue were somewhat alleviated, but some others like computational
cost, heavy memory requirement, and non informativeness of background still
remained. This induced the research community to turn its attention to skele-
ton sequences where input data is reduced to a set of 3D joint coordinates which
could be estimated either directly from some wearable markers [17] or in a re-
mote manner from a depth stream [18, 19, 20]. However, due to some imposed
limitations on movements, applicability of marker based techniques are mostly
limited to gaming or lab practices. In contrast, depth techniques can determine
the joint’s location with a competitive performance, but without sacrificing the
freedom of movements [21].

Inspired by the success of deep learning in many machine vision applica-
tions such as image/speech recognition [22, 23, 24, 25, 26, 27|, video captioning
[28, 29, 30], and neural machine translation [31, 32, 33|, some researchers were
encouraged to leverage such networks for recognizing skeleton sequences. An
overview on scientific papers reveals that, the overwhelming majority of the
methods proposed in the last two years are established upon supervised deep
learning frameworks [34, 35, 36, 37, 38, 39, 40, 41, 40, 42, 43], claiming a re-



markably better performances than any shallow learning strategies. Remember,
most of these networks typically have millions of parameters, requiring to be
tuned by using a proportional number of training data. However, providing
such a large number of labeled sequences is a difficult and time consuming task
which seems to be unrealistic under the current circumstances of accessibility
to depth sensors. As a remedy, some researchers started using of data augmen-
tation techniques. The predominant techniques used in the literature include
cropping, adding up noise, re-scaling, re-sampling, rotation, flipping, and auto-
encoding [44], which can even increase the size of databases up to 25 times
[45]. Despite this, augmentation methods are typically susceptible to semantic
deterioration, arising from the non-analytic nature of the synthesizing transfor-
mations. For example, in the case of re-sampling, a long term motion is sparsely
down-sampled so as to guarantee the enough number and variety of the syn-
thetic sequences. However, the sparser the sampling interval is, the synthetic
sequences would be more distorted.

Till recent years, supervised learning has been the main stream of research
on the field of action recognition. However, such a learning strategy would only
be effective if action labels were fully categorical. Yet, in many applications like
skill assessment, autonomous scoring of sport movements, and human robot
interaction, beyond the class membership, it is particularly significant to pay
enough attention on the quality of actions. This would be even more acute for
the case that we seek a suitable reaction from the robotic systems. For exam-
ple, a table tennis robot does not only require an understanding of how you are
hitting the ball but also needs your gesture and even how much force you are
approximately applying on racquet. That is why, the idea of supervised learning
(pulling the training samples with the same labels closer together, no matter
how close they are to the class boundary), may not always lead to an accurate
semantic score, especially when the transition of the class labels occur in a soft
manner (e.g. transition from walking to jogging).

In this paper, we propose a novel sparsity based 3D action recognition
method, namely Sparseness Embedding (SE), that simultaneously encodes the
nonlinearity and time-space relationship of action trajectories. This is much
beneficial for constructing a robust spatiotemporal representation model of ac-
tion sequences. Unlike the conventional sparsity based methods that can only be
applied on fixed-size templates, our model can explore the structure of samples
with varying sizes. Moreover, different from deep learning based models, it does
not require a massive number of training sequences which is a very crucial issue
in 3D modeling of a temporal data. We also introduce a constrained version
of our model that enforces the projection coefficients to be shrunk, eschewing
a biased estimation of the sparseness. In addition, we propose a novel joint
learning strategy which simultaneously preserves the sparseness of the spatial
and temporal statistics, while avoiding their well-known heterogeneity problem.

In a nutshell, the key contributions of this paper are: (i) based on our
best knowledge, this is the first unsupervised 3D action recognition method es-
tablished upon a non-deep learning based framework, (ii) we propose a novel
encoding strategy which is capable of incorporating the data locality into an



unwarped-sparse projection space, allowing for a dual bounded mapping on the
characteristics of the spatial and temporal nonlinear characteristics of action
sequences. (iii) we introduce a regularized mapping function that prevents any
biased sparsity estimation of a data structure in the mapping procedure of a
sequence to a fixed-size sample, which may occur in some cases when there is
a possible correlation in the original unwarped space of sequences, (iv) to deal
with the problem of heterogeneity, we propose a novel joint sparseness embed-
ding strategy which is capable to treat the temporal and spatial characteristics
in two individual manners, preventing the projection weights to be biased to-
wards the static or dynamic characteristics of sequences. A set of extensive
experiments demonstrates the superiority of our method against the state-of-
the-art techniques.

The reminder of the paper is organized as follows. In Section 2, we briefly
review the related studies to our method. Section 3 describes the motivation of
the research as well as our solution for a sparsity based action recognition. The
experimental results is presented in Section 4. Finally, our study is concluded
in Section 5.

2. Related Works

In this section, we present a brief review on the most related skeleton-based
action recognition methods. Although RGB and depth map based techniques
are sill among the active areas of research in the field of action analysis, they
are not reviewed as being out of the scope of this paper. For more informa-
tion, one can refer to the references [46, 47]. In our study, different criteria are
utilized for categorizing the literature, so discussions are provided from differ-
ent perspectives which allows for the possibility that a typical method can be
simultaneously categorized to several groups.

2.1. Geometrical Feature Representation

Early works mostly focused on how to engineer the most discriminative at-
tributes from the trajectory of joint positions. These methods typically mea-
sured the distance or angle between the joints or the plates passing through
them. Then, differences between the extracted features over time considered as
the local velocity or acceleration of sequences. For example, Muller et al. [48]
used the boolean operators to describe geometric relations between the planes
passing through the joints and limbs. Yao et al [49] modified these features,
introducing five relational pose attributes: pairwise distance of joints, distance
between a joint and a plane, distance between a joint and a normalized plane,
velocity of a joint towards two other ones, velocity of a joint towards the nor-
mal vector of a plane. Li et al. [50] introduced the relative position as the
sum of pairwise Euclidean distance and raw difference of joints. In Agahian
et al. [51] a combination of joint positions and local normalized /unnormalized
velocities was used to describe the skeletons. The works in [52, 53] utilized the
position, velocity, and acceleration of raw joints as the features of skeleton se-
quences. [54] described each skeleton by the distances between body joints to



a reference point. Eweiwi et al. [55] proposed Joint Movement Normal (JMN)
as the correlation of the joint location and velocity and utilized it alongside
with raw joint positions and joint velocity to describe the skeleton. Yang et
al. [56] used three pairwise measures including pairwise joint difference within
current frames, between each frame and its preceding one, and between each
frame and the initial skeleton. Wang et al. [57] utilized a normalized measure
as the difference of pairwise joints divided by their Euclidean distance. Most of
the geometrical methods were proposed to use the Cartesian coordinate system
[54, 48, 49, 50, 51, 56, 57], however a few preferred to focus on the characteristics
of the spherical coordinate [55, 58].

2.2. Pose Representation

Motivated by the fact that skeleton frames are not equally important in the
recognition procedure, many researchers have turned attention to pose based
recognition methods. From a broad perspective, these methods can be divided
into two different categories: (1) Those do not much emphasize that poses
require to be key [59]. These methods seek out the classes that contain the
closest similar pose to each frame of a test sample. Then, the class with the
maximum vote is predicted as the label of the sequence. (2) key pose based
methods that seek the poses with the maximum contributions in discriminating
between different actions [60, 61, 54, 62]. These poses are mainely selected in
two different ways: (a) predefining the poses [23] (delineated by a human), and
(b) using the clustering algorithms [61, 54, 62]. The clustering can be carried
out in two different manners: (i) a categorical way in which each skeleton frame
is distinctly assigned to one cluster (as in the k-means algorithm) [61, 54]. The
most common constraints of these methods are enforcing cluster shapes to be
pseudo-spherical, a fixed assignment weights for all the skeleton frames as well
as the need for pre-specifying the number of clusters. (ii) a soft assignment of
frames to each clusters (like the way of Gaussian Mixture Models (GMM)) [62].
Despite alleviation of the above mentioned issues, these methods suffer from a
difficult to make parametric assumption about the data generating process.

2.3. Part based Methods

Psychological studies suggest that imitative learning in humans treats the
limb movements as a whole, rather than focusing on just a series of discrete joint
coordinates [63], which indicates the benefit of encoding the relative postures
of body limbs to boost the accuracy of the recognition tasks. For example, no
matter how the positions of elbows are, a movement is considered as clapping
whenever two hands are striking together in the middle front of body. This
motivated many researchers to move on hierarchical part based action recog-
nition: partitioning human body into different compartments, encoding each
part individually, and finally characterizing the relationship between the parts.
However, despite prevail in multipartite tasks, such a strategy suffers from the
lack of generalization ability to a wide range of subtle activities. In this context,
Tao et al. [64] partitioned each skeleton into ten body parts: back, left arm,



right arm, left leg, right leg, torso, upper body, lower body, full upper body, and
full body and learned one dictionary for each where the atoms of the dictionary
were considered to be linear classifiers of body part movements. Zhu et al [65]
divided each body skeleton into five parts: left upper limb, right upper limb, left
lower limb, right lower limb, and torso. Then, Normalized Relative Orientation
(NRO) was introduced for mining the attributes of each part. In Du et al. [66],
each skeleton is partitioned into five compartments: two arms, two legs, and
one trunk. Then, the parts were characterized by using a Bidirectional RNNs
(BRRN). Then, encoding produce was extended to the dual, triple and five-way
combinations of the RNN networks. Hou et al. [67] utilized a spectrum repre-
sentation individually for three parts of the body, left torso, right torso and the
trunk. In this scheme, the hue representation of the right part is the reverse of
that presented for the left one. In addition, because of the subtle movement,
they proposed to suppress the range of hue for the trunk part.

2.4. Non-Euclidean Approaches

Due to the relatively high similarity of some activities to each other, seeking
their relative structures on the characteristics of the Euclidean space is very
sensitive to outliers and noise. This motivates the need for a set of desired in-
variancies which can be ideally achieved on a set of non-linear manifolds where
the geometrical variability of data distribution can be incorporated into the
characteristics of discriminative statistics. In this context, Slama et al. [68]
encoded the action trajectories using the Auto Regressive and Moving Aver-
age (ARMA) model and used their observationality matrices as points on the
Grassman manifold. Then, the tangent bundles of this manifold were utilized
to construct a discriminative representation of sequences. Amor et al. [69] used
the Kendalls shape descriptor to characterize the representation of skeletons on
a shape manifold. In [70], a dictionary learning framework is defined on the
Kendall’s shape space. Kacem et al. [71], utilized the geometry of covariance
matrices for embedding the Gram representation of action trajectories into the
Positive Definite (PD) manifold. Then, DT'W is used for aligning the trajectories
resided on PD. Similar to [67], Zhang et al. [72] used the Grame matrix to em-
bed the actions into the PD manifold, but differently applied four well-known
distance-like measures including Affine Invariant Riemannien Metric (AIRM)
[73], Log-Euclidean Riemannian Metric (LERM) [74], Jensen-Bregman Log-det
Divergence (JBLD) [75], KL-Divergence metric (KLDM) [76] to directly match
the resided trajectories on the manifold. Rahmi et al. [77] proposed a multi-
graph embedding technique which benefits from Geodesic distances between
the subspaces represented by the ARMA models [78] to measure the affinity
matrices of a Fisher discriminative representation. In [79], each sequence is
individually represented as a curve in the Lie Group. The Group is then esti-
mated as a collections of tangent subspaces named Lie Algebra. Dynamic Time
Warping (DTW) is then utilized to handle any possible misalignments between
the subspaces. Moreover, temporal modeling and classification are respectively
performed by Fourier temporal pyramid [80] and linear Support Vector Machine
[81]. One common problem for all these strategies is the preassumption that is



considered for the geometrical characteristics of the manifold which may not be
compatible with the distribution of such wiggly data as action sequences.

2.5. Deep Learning

The last two years have seen a big eruption of scientific studies in the field of
deep learning based action recognition, encompassing a wide spectrum of net-
work architectures that can be broadly categorized into five kingdoms:

- RNN/LSTM networks: these methods manually characterize the spatial rep-
resentation of the skeleton poses and relegate the encoding of their temporal
characteristics to an RNN or LSTM network [34, 35, 36].

- Attention based metworks: such methods propose to explore temporal char-
acteristics by selectively focus on the most informative joints and/or skeleton
poses [37, 38, 39, 40, 82, 83].

- Robust LSTM: these networks have enabled methods to implicitly suppress
the noise in sequences by adding up a trust gate in the cells or a dropout layer
to the networks [34, 41, 40].

- CNN networks: these methods manually encode the temporal dynamics of
sequences in conjunction with their spatial characteristics and transform them
into some two dimensional patterns. Then, one or multi-stream CNN network
is applied for encoding the spatiotemporal features of the patterns [84, 42, 43].
- 8D-CNN': unlike conventional CNNs, these methods do not require the tem-
poral features to be manually encoded and then fed to the network rather it has
the capability to directly characterize the temporal dynamics by adding up the
time dimension to the kernels [88].

However, despite the advances made in this field, the superiority of such
computationally demanding networks over the handcrafted attributes is not
very clear, which is mainely due to the scarcity of 3D action data.

3. Proposed Method

3.1. Motivation

Sparsity Preserving Projection (SPP) was originally proposed by Qiao et al.
[85] as an unsupervised strategy for face recognition. They proposed that sparse
representation can efficiently characterize the topographical structure of a data
set. The objective function of this strategy is formulated as follows:

N
MiNg, Z laTz; — o X5 (1)
i=1

where N and [ respectively stand for the number of training samples and di-
mensionality of data, « is the projection matrix, z; denotes the i-th training
sample from the dictionary X €V and s; is the sparse reconstruction coeffi-
cients associated with the z;. According to this formula, each sample in a low
dimensional medium can be reconstructed from its sparsely connected samples



in the original input space. Unlike the methods that aim to minimize the dis-
tances between the samples belonging to the same classes (supervised learning),
this strategy can preserve the structure of a soft transition between different la-
bels, capable of dealing with interstitial samples. This would be of more interest
when we need the machines to develop a sense of a qualitatively description of an
action. For example, consider a smooth transition from walking to jogging, and
then running. In cases like this, a categorical representation would be an unwise
idea because, to make a proper reaction, machines beyond a simple prediction
need to have a detailed analysis of the way that subjects interact with them.
Despite the advantages, SPP suffers from its own drawbacks, most notably due
to the lack of any provision for handling the varying lengths of samples which
in turn hinders its application in recognizing action sequences. This limitation
strongly encouraged us to propose a novel sparsity based method that can deal
with the samples of varying sizes. In a nutshell, motivations of this paper are
summarized as follows: (i) supervised learning strategies fail when we require
to learn the style or skill scores of a sample. (ii) supervised and those unsuper-
vised learning strategies based on the measure of the nearest neighbors, all fail
when there are some outliers among the training samples. (iii) SPP can only
be applied when all the training samples would be of the same length which is
an unrealistic condition for such a time-varying task as recognizing actions, (iv)
SPP fails to characterize the possible nonlinearity of data which is a common
issue in the applications like an action recognition task.

3.2. Sparseness Embedding

From the previous section, we found that one can utilize SPP, only if the
training samples are entirely of the same size. However, due to the unequal
length of action sequences, arising from the variations in speed or an imper-
fect action detection phase, SPP can not be directly applied to human action
recognition. A simple solution to this problem is the use of a sampling pro-
cedure to bind all the sequences into a fixed-length. However, there are two
key issues with this solution: first, choosing such an optimal length value is a
challenging task. This would be even more acute when there is a considerable
difference in the length of sequences. In these cases, if the fixed value is too
low, long-term sequences will have to be sparsely sampled, which results in the
loss of a significant amount of crucial information. Conversely, if it is too high,
temporal characteristics of short-term sequences would be roughly disappeared.
The second disadvantage arises from the fact that SPP requires to convert all
the sequences to a set of one-dimensional vectors. Such a flattening procedure
not only increases the size of the training samples, leading to a not accurate,
time-consuming eigen-decomposition, but also has a drawback of losing their
temporal information. As a second remedy, we can use a dynamic matching of
sequences (e.g. DTW) instead of the simple l3-norm distance used in SPP and
reformulate the objective function as follows:

N N
Ming, Z Z dtw (OéTE;, OlTx—;'Sij) (2)
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(a) An action coordinated with (b) Warping of space due to
the sampling rate of the camera the lower speed of perform-
ing the action versus the
sampling rate of the camera

Figure 1: Warping of time and space in a four-dimensional fabric due to the varying speed of
actions

Although this strategy can overcome the above mentioned problems, due
to the evolutionary nature of DTW, it can not be solved in a straightforward
manner. As an alternative, we propose to embed the sparsity of sequences

n unwarped feature space. In this sense, input space is considered to be
warped so that the rules of the Euclidean coordinate system does not hold,
reminding us the Einstein’s seminal theory of time dilation (Figure 1); when
time is dilated, space is bent [86]. To overcome this limitation, we propose
to dynamically transform all the sequences to a set of fixed-size tensors in an
unwarped space which can bring us along three important advantages: it follows
the Euclidean rules, unfolds the nonlinearity of original space, and also preserves
the spatiotemporal characteristics of sequences. Assume a nonlinear function u
that maps the training sequence z; to an unwarped space G, 11 *12% > 1o,

e RV B u(z;) € Gy (3)

Applying such transformation on all the training samples, we get X — S pan{ﬁ}.
Note that, if u is an O-th order tensor, Span(il) indicates a concatenation
of tensors at direction of O + 1. For example, if u is considered to be a
vector u € &, then Span{j} = [u(z1),u(z2),...,u(zy)], if is a matrix
u € Gp™*", then we get Span{} = [[u(z1)], [u(z2)],..., [u(zn)]], and so on.
Thus, aiming at preserving the distance between each transformed sequence
and its corresponding sparse representation in the uwarped space, the objective
function of SE is formulated as follows:

N
MiNg, Z o u(z;) — aTSpan(g))HvsiH (4)

i=1
This way, we seek a low dimensional space that closes the similar sequences

of varying sizes together, while dynamically embedding the curvature of time-
space as the (O + 1)-th dimension of the destination space. Figures 2 and 3
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Since the transformation operator u is unknown, computing such an optimal
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projection is not an easy task, requiring expensive labor and a set of weak
approximations. As a remedy, we assume there is a series of V transformed
sequences so that « lies in their span, that is:

a = (Span(¥)|ev).8 (5)

where § denotes the expansion coefficients. Substituting equation (5) into (4),
we have:

N
ming 3 187 (Span(Dev)" @ u(z)... o

— 57 (Span(®)|ev)” ® Span(t)|[Vsi|

It is clear that, this model may lead to a degenerate solution. A convenient way
to avoid such an issue is applying a constraint like [T (Span(j)\{v) =1 In
addition, an unconstrained S may lead to a poor estimation of the projection
coeflicients, arising from the possible correlations among the unwarped variables.
In such cases, the influence of applying a large positive coefficient on a variable
could be counteracted by a negative coefficient on its correlated counterpart.
To address this issue, we introduce another constraint to shrink the coefficients
towards a constant value. Considering these two stipulations, the model can be
reformulated as follows:

N
ming Z |87 (Span(jﬂev)T ® m

— BT (Span(H)]ev) " @ Span(H)|Y s @

st 3 laT (Span(NM) =1 S8, =1

Assuming &, is an inner product space, multiplication between each two tensors

u(zp) and u(xz,) can be approximated by the DTW distance between x,, and z,
sequences in the original warped space. This in turn allows for alleviating the
influence of time dilation in the input space while simultaneously unfolding the
nonlinearity of data.

(@)Tu@q = dtw(zyp, z4)
= dtw (7, XI1Y) = ((u(5)) " @ Span(D)[Y)

= (dtw(xp,xvl),dtw(mp,xv2), ...,dtw(xp,xw)) (8)
= D(Xuev, XIY) = ((Span(I)lev)” @ Span(L)1Y)

_ ((dtw(x_f,YW))T’ o (dtw(ﬁ,yﬁv))T)T

11



where YHV = {9?{7 T3, .., ﬁ)} is the set of all the training samples in the original

space. Rewriting u(z;) as Span(H)HVai, where a; is an NN-dimensional unit
vector in which i-th element is one and the remaining ones are zero, and then
substituting equation (8) into (7), we have:

mmaZIIBTD (Xloev, X 1Y) a...

-8 D(Xﬂvewm )sill (9)
Slla” (Span(Y) =1 382, =1

It is noteworthy that, the reciprocal dependency of DTW [87] violates the Posi-
tive Symmetric Definite (PSD) property of the similarity matrix D which causes
the unconstraint form of this formulation to be non-convex. However, the intro-
duced regularization parameter of 5 can prevent the eigenvalues of this matrix
to be negative, resulting in a pseudo-PSD property which further ensures an
optimal-stable solution.

To simplify notation hereafter, we will omit the arguments of D. Then, ac-
cording to the Lagrange multiplier theorem, this dual bounded model can be
rewritten as an expression with only one constraint.

ming Z |87 Da; — B Ds;|| + ’YZﬂ

HDT5|| =1 (10)
:>tr(ﬁTD<Zal Zaz Zs a; +
> sisT)DTB) +4tr(878) st |DTB|=1

With some algebraic simplification, the model can be recast in a matrix form
as:

8T (D(S + 8T~ SST)DT + 71),@
STDDT S

mazxg (11)

Then, the optimal solution of 3 is considered as the eigenvectors correspond-
ing to the largest eigenvalues of the following equation:

(D(S +5T — 5sT)DT + 71)5 — yDDT3 (12)
The update procedure of this method has been listed in Algorithml.

3.8. Sparseness Embedding for 8D Action Recognition

In this paper, each action is represented by a trajectory of 3D coordinates
over time, where each row of the trajectory is a time series representation for one
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Figure 4: Block diagram of our proposed unsupervised action recognition method. Black stars
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of the skeleton joints along the x-, y-, or z-directions. The fact that we require
to recognize the actions without any user cooperation causes two fundamental
problems which makes it impossible to use the raw data as the input of the
classification model; first, each action can be started anywhere in the camera’s
field of view, not necessarily in its center, and second, one can perform the same
action in different directions or even change his/her ongoing orientation while
performing activities. Therefore, we first normalize all the skeletons so that to
be centered, facing the camera. For this purpose, the hip joint of each skeleton
is moved to the origin, and all are then rotated so that the line between the
left and right hips becomes parallel to the x-axis. To alleviate the influence
of the execution speed, this aligning procedure is identically applied on all the
skeletons of sequences. This causes only the person-centric displacements to be
involved in the recognition process which is much closer to what happens in our
brain. However, such a representation method only characterizes the spatial
attributes, without making any provision for the temporal features, which can
be very important. Recent studies on deep learning acknowledge the correlation
between the most important joints/frames and temporal variations of sequences
[39]. Taking this into account, we consider the first derivative of the trajecto-
ries as the temporal expression of sequences which are referred to as temporal
trajectories. Then, we propose two different protocols to simultaneously utilize
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the characteristics of both the spatial Z and temporal C_\?) representations. In
the first one, DTW distances of both the trajectories are concatenated and con-
sidered as a single entity. However, because of heterogeneity, such a strategy
may lead to a biased measure of the characteristics. Thus, aiming to compro-
mise between the optimal projections of such different attributes, we propose a
hybrid embedding scheme which utilizes the weighted sum strategy of sparsity
preserving for these two individual measures:

N N
ming Y _ |87 Da; — B Dsil| + 71 > _ 18" Zai — BT Zhs|| + 2|81 13)
=1 i=1

st. D78 =1

where D = D(leuev, 7|{V) and Z = Z(Y\UGQ, 7|{V) are respectively the affinity
approximations for the set of spatial X = {z;}|*, and temporal y = {C?Z}\fvzl
trajectories. V and Q are those selected from the spatial and temporal trajec-
tories in which the projection matrix 8 individually lies on. According to (10),
equation (13) can be rewritten as follows:

3T (DADT + \ZBZT + )\21)6
BTDDT(3

(14)

mazrg

where A=S + ST — STS and B=P + PT — PTP, S and P are respectively the
sparse representation coefficients for the spatial and temporal trajectories which
can be approximated by performing an /;-norm based reconstruction on their
corresponding datasets. The flowchart of our proposed method has been shown
in Figure 4.

4. Experimental results

In this section, we evaluate the performance of our method compared with
a set of state-of-the-art methods on six publicly availab tabases including
UTKinect, TST fall, UTD MHAD, CMU, Berkeley MHAEId NTU RGB+D.
The experiments are mostly designed in unsupervised scenarios, however a few
are also conducted to demonstrate the effectiveness of our method in a super-
vised setting. In the following, we first briefly describe the databases, then
compare the performance of our method with the state-of-the-arts, analyze the
confusion matrices, and finally examine its sensitivity to different parameters.

4.1. Databases

UTKienect: This database consists of 10 human actions including walk, sit
down, stand up, pick up, carry, throw, push, pull, wave, and clap hands, each
performed twice by 10 different subjects. All actions were captured by a single
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Algorithm 1 Sparseness Embedding

training spatial 7”\;1 and temporal Y |, sequences
Embedded representation of all the sequences

# Construct affinity matrices

for p=1:N do
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dP
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end for
# Concatenate both the matrices to construct a unified representation of affin-
ity

T

D<—(D, z)
# Determine the spanning set by applying the Greedy algorithm [88] on the
affinity matriz
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for p=1:N do

# Fxclude w, from 2

D+Q

# Encode w, on O
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# Calculate s, by using the Homotopy algorithm [89]
end for
# Calculate the largest eigenvalues for the objective function of SE

Solve (D(s + 8T~ $ST)DT + 7[) 3=yDDT 3
# Project data into the embedding space
Vpe{l,..N} y,=pTw,
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stationary Kinect sensor in an indoor setting with a frame rate of about 15fps.
Actions are represented as a sequence of skeletons, each configured by 20 joints.
Despite the small number of sequences, their high intera-class variations makes
it difficult to learn these actions in an unsupervised manner.

TST fall: It consists of 264 sequences of eight actions, each performed three
times by 11 subjects. The sequences are mainly performed in two different
categories: daily living activities (sit, grasp, walk, and lay) and falling actions
(falling front, back, side and falling backward while ends up sitting). Each ac-
tion includes a time-series of 3D positions for 24 joints estimated from a depth
stream of a Kinect V2 sensor. The main challenge of this database is the very
own falling style of each subject which is critical for real-world elderly /patient
monitoring systems.

UTD-MHAD: This database include 861 sequences from 8 participants,
each performing 27 actions from three different groups; sport, daily living, and
hand gesture activities. The actions include right arm swipe to the left, right
arm swipe to the right, right hand wave, two hand front clap, right arm throw,
cross arms in the chest, basketball shoot, right hand draw x, right hand draw
circle (clockwise), right hand draw circle (counter clockwise), draw triangle,
bowling (right hand), front boxing, baseball swing from right, tennis right hand
forehand swing, arm curl (two arms), tennis serve, two hand push, right hand
knock on door, right hand catch an object, right hand pick up and throw, jog-
ging in place, walking in place, sit to stand, stand to sit, forward lunge (left
foot forward), and squat, all captured in a real indoor environment by a Kinect
sensor at a frame rate of 30fps.

CMU: This database contains 2235 sequences of 45 actions performed by
144 participants. Unlike the previous databases, CMU includes long term ac-
tivities with quite varying lengths which in turn allows for evaluating algorithms
under more realistic conditions. However, these also make the main challenges
of this database. Each action is represented by the 3D coordinate of 31 joints.
Following the protocol designed in [90], we use only a subset of 664 sequences
for 8 more common actions of daily routine including jump, walk back, run, sit,
getup, pickup, basketball, and cartwheel.

Berkeley MHAD: This database contains 659 sequences for 11 actions from
12 subjects where each action is repeated five times. The actions include jump-
ing, jumping jacks, bending, punching, waving two hands, waving one hand,
clapping, throwing, sit down/stand up, sit down, and stand up. For each skele-
ton, 35 body joints are provided by the database employing an optical motion
capture system. Due to high resolution of the joint coordinates, this database
provide much more clean information in comparison with the other databases.

NTU RGB+D: NTU RGB+D was originally established for use in data-
hungry algorithms like deep learning based approaches. It contains 56880 action
sequences from 40 different individuals with the age range from 10 to 35 years.
Number of joints and their configuration are similar to the T'ST database, but
the settings of x-y-z- axis are slightly different. The activities are mainly catego-
rized into 60 groups including 40 types of daily routines, 11 mutual interactions
and 9 health-related activities. All actions have been collected by a Kinect v2
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Figure 5: Skeleton configuration in different databases as well as the most informative joints
used in our proposed method.

sensor under a variety of setups for camera height and distance. Each setting
consists of two individual performances captured at three different angles.

4.2. Implementation Details

In this section, we describe the evaluation protocol and details of the align-
ment procedure and warping of sequences. For all the databases, we utilize
the hip center as the origin and align the skeletons w.r.t the angle of the line
passing through the left-right hips. As body parts are not entirely involved
in all activities, similar to [91] we utilize a joint selection strategy to focus on
more discriminative ones. This prevents a significant attention being directed
on the non-salient units of body, avoiding any possible redundancy in the rep-
resentation of sequences. The selected joints for each database are reported in
Figure 5. This not only improves the discriminative ability of the measures,
but also decreases the computational cost of the warping procedure in equation
(8) which can be estimated by O(o®F), where o, &, and §F respectively stand
for the number of joints, and the length of the first and second sequences. For
UTKinect, we use two different evaluation protocols; Leave-One-Sequence-Out
(LOSeqO), and Leave-One-Subject-Out (LOSubO). For each fold of LOSeqO,
one sequence is excluded for test and the remaining ones are regarded as the
training samples. This procedure is repeated k times while every fold is excluded
once. This ensures that the training samples of true class and test sequences are
roughly of the same length. Therefore, it is more beneficial to first down-sample
all the sequences so as to have a predefined number of frames (which is empir-
ically set to 15). Although more common in the literature, LOSeqO does not
have any provision for the study of subject-to-subject motion style variations
and may bias the results towards the tendency of performing actions in the
same manner. In contrast, LOSubO excludes all the sequences belonging to one
subject when selecting one of its samples for test. The recognition accuracies
for different methods are reported in Table 1. To our best knowledge, there is
not any unsupervised method evaluated on this database.
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Table 1: Recognition Accuracy for UTKinect database
Method Year Strategy Protocol Acc rate # Seq
3DKPM [92] 2016 Supervised LOSeqO 93.47% 199
LARP-+mfPCA [93] 2015 Supervised Two-fold 94.87% 199
ST-LSTM+TG [94] 2018 Supervised Two-fold 95.00% 200
ST-LSTM+TG [94] 2018 Supervised LOSeqO 97.00% 200

mLSTM+JLD [36] 2017 Supervised Two-fold 95.96% 199
GCA-LSTM [95] 2017 Supervised LOSeqO 98.5% 200
GCA-LSTM+SWT [94] 2017 Supervised LOSeqO 99.00% 200
Lie Algebra [79] 2014 Supervised Two-fold 97.08% 199
Lie Algebra+DL [96] 2018 Supervised LOSeqO 98.5% 199
GSR [97] 2018 Supervised Two-fold 94.30% 199
GM+LTB [68] 2015 Supervised LOSeqO 88.50% 200
HODV [98] 2014 Supervised LOSeqO 91.96% 199
HOJ3D [99] 2012 Supervised LOSeqO 90.09% 199
RAPToR [100] 2017 Supervised LOSeqO 92.01% 199
FisherPose [60] 2018 Supervised LOSubO 89.00% 200
LM3TL [101] 2017 Supervised LOSubO 98.9% 199
DMIMTL [102] 2017 Supervised LOSubO 99.19% 199
Our method - Unsupervised LOSubO 92.00% 200
Our method - Unsupervised LOSeqO 94.50% 200

Table 2: Recognition Accuracy for T'ST fall Database.

Method Year  Strategy Protocol ~ Acc rate
FisherPose [60] 2018  Supervised LOSubO  88.6%
MDTW [103] 2018  Supervised LOSubO  92.3%
HOJ3D [99] 2012  Supervised LOSubO  70.83%
PKE [104] 2014  Supervised LOSubO  84.09%
Our method - Unsupervised LOSubO  94.27%

For TST fall, we conduct the experiments using the LOSubO protocol.
Therefore, in each fold, action sequences of 10 subjects are used for training and
the remaining ones regarded for test. The comparison results for this database
are listed in Table 2. As can be seen, there is a noticeable lack of studies on
this database which might be due to its originality which, in its true sprit, has
been established for studying the problem of falling actions.

For UTD-MHAD, we follow the cross validation protocol designed by Chen
et al. [94] which is also the overwhelming trend in the competing algorithms.
On this basis, subjects with odd indices are used for training and the remaining
ones are selected for test. Table 3 shows the results of recognition accuracies on
this database.

For CMU, there is a standard protocol suggested by Zhu et al. [92] in
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Table 3: Recognition Accuracy for UTD-MHAD Database

Method

Year Strategy

Protocol Acc rate

Multiview+CNN+LSTM [28] 2019 Supervised

CNN+OSF [67]
DLF [105]
JTM~+CNN [106]

ModJTM+CNN [40]

JDM+CNN [107]

2018 Supervised
2018 Supervised
2016 Supervised
2018 Supervised
2017 Supervised

Two-fold 95.58%
Two-fold 86.97%
Two-fold 92.8%

Two-fold 85.81%
Two-fold 87.90%
Two-fold 88.10%

AG [108] 2017 Supervised Two-fold 81.00%
Skepxel+L+V [109] 2018 Supervised Two-fold 97.2%

GME [77] 2018 Supervised Two-fold 90.74%
Our method - Unsupervised Two-fold 93.29%

Table 4: Recognition Accuracy for CMU Database
Method Year Strategy Protocol  Acc rate
Hierarchical RNN [66] 2015 Supervised Three-fold 83.13%
Deep LSTM [90] 2016 Supervised Three-fold 86.00%
Deep LSTM + Co-occurrence [90] 2016 Supervised Three-fold 88.40%
Coordinates + FTP [110] 2017 Supervised Three-fold 83.44%
Frames + CNN [110] 2017 Supervised Three-fold 91.53%
Clips + CNN + Concatenation [110] 2017 Supervised Three-fold 90.97%
Clips + CNN + Pooling [110] 2017 Supervised Three-fold 90.66%
Clips + CNN+ MTLN [110] 2017 Supervised Three-fold 93.22%
Encoder-Decoder+GAN [45] 2018 Unsupervised Three-fold 84.57%
Autoencoder [111] 2015 Unsupervised Three-fold 77.03%
Our method - Unsupervised Three-fold 85.69%

which a three-fold class validation strategy is applied on a 664-sequence subset
of sequences. The experimental results on this database is reported in Table 4.

Similar to CMU, Berkeley MHAD takes advantage of a standard evaluation
protocol provided by the database creators in which first 7 subjects are selected
for training and last 5 ones are used for test. The recognition accuracies on this
database are listed in Table 5.

For NTU RGB+D, we utilize its two well-known protocols, cross-subject and
cross-view. In cross subject, half of the subjects are utilized for training and
other half for test. For cross-view evaluation, the sequences taken by the first
camera are considered as test samples while the remaining ones are used for
training. To dealing with the large size of database, we propose to divide the
training sequences into seventeen categorizes. Then, mapping function of each
category is individually calculated according to equation (12). Then, test sam-
ples are classified based on the least matching scores of the individual mappings.
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Table 5: Recognition Accuracy for Berkely MHAD Database

Method Year Strategy Protocol Acc rate
SMIJ [112] 2013 Supervised Two-fold 95.40%
DBRNN [66] 2015 Supervised Two-fold 99.64%
HBRNN [66] 2015 Supervised Two-fold 100%

Deep LSTM [90]

Co-deep LSTM [90]

2016 Supervised
2016 Supervised

Two-fold 100%
Two-fold 100%

Encoder-Decoder+GAN [45] 2018 Unsupervised Two-fold 100%
2015 Unsupervised Two-fold 99.56%
- Unsupervised Two-fold 100%

Autoencoder [111]

Our method

Table 6: Recognition Accuracy for NTU RGB+D Database

Method

Year Strategy

Protocol Acc rate

LS-LSTM+TG [94]
LS-LSTM+TG [94]

Lie Algebra [79]
Lie Algebra [79]
PA-LSTM [113]
PA-LSTM [113]
Deep RNN [113]
Deep RNN [113]

Hierarchical RNN [66]
Hierarchical RNN [66]

GCA-LSTM [52]
GCA-LSTM [52]

SPMF Inception-ResNet-222 [114]
SPMF Inception-ResNet-222 [114]
Skeletal Quads [115]

Skeletal Quads [115]

FTP Dynamic Skeletons [116]
FTP Dynamic Skeletons [116]
DPRL+GCNN [82]
DPRL-+GCNN [82]

Our method
Our method

2018 Supervised CS 69.2%
2018 Supervised CcVv 77.7%
2014 Supervised CS 50.1%
2014 Supervised Ccv 52.8%
2016 Supervised Cs 62.9%
2016 Supervised Ccv 70.3%
2016 Supervised CS 56.3%
2016 Supervised CcVv 64.1%
2015 Supervised CS 59.1%
2015 Supervised (Y% 64.0%
2018 Supervised CsS 76.1%
2018 Supervised Ccv 84.0%
2018 Supervised CS 78.9%
2018 Supervised Ccv 86.1%
2014 Supervised CS 38.6%
2014 Supervised cv 41.4%
2015 Supervised Cs 60.2%
2015 Supervised CcVv 65.2%
2018 Supervised CS 83.5%
2018 Supervised CvV 89.8%
- Unsupervised CS 71.8%

- Unsupervised CV 79.3%

4.8. Discussion

Based on the experimental results summarized in Tables 1 to 5, we have the

following observations:

No matter how the sequences are modeled, supervised learning strategies
have usually better overall performance than their corresponding unsupervised
cousins. However, this comes with two major drawbacks: First, they are lim-
ited to a heavy reliance on massive labeled training samples which may not
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Table 7: Recognition Rate of Our Method Compared with Some Supervised Learning Strate-
gies When Outliers are Present in the Database.

Method Lie Alg. RP  AQ 3DT Our method

Orig. database 94.5% 97.5% 94.5% 94.0% 94.00%
Database with Outliers 89.5% 93.5% 92.00% 87.00 94.00%

always be available especially when dealing with complex/chaotic actions such
as sport movements. Second, and more importantly, this superiority is only
truly guaranteed when there is no outlier among the training samples. To facili-
tate further analysis, we conduct another experiment to validate the robustness
of our method against some incorrectly labeled sequences, and compare the
results with a few supervised learning strategies including Lie Algebra [34], Rel-
ative Position [34], Angle Quaternion [34], and 3D Trajectories [34]. For this
purpose, we replace the first sequence of each class with the first sample of the
next one, and reevaluate the methods on this new database. All the experiments
are performed on UTKinect using LOSeqO strategy with the same setting as
the previous section, both for splitting the database and the regularization pa-
rameters. The results of the experiment are reported in Table 6. As can be seen,
despite the superiority of the supervised algorithms for ideally labeled database,
97.5% achieved by Relative Position versus 94.5% for our unsupervised strat-
egy, these methods can not achieve the best results in the presence of outliers,
according to a 93.5% accuracy rate for Relative Position versus 94.5% achieved
by our method, which is a great challenge for the practical realization of such
strategies. Note that, as we focus on the semantics of responses, the outcome
of outliers are considered to be the same as their original indices.

Deep features of sequences does not always outperform the shallow repre-
sentations. For example, among the supervised algorithms examined on 199-
sequence UTKinect database using LOSeqO protocol, DMIMTL can achieve
99.19% accuracy which is much better than that of many deep learning based
methods such as mLSTM+JLD [36] and Lie Algebra+DL [96]. A consistent
trend can also be observed among the unsupervised approaches, where the per-
formance of our method is respectively 0.52% and 8.06% better than those
obtained by the recently proposed dbe;kpeggjng based AutoLSTM [45], and
EDGAN [111] methods, while it also Tom a far less computational cost.
Note that, each layer of the encoder, decoder, and discriminator of EDGAN has
respectively 800, 800, and 200 hidden units, requiring massive amounts of com-
putational power. Besides, due to scarcity of 3D sequences, such a large number
of parameters not only does not contribute to a good generalization but also
makes the network prone to overfitting. That is why deep learning strategies
can not repeat their previous huge success for 3D action recognition.

Our method outperforms the manifold learning based algorithms including
GM+LTB [68] and GME [77]. Specifically, about 6 and 2.5% improvement is re-
spectively archived on UTKinect and UTD-MHAD databases, arising from one
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of the following advantages: (1) SE does not require any assumption regard-
ing the geometrical distribution of data. (2) unlike manifold learning methods
that mostly focus on the second-order statistics, our model only utilize the first-
order correlations which are less susceptible to noise. (3) it does not involve
any statistical modeling of dynamic reversions, leading to less uncertainty and
degenerated solutions.

Similar to SE, some other rivals like the methods in [71, 117], take advantages
of the time warping to dealing with the latency issue of sequences. However,
due to the monotonicity and the boundary constraints [68], dtw fails to be di-
rectly applicable for classifying complex sequences. In contrast, our method
differs from these techniques in two different ways: (1) SE utilizes the warping
strategy to capture the underlying distribution of data rather than aligning the
sequences. (2) it encodes the nonlinearity in a sparse manner, leading to a higher
degree of robustness against the partial noise or corruption of trajectories.

Different from the multi-stream, multi-step deep learning based approaches,
our method has a unified structure that fulfils the need to any further correla-
tional or causal analysis of hierarchies.

Our method achieves a significant improvement over the current unsuper-
vised 3D action recognition methods, AutoLSTM and EDGAN, mainely from
two different aspects: a higher recognition rate and lower computational cost.
In addition, it does not rely on any augmentation procedure.

Unlike the attention mechanism in deep learning strategies, our method uti-
lize the temporal characteristics of joint trajectories as a measure of selective
concentration on informative joints, leading to a far much lower computational
cost.

Unlike the graph-based and tree-traversal algorithms [56, 39], our method
neglects the spatial relations between the joints, which causes the loss of some
valuable information of data, leading to a decreased accuracy. However, this way
it allows for a simple interpretation of the single joint’s role in the recognition
process which is much crucial for debugging the algorithms. Additionally, such
graph based networks suffer from two major drawbacks: with a shallow struc-
ture they lack the ability of generalization and in a deep form has the problem
of over-smoothing, both hinder their application in 3D model characterisation.

4.4. Confusability

In this section, we further explore which action classes are more prone to be
confused with each other. For this purpose, confusion matrices for UTKinect,
TST fall, UTD-MHAD, CMU, and NTU RGB+D databases are respectively
shown in Figures 6 to 12. However, due to demonstrating a perfect recognition
rate, the matrix are not depicted for Berkeley MHAD. For all the measures,
diagonal elements show the per-class accuracy rates, while those off-diagonal
represent the misclassification percentages.

For UTKinect, the matrix is depicted for a classification rate of 92% achieved
when setting the parameters to {e=107% A=10"2,y=1075, #GFS=30, # PC=30}.
As can be seen, most of the confusions occur between the throwing with pushing
actions, and also picking up and walking. In the first case, the reason mostly
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lies in the aligning way of the skeletons. Note that, for aligned-free strategies
similar to that found in humans, ground is considered to be the reference surface
of comparing different actions, which in turn allows for distinguishing between
the almost similar actions which have different motion patterns for their cen-
ters of gravity. However, single-joint based mining of such information from
hip-aligned skeletons would not be an easy task, leading to a reduced efficiency
of our method. But for the second case, the confusions are mostly related to
the similarities between the actions, where, even the visual recognition mainly
results from such subtle cues as the existence of an object or difference of accel-
erations.

For the TST database, the confusion matrix is given for a recognition ac-
curacy of 94.27% which is achieved by the following parameters: {e=10"* A=
1077, y=10"2, #GFS=60, #PC=60}. The matrix implies that misclassifications
mainly occur in the falling actions, especially between falling side and falling
back which share a set of significant initial motion similarities. Another reason
is related to the greater impact of varying styles on performing falling actions.

For UTD-MHAD, the confusion matrix is shown for a recognition rate of
93.29% ({e=10"",A=10"°,v=10"2, #GFS=130, #PC=130}). As can be seen, our
method can achieve a perfect recognition rate of 100% for 15 classes, while only
one class experiences a rate lower than 80% accuracy. Obviously, the most dif-
ficulty of the database lies in misclassifications between push and basketball
shoot, cross arm and clap, as well as draw circle and triangle which are mainly
due to their visual consistency in hierarchy of employing different body parts.
While such cases as confusions in the drawing actions can be alleviated by us-
ing the relative information of joints, in other cases, the error is mostly related
to the failure of Euclidean based DTW measure in distinguishing between the
actions that only differ in small parts.

The confusion matrices of the CMU subsets at the recognition rates of
85.52%, 86.88%, and 84.68% are respectively illustrated in Figures 7 to 9. As
mentioned before, the best parameter setting of each subset is individually cal-
culated using the gride search algorithm and the cross validation strategy. It
is easy to see that, the worst performance of our method is achieved on this
database which is mostly due to the large sequence length variations in this
database. The ratio of longest to shortest length of sequences in this database
is about 99.1% which is much greater than that in UTKinect with 22.8%, TST
fall with 6.17%, and UTD-MHAD with 3%. The lowest accuracies on this
database are achieved for the actions sit and get up which, due to the displace-
ment of the gravity point, are very sensitive to the alignment procedure. The
noteworthy thing about this database is the presence of three imposter actions
(pick up, run, and jump) whose aligned form exhibit high levels of resemblance
to other sequences, such that 11.47%, 28.98%, and 20.67% of false positives in
the database are respectively assigned to these actions.

For NTU RGB+D, the confusion matrices are individually illustrated for
both the cross-subject and cross-view protocols (Figure 12 (a) and (b)), re-
spectively for the recognition rates of 71.8% and 79.3% ({e=10"3;A=10"3;v=
1073 #GFS=95; #PC=95}). As other databases, most of the confusions also
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Figure 7: Confusion Matrix for TST fall Database

occur in those similar motions like reading/writing vs playing with phone, pat
on patch/touch batch vs shaking hand, and brush teeth vs phone call. More-
over, one can observe that the confusions of both the proctors are largely similar,
however their number for cross-view is significantly less than those occurred in
the cross-subject protocol. Interestingly, despite some confusions, the reverse
motions like ”putting on something” and ”taking off it” have been well discrim-
inated (specially for cross-view protocol) by our method which is mostly due to
the use of a temporal encoding procedure in its mapping function.

4.5. Ewvaluation of joint Learning Strategy

In this section, we evaluate how well our joint learning strategy works for
a sparseness embedding task. For this purpose, a set of experiments are con-
ducted on UTD-MHAD database and results are compared with the baseline
method. Therefore, the splitting protocol and experimental setting are selected
as the previous section (A=10"'%, e=10"", and y=10"2). Moreover, the parame-
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Figure 9: Confusion Matrix for CMU-subset1

ters 41 and ~, are respectively selected as 0.4 and 0.6, suggested by a grid-search
strategy. The experimental results of the unsupervised mode of this strategy
with different number of the spanning set determined by the Greedy algorithm
[88] are summarized in Table 7. When comparing the results with Table 3, one
can infer that our method is distinctly better than the baseline model. More
specifically, the strategy leads to a 2.3% and 3.97% increase respectively in the
maximum and average recognition accuracies of the method which demonstrate
the benefit of jointly representing the temporal and spatial characteristics of
sequences in two different spaces, but with an unified objective function.
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We also conduct another experiment to validate the performance of this strat-
egy in a supervised mode. To make a fair comparison, the parameter setting
is assumed to be as the unsupervised strategy. Putting together the results of
Table 7 and 3 demonstrates the competitive performance of our method com-
pared with the best performing algorithms. However, in comparison, these rivals
all suffer from an expensive training effort caused by the deep hierarchical or
multi-stream framework of their structures. Without their code, it would not be
possible for us to quantitatively compare the computational times of the meth-
ods. However, comparing the number of parameters (5 in our method versus
more than millions in Skepxel [109] ) can reveal the computational advantage
of each strategies with further confirms the superiority of our algorithm.

We also visualize the representation results of the baseline and joint learning
strategies of our method in Figure 10. For each strategy, sequences are initially
transformed into the unwarped feature space. Then, PCA is applied to project
the resultant trajectories into a compact three dimensional space. We also il-
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Figure 12: Confusion matrix for cross-view and cross-subject evaluations of NTU RGB+D
database

Table 8: Recognition accuracy of our method using the joint learning strategy.

#Features 60 90 120 150 180 210
Unsupervised 96.67% 92.13% 93.52% 94.21% 95.37% 92.13%
Supervised 93.29% 96.53% 96.30% 96.53% 97.23% 96.30%

lustrate the sparsity of data from the viewpoint of the first, second, and third
principal components. The brighter the lines, the more closely connection would
be established among the trajectories. Each color in the distribution space is a
label corresponding to one of the action classes in the database. As can be seen,
the discriminative representations of the joint learning strategy is much better
than that of the baseline algorithm.

Despite the promising performance on such a large number of actions, this
strategy can be remarkably influenced by the challenging task of choosing the
regularization parameters v; and ~., imposing the need for an expensive grad
search before applying the main body of the algorithm. Besides, this strategy
is worth considering only if the temporal characteristics has competitive dis-
criminative information compared to the spatial ones, which mostly occur in
databases with clean movements.
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Figure 13: A Visual Interpretation of the Joint Learning Strategy (left column) versus the
Baseline Algorithm (right column). The visualization of data (first row, each color represents
a class of actions) vs. the sparsity coefficients between the samples (second row)

4.6. Sensitivity Analysis

In this section, we evaluate the parameter sensitivity of our method. Ac-
cording to whether the effects are direct or indirect, there are two categories of
parameters to be tuned: (i) Those imposed by SRC to mine the intrinsic struc-
ture of data. As we use the Homotopy algorithm, such parameters are limited
to e and A. (ii) The parameter v, which is directly introduced in our proposed
objective function in equation (10). In addition, there are two other factors that
can significantly influence the performance of our method. First, the number
of spanning sequences (V in Equation 4, which is referred to as the 'Number of
Features’) determined by applying the Greedy algorithm on the feature vectors
derived from Equation (7) and the number of the principal components in the
eigen-decomposition problem of Equation (11). In practice, to find the best
values, we ran an exhaustive grid search over the five dimensional space of the
parameters which is much more reliable than other hyper-parameter optimisa-
tion algorithms. However, illustrating such an extensive results could present
a confusing picture that will not be properly informative. Therefore, to sim-
plify the comparisons, the influence of each parameter is evaluated under the
assumption that others are set to some fixed values, chosen to best illustrate
the influence of the unknown parameter. The experimental results for differ-
ent databases are listed in Table 8. It is noteworthy that the evaluation of a
dictionary based learning algorithm like SE on such a large scale database as
NTU RGB+D requires the training samples to be disaggregated into some dis-
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tinctive categories. Due to the individual trend of sensitivity for each category
(sometimes with a contradictory behaviour), it would not be informative to an-
alyze them as a whole. However, empirical evaluation shows that a setting of
{e=107%,A=10"3,y=10"3, #F=95, # PC=95} could achieve a compromise on all
the categories of this database.

For ¢, the values of the remaining parameters are fixed as {A\=1073 =
107%, #F=30} for UTKinect, {A=10"7,y=10"2, #F=>50} for TST fall, {\=10"" 4=
1072, #F=130} for UTD-MHAD, and {A\=10"°,7=10"%,#F=60} for the CMU
database. For ), other parameters are set to be {e=10"%,v=10"°, #F=30} for
UTKinect, {e=107%,v=1072, #F=50} for TST fall, {e=10"",v=10"2, #F=130}
for UTD-MHAD, {e=10"",7=10"%, #F=60} for CMU. For ~, we set the other pa-
rameters as {e=10"°%,y=10"3, #F=30} for UTKinect, {e=10"",y=10"*, #F=50}
for TST fall, {e=10""y=10"2#F=130} for UTD-MHAD, AND {e=10"",v=
107°, #F=60} for the CMU database. Note that, for all the experiments, num-
ber of the principal components in Equation (11) is assumed to be the same as
{(#F).

We also conduct another experiment to analyzes the influence of the dimen-
sionality of the V space #F as well as the number of principal components on
the performance of our model. For this purpose, the parameter setting of each
database is considered to be the same as the Section IV.D. The performance
variations with respect to these parameters are depicted in Figures 14 to 19.

Table 9: Sensitivity Analysis of Our Method Against the Parameters ~, A, and ¢.

UTKinect TST fall UTD-MHAD
€ 1072 [107* [10=% 108 o' [10=2 [0~ J10~* Jo~* 102 [10~3 [10~*
Recognition Rate]90.00 [91.5% [92.00%/92.00%|88.55%]90.84%92.37%/93.89%|93.29%/89.35%/86.81%385.19%
A 10=% [10—° [10~%* [10=° [to=2 o> f[o~° fo= fo—> [0 Jto—" [10~?

Recognition Rate]90.50%/92.00%[89.50%/89.50%]91.98%[91.22%92.37%/91.60%|91.44%]93.29%93.29%/93.29%
v 1072 [10~* 1o [107° Jio=* o= J10=° [to~* Jio=' 10~ [107° [10~*
Recognition Ratel86.50%(88.50%/92.00%/91.00%]90.46%/93.89%90.08%]82.44%[86.81%]93.29%|86.81%]|74.04%

CMU-Subset1 CMU-Subset2 CMU-Subset3
€ 10-Y 10=2 [10=% [10~* Jo~! [0o~2 [10°3 po~* o' [10=2 103 [10~*
Recognition Rate|85.07%/80.09%(82.81%[81.90%|84.62%/86.43%/83.26%/83.26 %|82.43%|81.98 %|S3. 78 %|84.23%
A 10=° [10=* [10=°> [10=° J10=° [10=* [t0=° [0~° Jt0—° [10=* [i0—° [10=°
Recognition Rate|84.16%[85.07%|85.52%85.52%|82.81%|85.07%/33.26%|83.26%|84. 23 7/82.88%|83.33%/84.68%
v 1072 10— [10=* [10=> J10=* [10=° [10=* [10=> [10=2 [10=° [10=* [107°

Recognition Rate]81.00%/80.09%[82.81%|85.52%]85.07%[84.62%|83.71%/83.25%|81.98%]83.33%81.53%/84.68%

Based on the results of both the experiments, we can reach the following
observations:

e There is no absolute best parameter setting that can achieve the best
performance on all the databases which is due to that the sparsity is a
data-driven concept whose definition varies according to the scattering of
data.

e The influence of variation in the parameter A does not results in as large
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performance variations as the parameters ¢ and ~.

o The more the number of training sequences (more dense space), the lower
value the parameter ¢ may lead to more promising results.

e The best performance are usually obtained when the number of the num-
ber of principal components is equal to the dimensionality of the spanning
set V.

e The more the number of action classes, the better results will be achieved
using the higher dimensionality of the spanning set.
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Figure 14: Performance of Our Method with the Varying Size of panning Set and Principal
Components on UTKInect Database
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Figure 15: Performance of Our Method with the Varying Size of panning Set and Principal
Components on TST fall Database
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Figure 16: Performance of Our Method with the Varying Size of panning Set and Principal
Components on UTS-MHAD Database
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Figure 17: Performance of Our Method with the Varying Size of panning Set and Principal
Components on CMU-subsetl

5. Conclusion

This paper proposed a novel unsupervised 3D action recognition algorithm
based on the coordinate information of skeletal data. The idea was to unwarp
the original space such that the sparse neighborhood structure of sequences
is preserved into a low dimensional unwarped space. This way, the idea of
sparsity could be subtly introduced into the framework of high dimensional
time-variant tensor analysis. Our scheme also provided a novel unified struc-
ture to integrate the nonlinearity and space curvature characteristics into a low
dimensional sparse representation, allowing for a more reliable modeling of spa-
tiotemporal attributes. Moreover, we proposed a novel joint learning strategy
for dealing with the heterogeneity of temporal and spatial characteristics of ac-
tion sequences which has been overlooked in the literature. The experimental
results on six publicly available databases; UTKinect, TST fall, UTD-MHAD,
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Figure 18: Performance of Our Method with the Varying Size of panning Set and Principal
Components on CMU-subset2
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Figure 19: Performance of Our Method with the Varying Size of panning Set and Principal
Components on CMU-subset3

CMU, Berkeley MHAD, and NTU RGB+D demonstrated the effectiveness of
our method compared with a set of recently proposed shallow and even deep
learning based strategies.
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