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Fig. 1. Two pulse samples of a PPG signal. In the above figure, X and Y 

are the systolic peak and inflection points amplitudes respectively and 

∆���� is the time interval between the two. 

 
 

Abstract—In this paper, we present a machine learning model 

to estimate the blood pressure (BP) of a person using only his 

photoplethysmogram (PPG) signal. We propose algorithms to 

better detect some critical points of the PPG signal, such as 

systolic and diastolic peaks, dicrotic notch and inflection point. 

These algorithms are applicable to different PPG signal 

morphologies and improve the precision of feature extraction. 

We show that the logarithm of dicrotic notch reflection index, the 

ratio of low- to high-frequency components of heart rate (HR) 

variability signal, and the product of HR multiplied by the 

modified Normalized Pulse Volume (mNPV) are the key features 

in accurately estimating the BP using PPG signal. Our proposed 

method has achieved higher accuracies in estimating BP 

compared to the previously reported methods that only use PPG 

signal. For the systolic BP, the achieved correlation coefficient 

between the estimated values and the real values is 0.78, the mean 

absolute error of the estimated values is 8.22 mmHg, and their 

standard deviation is 10.38 mmHg. For the diastolic BP, the 

achieved correlation coefficient between the estimated and the 

real values is 0.72, the mean absolute error of the estimated 

values is 4.17 mmHg, and their standard deviation is 4.22 mmHg. 

The achieved results fall within Grade A for diastolic, Grade C 

for systolic and Grade B for mean BP based on BHS standard. 

 
Index Terms—Blood Pressure, Photoplethysmogram (PPG), 

Morphological Features, modified Normalized Pulse Volume, 

Machine Learning 

I. INTRODUCTION 

LETHYSMOGRAM is a waveform representing the arterial 

oxygenation versus time. It is also a representation of 

blood volume versus time.  If an optical method is used for 

sensing the plethysmogram signal, the obtained signal is called 

Photoplethysmogram (PPG). To record PPG, a red or infrared 

light is radiated to a body organ, such as fingertip or earlobe, 

and the reflected light is recorded. The amount of the reflected 

light is a measure of the arterial oxygen level [1]. Fig. 1 shows 

two pulses of a typical PPG signal. 

PPG signal, by itself, is not directly related to blood 

pressure (BP), which is a measure of the pressure imposed by 

blood flow on the wall of vessels; however, subtle variation in 
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the morphology of the PPG signal appears to be correlated to 

BP. To the best of our knowledge, presently there is no 

mathematical model backing this correlation and the relation 

between PPG and BP is currently only modelled with machine 

learning. 

If a method exists that can provide a reasonably accurate 

estimation of the BP of a person from his PPG, it provides 

several important advantages, including: 

(1)  It makes it possible to measure BP without using a cuff. 

This feature is very useful for people who find BP 

measurement using a cuff painful and annoying.  

(2) It makes it possible to continuously measure the BP of a 

person. This feature is a significant advantage to cuff-based 

BP measurement approaches, because it makes possible to 

assess the BP of a person in different conditions, such as 

sleep, rest and other daily activities more realistically and 

accurately [2]. In addition, it has been shown that 

continuous monitoring of BP can help to significantly 

minimize the complications of high BP [3]–[5]. It also 

makes it possible to more thoroughly evaluate the effect of 

an antihypertensive agent [6].  

(3) It makes it possible to use ordinary smartphones as 

simple sphygmomanometer as the built-in LED flash light 

of the cellphone can be used as a light source and the built-

in CMOS camera as a photodetector, respectively. Fig. 2 

shows a PPG signal recorded using iPhysioMeter App [7] 

running on an iPhone. 

Blood Pressure Estimation Using 

Photoplethysmogram Signal and Its 

Morphological Features 

Navid Hasanzadeh, Mohammad Mahdi Ahmadi, Senior Member, IEEE, and Hoda Mohammadzade 

P



IEEE Sensors Journal 

 

2

 
Fig. 2. A screenshot of iPhysiometer App [7] running on a smartphone, 
sensing PPG signal using LED light and camera of the phone. 

Recently, a few methods have been presented to estimate 

BP using PPG signal [8]–[12]. The most common methods are 

based on measuring the propagation speed of blood from the 

heart to the body [13]. These methods, which are called, 

Pulse-Wave Velocity (PWV) based approaches, are based on 

the fact that PWV generally increases as the BP increases. An 

issue with the recently proposed PWV-based approaches is 

that they require measuring multiple electrophysiological 

signals. For example, the methods proposed in [14] require a 

combination of a PPG signal and an electrocardiogram (ECG), 

the method proposed in [15] requires PPG and a 

phonocardiogram (PCG), and the one proposed in [16] 

requires two PPG signals. As a result, the devices 

implemented based on these approaches are complex and 

cumbersome. 

Matsumura et al.  [17] proposed a method that requires only 

a PPG signal to estimate BP. The proposed method only uses 

heart rate and a feature called modified Normalized Pulse 

Volume (mNPV), proposed in [18], to estimate BP. mNPV is 

defined as the ratio of the peak-to-peak amplitude of a PPG 

signal divided by its dc value. Their proposed method 

achieved a good correlation between the estimated BP and its 

actual value, however, the size of their used dataset was too 

small to make reliable judgment about the accuracy of that 

method.  

In this paper, we present a BP measurement algorithm 

which only uses  the morphological features of a PPG signal. 

We extract Heart Rate Variability (HRV) signal from PPG and 

utilize some of its properties that have proven relations with 

autonomic nervous and cardiovascular systems. In addition, 

we use the mNPV feature to improve the accuracy of BP 

estimation. PPG pulses have different shapes in different 

individuals; as a result, the algorithms that are used for 

extracting features and detecting key points should have 

minimal sensitivities to these differences. We propose 

algorithms for robust detection of PPG key points such as 

minimum, systolic peak, diastolic peak and maximum slope 

point. Using these algorithms, we can more precisely detect 

the key points and thereby better extract physiological related 

features. As a result of these improvements, we have achieved 

more accurate BP estimation compared to the previously 

published methods using only PPG signal. 

We also show that the logarithm of dicrotic notch reflection 

index (RI), the HRV low-frequency to high-frequency 

components ratio, and the product of Heart Rate (HR) 

multiplied by the modified Normalized Pulse Volume 

(mNPV) are the key features in estimating the BP using PPG 

signal. We have achived a correlation coefficient of 0.78 

between the estimated and the real values of the systolic BP; 

the mean absolute error (MAE) of the estimated values is 8.22 

mmHg, and their standard deviation (STD) is 10.38 mmHg. 

For the diastolic BP, we have achived a correlation coefficient 

of 0.72 between the estimated and the real values; the MAE of 

the estimated values is 4.17 mmHg, and their STD is 4.22 

mmHg. The achieved results fall within Grade A for diastolic, 

Grade C for systolic and Grade B for mean BP based on BHS 

standard. 

II. BACKGROUND 

In this section, we briefly review the PPG signal and its key 

features used for BP estimation in this paper.  

A. Photoplethysmogram 

As shown in Fig. 1, a PPG pulse has a few key points, such 

as maximum slope point, dicrotic notch, inflection point, and 

diastolic peak. Some PPG signals might be missing few of 

these points, such as diastolic peak. 

The systolic peak happens when the blood pressure 

propagates from the left ventricle toward the fingertips. The 

diastolic peak is the result of the reflected blood pressure from 

small blood vessels in the lower part of the body towards the 

aorta and the fingertips [19]. 

B. PPG Morphological Features 

Due to differences in the cardiovascular systems, the shapes 

and morphologies of PPG signals vary from one person to 

another. Some extractable features from a PPG pulse are as 

follows: 

1) Heart Rate 

Heart rate can be obtained by calculating the time interval 

between two consecutive systolic peaks or two consecutive 

minimums: 

 

 �� =
60

��
��	������
�	(�)
 (1) 

 

2) Pulse Width 

Awad et al. [20] define pulse width of a PPG signal as the 

time interval between the points at half height of the pulse and 

believe that it is correlated with the Systemic Vascular 

Resistance (SVR). SVR is the resistance against blood flow in 

the total vascular system except for pulmonary vessels and is 

calculated using [21]: 

 

 ��� =
��� − ���

��
 (2) 

 

where �� represents cardiac output in terms of mL/min, ��� 

is mean arterial BP in terms of mmHg and ��� is the central 

venous pressure which is almost zero mmHg and can be 
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neglected. 

 

3) Reflection Index 

Reflection index is a measure of pulse reflection in arteries 

and is related to the arterial tone which is the magnitude of 

blood vessel contraction in proportion to their maximum 

distensibility. RI is obtained using:  

 

 �� =
 

!
 (3) 

where   is the amplitude of the inflection point and ! is the 

amplitude of the systolic pulse [22]. 

 

4) Large Artery Stiffness Index 

Large artery stiffness index of an individual is a measure of 

the stiffness of his arteries and is expressed by: 

 "��� =
#

∆����
 (4) 

where # is the height of the individual and ∆���� is the time 

interval between the systolic peak and the inflection point of a 

PPG pulse [19]. Since the height of the subjects is not reported 

in our dataset, we set # = 1 for all subjects. 

 

5) Ratio of PPG Pulse Areas  

The ratio of PPG pulse areas is the ratio of different areas 

under a PPG pulse. By breaking the area under a PPG pulse 

into two parts based on the location of the inflection point, 

Wang et al. [23] showed that the ratio of these two areas is 

related to the total peripheral resistance and BP. Inflection 

Point Area (���) ratio is calculated from: 

 

 ��� =
�%

�&
 (5) 

where �&	and �%	are the areas of the first and second parts as 

shown in Fig. 3. 

 

6) Crest Time 

Crest time is the time that it takes for the PPG signal to rise 

from its minimum point to its systolic peak. It has been shown 

that this index is related to PWV [24]. 

 

7) Modified Normalized Pulse Volume (mNPV) 

This feature is expressed by: 

 '(�� =
�)*

�)* + �,*
 (7) 

where �)* 	is the peak-to-peak amplitude of the PPG pulse and 

�,* 	is the average of the pulse [17][18]. 

This feature is directly related to the pulsatile component of 

the arterial blood volume and is also related to total peripheral 

resistance (TPR) [25]–[27] which is linked to mean arterial 

pressure (MAP) by the following expression [19]: 

 ��� = �� ∗ ��� (6) 

where CO is cardiac output and is associated with heart 

rate[28][29]. Matsumura et al.[7] showed that mNPV is 

related to BP with a high correlation. 

 

 

8) Heart Rate Variability 

The HRV signal is a noninvasive marker of the performance 

of autonomic nervous and cardiovascular systems. It has been 

shown that the BP is correlated with the time-domain and 

frequency-domain properties of HRV [30][31][32]. HRV can 

be used to estimate the stress level of a person [33]. Although 

it is usually obtained by measuring the period of ECG signal, 

it can also be obtained by measuring the period of the PPG 

signal [34][35]. 

C. Dataset 

For the training and testing our proposed method, we have 

used cuff-less BP dataset available in Machine Learning 

repository of the University of California, Irvine (UCI) [14]. 

This dataset, which we call it UCI dataset in this paper, 

consists of 12000 signal parts of recorded ECG, PPG and 

Arterial Blood Pressure (ABP) from about 1000 individuals.  

The source of this dataset was the Physionet’s Multi-

Parameter Intelligent Monitoring in Intensive Care Units 

(MIMIC II) [36], on which Kachuee et al. [14] have 

performed some pre-processing and validation. We have used 

the PPG signals as the input and the ABP signals as the target 

values. In Fig. 4, the histograms of the dataset for systolic and 

diastolic BPs are shown. The sampling rate of the recorded 

signals is 125Hz, which is sufficiently high to accurately 

extract the frequency-domain features of HRV[37]–[39].  

III. PROPOSED METHOD 

Some of the features mentioned in Sec. II cannot be easily 

detected in a PPG signal, especially in those with abnormal 

BPs. In this paper, we present algorithms to effectively extract 

 

Fig. 3. The ratio of areas confined under PPG pulse is related to the total 
peripheral resistance and blood pressure. 

 

 
Fig. 4. Blood Pressure histograms of the used dataset. a) Systolic blood 

pressure. b) Diastolic blood pressure. 
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Fig 5. The block diagram of the proposed BP estimation algorithm. 

the key features of a PPG signal. We also use more features 

compared to the ones used in previous works.  Our proposed 

method consists of the following steps: 1) applying pre- 

processing algorithms on PPG signals for de-noising and 

removing base-line wandering, 2) detecting the key points of 

the PPG signals, 3) extracting the important features of the 

PPG signal, and 4) training the proposed BP estimation model 

using the available dataset. The block diagram of the proposed 

BP estimation algorithm is illustrated in Fig. 5. 

  

A. Pre-processing 

In this step, a Type I Chebyshev low-pass filter with a cut-

off frequency of 10 Hz is applied to the PPG signals. The filter 

was implemented using the forward-backward method to keep 

the group delay constant. The dc component of each signal is 

found using a moving median window and is subtracted from 

the filtered signal to make the signal dc-free. The dc-free 

signal which is free of any base-line wander, is used for 

extracting all features other than mNPV. For extracting the 

mNPV feature, the dc value of the signal is required. 

After filtering, the signals are up-sampled from 125 Hz to 

500 Hz in order to increase the detection accuracy of the key 

points. 

B. Detection of Key Points 

Before extracting the features of the PPG signals, the key 

points of each pulse should be detected. These points are 

shown in Fig. 1 and also in Fig. 6(a). As PPG signals have 

different morphologies, the point detection algorithms should 

have minimal sensitivities to different morphologies. Here, we 

describe our proposed methods for detecting the key points:  

 

1) Detection of the Minimum Point and the Systolic Peak 

To detect the maximum and minimum points, different 

methods, such as window-thresholding techniques [40], 

combined Hilbert and wavelet transformation [41], artificial 

neural networks [42] and Kalman filtering [43], exist. A major 

issue with most of these methods is that their performance is 

highly dependent to the parameters such as the threshold value 

and the window length. To overcome this issue, we use 

Automatic Multiscale-based Peak Detection (AMPD) [44] 

method, which is useful for detecting the peaks of periodic and 

quasi-periodic signals.  

In AMPD algorithm, the window size is automatically 

chosen, instead of specifying it in advance. In this method, the 

window size is swept from its minimum possible value to its 

maximum one, and the size of the window that results in the 

maximum number of local maxima is selected as the final 

window size. Then, at each window, the local maximum point, 

which is the maximum of that entire window is selected as one 

of the peaks of the signal. The result of applying this method 

on a sample of a PPG signal is illustrated in Fig. 7, indicating 

that the short-term variation of the dc of the signal does not 

 
Fig. 6. The proposed technique and its implementation to detect the key 
points of a PPG pulse. a) The location of the key points. b) Dividing the 

pulse into two ascending and descending parts and fitting the 

polynomials that are shown in two different colors. c) The waveform of 
the first derivative of the polynomials which allows the detection of 

maximum slope point and the diastolic peak. d) The waveform of the 

second derivative of polynomials which allows the detection of the 
dicrotic notch and the inflection point. 
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affect the performance of the algorithm. 

     

 After detecting the minimum points and the systolic peaks, 

a single pulse lying between two consecutive minimums is 

selected and its amplitude is normalied to one. Then, the 

selected pulse is divided into two sections: one from the 

minimum point to the systolic peak, and the other from the 

systolic peak to the end. We call the first section as the 

ascending section and the second one as the descending 

section (See Fig. 6 (b)). 

 

2) Detection of Maximum Slope Point 

We use the first derivative of the PPG pulses to find the 

maximum slope point in the ascending section of the pulse. 

Usually, even after filtering, there are noise and unwanted 

artifacts on the PPG signals which are pronounced by taking 

the derivative of the signal. To avoid misdetection of the 

maximum slope point, we fit a 5
th
–order polynomial to the 

ascending section of the pulse. The maximum slope point is 

then detected by finding the point at which the fitted 

polynomial has the largest derivative (See Fig. 6 (b-c)). 

 

3) Detection of Diastolic Peak 

The diastolic peak is not easily noticeable in some PPG 

pulses [45]; consequently, we need to take the second 

derivative of the PPG signal in addition to the first one. Here, 

similar to the previous section, a polynomial is first fitted to 

the descending section of the waveform. To achieve a better 

fitting, the degree of the fitted polynomial to the descending 

section is chosen to be seven. We consider the diastolic peak 

to be the point at which the first derivative of the polynomial 

is equal to zero and the second derivative is negative. If there 

is no such point, then the point at which the second derivative 

is a local minimum is chosen as the diastolic peak. 

 

4) Detection of Dicrotic Notch 
The dicrotic notch is a point where the second derivative of 

the PPG signal is a local maximum and is located before the 

diastolic peak. 

 

5) Detection of Inflection Point 

The inflection point lies between the dicrotic notch and the 

diastolic peak. At this point, the second derivative of the PPG 

signal is equal to zero. If no such point exists, the inflection 

point is chosen to be the midpoint between the dicrotic notch 

and the diastolic peak. 

 After detecting the temporal locations of the key points, for 

each key point, we apply a moving average with the length of 

five pulses to remove the possible errors in the detection of the 

points. The length of the moving average window is 

considered as a hyperparameter and is tuned using the training 

set. Fig. 8 shows the result of applying the above point 

detection algorithms for two PPG pulses with different 

morphologies. 

C. Feature Extraction Algorithms 

After the detection of the key points of each PPG pulse, its 

features can be extracted. Here, we describe the methods 

utilized to extract features used in the proposed algorithm: 

1) Heart Rate 

According to (1), the heart rate is calculated from the time 

interval between two consecutive systolic peaks. 

 

2) mNPV 

To measure mNPV, we use the filtered PPG signal whose 

dc is not removed. According to (6), mNPV equals the ratio of 

the peak-to-peak amplitude of the PPG signal divided by its dc 

value.  

3) Area-Related Features 

The areas confined between every two consecutive key 

points is considered as a feature. Another utilized feature is the 

ratio of the area confined between the beginning of the pulse 

and the inflection point to the area confined between the 

inflection point and the end of the pulse. The area under the 

whole pulse is also considered as another feature.  

 
Fig. 9. Histograms of errors in AdaBoost model: a) systolic blood 

pressure, b) diastolic blood pressure. 

 
Fig. 7. A sample of implementation of Automatic Multiscale-based 
Peak Detection (AMPD) algorithm for detecting PPG signal systolic 

peaks and minimums. 

  

Fig. 8. Key point detection in two PPG signals with different 

morphologies. 
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4) Amplitude-Related Features 

The peak-to-peak amplitude of each pulse is normalized to 

one and the resulting amplitudes of diastolic peak, maximum 

slope point, inflection point and dicrotic notch are chosen as 

amplitude-related features. 

 

5) Time-Related Features 

The inverse of the time interval between the systolic peak 

and diastolic peak is considered as a measure of the stiffness 

of the large arteries[19]. Other features in this category 

include the pulse width as a measure of SVR, the inverse of 

the time intervals between the systolic peak and the inflection 

point, between the systolic peak and maximum slope point, 

and also between the systolic peak and dicrotic notch. The 

crest time is another feature which is calculated as the time 

interval between the minimum point and the systolic peak.  

 

6) HRV Properties 

For each individual, the HRV signal is obtained by 

calculating the time interval between every two consecutive 

minimums. The mean, STD, low-frequency component (LF) 

(0.04 – 0.15 Hz), high-frequency component (HF) (0.15 – 0.40 

Hz), the LF/HF ratio and the total power of the HRV signal,  

located one minute before and one minute after each PPG 

pulse, are the features in this category. 

 

7) Non-Linear Functions of the Features 

In order to take into account the non-linear relationship 

between the extracted feature and the BP, a number of non-

linear functions of the features are also used as features.  The 

non-linear functions that are used are the logarithm and 

exponential functions of HR, mNPV and the logarithm of 

dicrotic notch and inflection point reflection indices. Also, 

according to the proven relationship between BP and the 

logarithm of '(�� ∗ ��, this logarithm is also considered as 

a feature. 

IV. RESULTS 

A. Training and Testing the Models 

In order to train the BP estimation models, we first 

normalized all the features to become zero-mean and unit 

variance. We used Linear Regression, Decision Tree, Random 

Forest with a size of 100 trees and AdaBoost with the size of 

200 decision tree estimators to estimate each of the systolic 

and diastolic BPs. Also, we used 10-fold cross validation 

method to divide the data into training and testing sets. It is 

worth mentioning that, in the UCI dataset, the PPG recordings 

belonging to each subject are placed consecutively in the 

dataset but do not have a common identification number. As a 

result, in order to prevent the overlapping of training and 

testing subjects, no shuffling was applied and the order of 

samples in the dataset was retained. 

In Table I, Mean Error, MAE, STD and the correlation 

coefficient between the real and the estimated values are 

shown. Based on these results, Random Forest and AdaBoost 

ensemble methods have outperformed simpler methods such 

as Linear Regression and Decision Tree. Fig. 9 shows the 

histograms of the estimation errors of the AdaBoost model for 

the systolic and diastolic BP. As it is seen, the error values are 

distributed around zero and have a pseudo-symmetric normal 

distribution. Fig. 10 (a) and Fig. 11 (a) show the scatter plot of 

the estimated versus real values for systolic and diastolic BP, 

respectively. As is seen, there is a correlation coefficient of 

0.78 for the systolic BP and 0.72 for the diastolic one. 

It is important to note that according to Fig. 4, most of the 

BP values in the UCI dataset are around the normal values. 

Therefore, in order to better evaluate the performance of the 

proposed method in abnormal BPs, where the accurate 

estimation is more critical, we created two subsets of low BP 

values and high BP values for each of systolic and diastolic 

BPs.  The plots of the estimated versus real values in the low 

and high values of systolic BP are shown in Fig. 10 (b) and (c) 

and the ones for diastolic BPs are shown in Fig. 11 (b) and (c). 

As is seen, correlation coefficients of 0.41 and 0.29 are 

obtained for low and high systolic BP values, respectively, and 

correlation coefficients of 0.56 and 0.35 are obtained for low 

and high diastolic BP values, respectively. 

B. Compatibility with BP Measurement Standards 

AAMI-SP10 [46], published by the Association for the 

Advancements of Medical Instrumentation, defines the 

requirements that a BP measurement method should meet. 

According to this protocol with the mercuric 

sphygmomanometer as a reference, the Mean and the STD of 

the errors for the measured BP should not be more than 5 

mmHg and 8 mmHg, respectively. Moreover, based on this 

protocol, the number of individuals who undergo BP 

measurement should be at least 85 to ensure the accuracy of 

the instrument or the method. Table II compares our results 

with the requirement for the AAMI standards. 

Based on Britain Hypertension Society (BHS) standard 

[47], if the MAE and STD of more than 60 percent of the test 

data is less than 5 mmHg and 8 mmHg respectively, then the 

method will be considered as Grade A. Table III compares our 

TABLE I 

RESULTS BY DIFFERENT MODELS. 

Results 
Systolic Blood Pressure (mmHg) Diastolic Blood Pressure (mmHg) Mean Blood Pressure (mmHg) 

ME MAE STD CORR ME MAE STD CORR ME MAE STD CORR 

Linear 

Regression 
0.17 16.12 10.03 0.37 -0.11 7.04 5.81 0.35 0.13 8.89 6.25 0.34 

Decision Tree -0.71 13.87 15.29 0.54 0.17 6.82 8.91 0.44 0.02 8.18 9.02 0.49 

Random Forest -0.17 10.29 10.35 0.75 -0.14 5.77 5.43 0.69 0.07 6.38 6.62 0.72 

AdaBoost 0.09 8.22 10.38 0.78 0.23 4.17 4.22 0.72 -0.02 4.58 5.53 0.75 
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results with the requirement for the BHS standard. Based on 

this table, we have achieved Grade A for Diastolic, Grade B 

for Mean and Grade C for Systolic BP. 

 Another guideline, which is provided jointly by the 

European Society of Hypertension (ESH) and European 

Society of Cardiology (ESC) [48], categorizes hypertension 

into seven classes. We assigned one of the seven different 

labels to each of the ground truth and estimated BP values 

resulted from our Adaboost regression method for the purpose 

of evaluating the ability of the proposed algorithm in the 

classification of different hypertension levels. The resulting 

confusion matrix along with the sensitivity, specificity and F-

score for each class is shown in Table IV. As is seen, the 

average sensitivity, specificity and F-score over all classes are 

69.3%, 87.7%, and 68.4%, respectively. 

C. Comparison with Other Works 

Table V compares our results with the previously published 

methods that use only PPG for BP estimation. The same 

dataset that we have used, i.e. UCI dataset, is also used in [49]. 

As is seen in Table V, our proposed method has resulted in 

smaller estimation errors for systolic and diastolic BPs 

compared to the method proposed in [49]. We believe that this 

is due to using additional features, such as mNPV and HRV 

properties, as well as using more accurate methods for 

detecting key points in the signals. As mentioned in Sec. II.C, 

there are 12000 signal parts from 1000 persons in the UCI 

dataset, and as such, many signal parts belong to the same 

individuals. It seems that in [49], all 12000 signals were 

shuffled and then partitioned to training and test sets. This 

means that in [49], some samples of the test subjects were in 

the training sets, which makes the estimation task significantly 

easier compared to our case where no sample from the test 

subjects are in the training set.  

In the work presented in [17], the relationships between BP 

and mNPV and also between BP and HR features are 

analyzed. The dataset used in [17] consists of the PPG signals 

and BP values recorded from only 13 individuals. An average 

correlation coefficient of 0.73 between the estimated and the 

measured values of BP has been claimed in [17]. To better 

investigate the effect of the  ln	(�� ∗ '(��) feature on BP 

 
Fig. 10. Regression plot for systolic blood pressure estimation. a) Overall 

blood pressure regression with r=0.78. b) Low values regression with 
r=0.41. c) High values regression with r=0.29. 

 
Fig.11. Regression plot for diastolic blood pressure estimation. a) Overall 

blood pressure regression with r=0.72. b) Low values regression with 

r=0.56. c) High values regression with r=0.35. 

 

TABLE II 

COMPARISON OF OUR RESULTS WITH AAMI STANDARD. 

Subjects 
STD 

(mmHg) 
ME 

(mmHg)  

942 4.22 0.23 Diastolic  
942 5.53 -0.02 Mean BP Results 
942 10.38 0.09 Systolic  

≥ 85 ≤ 8 ≤ 5 
SBP and 

DBP 
AAMI 

 

 
TABLE III 

COMPARISON OF OUR RESULTS WITH BHS STANDARD 

Cumulative Error Percentage 

  ≤ 

15mmHg  

≤ 

10mmHg  

≤ 

5mmHg 

96.3%  87.9%  63.2%  DBP  

Results  93.5% 82.8% 58.7% MAP 

89.3%  70.4%  44.2%  SBP  

95%  85%  60%  grade A  

BHS  90%  75%  50%  grade B  

85%  65%  40%  grade C  
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estimation, we trained a Linear Regression model using only 

the ln	(�� ∗ '(��) feature. The results, written in the second 
row of Table V, show a relatively low correlation coefficient 

between the estimated and real BP values and also a high 

MAE in the UCI dataset. Our work shows that by using other 

PPG features alongside the ln	(�� ∗ '(��) feature, the 

correlation coefficient and the accuracy of the model will 

significantly improve. 

D. Noise Study 

PPG signal is usually contaminated by different types of 

noise such as instrumental and environmental ones. Also, 

sensor displacements and subject movements can cause base-

line wandering. Given that the proposed algorithm in this 

work is based on extracting different PPG morphological 

features, different levels of noise and base-line wandering can 

affect the performance of the algorithm, and as a result, they 

can decrease BP estimation accuracy. In this section, we 

investigate the performance of the proposed algorithm in 

different Signal-to-Noise Ratios (SNRs) and different base-

line wandering levels. Accurate extraction of features is 

directly correlated to the accurate detection of key points such 

as maximum slope point, systolic peak, dicrotic notch, 

inflection point, and diastolic peak. As a result, we study the 

effect of noise on the first two steps of the proposed algorithm, 

i.e., pre-processing and key-points detection. To that end, we 

manually added different levels of white Gaussian noise to 

raw PPG signals and subsequently performed pre-processing 

and key-points detection. Afterward, we calculated the time 

displacement between each corresponding key point in the 

noisy and raw PPG signals as an error. We then calculated the 

mean absolute and mean STD of these errors and averaged 

them among all the samples. Also, at each SNR level, MAE of 

MAP estimation was measured to evaluate the effects of noise 

on the overall performance of the BP estimation algorithm. 

Fig. 12 shows a sample PPG signal in different SNRs. Fig. 13 

shows the calculated time errors and also BP estimation 

accuracy at different SNRs. As shown, the errors at SNRs 

higher than 15dB are tolerable and the proposed algorithm can 

still estimate the BP with a reasonable accuracy. 

Similarly, to study the effect of base-line wandering, we 

added low frequency sinusoids with different frequencies to 

raw PPG signals and investigated their effects in the pre-

processing step. Results show that our proposed algorithm can 

reject almost all of the base-line wanders. 

V. DISCUSSION 

One of the limitations of the utilized dataset is that the 

numbers of high and low BP samples in the dataset are 

considerably smaller than that of normal ones. This led to a 

fewer number of samples with BP values in these intervals for 

TABLE V 

COMPARISON WITH OTHER PUBLISHED WORKS 

Work /  Publication Year 

  DBP   MAP   SBP  

Subjects STD MAE r STD MAE r STD MAE r 

(evaluation) (mmHg) (mmHg)  (mmHg) (mmHg)  (mmHg) (mmHg)  

This work 942 4.22 4.17 0.72 5.53 4.58 0.75 10.38 8.22 0.78 

Proposed method in [17] 

on UCI dataset 
942 8.11 6.34 0.27 9.23 8.07 0.29 12.46 14.81 0.34 

[17] / 2018 13 - - 0.77 - - 0.74 - - 0.69 

[49] / 2017 910 5.8 4.34 - - - - 10.9 8.54 - 

[50] / 2019 265 - - - - - - 9.15 - 0.78 

 

TABLE IV 
THE CONFUSION MATRIX OF BP LEVEL CLASSIFICATION 

BP Level 

Classification 

Results based on 

ESH/ESC 

Guidelines (%) 

Predicted Class 

F-score Sensitivity Specificity 

Percent of 

Actual 

Class 

Members 

Optimal Normal 
High 

Normal 

Grade 1 

Hypertension 

Grade 2 

Hypertension 

Grade 3 

Hypertension 

Isolated Systolic 

Hypertension 

SBP < 

120 
120-129 

130-

139 
140-159 160-179 ≥ 180 ≥ 140 

and and/or and/or and/or and/or and/or and 

DBP < 80 80-84 85-89 90-99 100-109 ≥ 110 < 90 

A
c

tu
a

l 
C

la
s

s
 

Optimal 79.4 16.4 2.5 0.5 0.6 0.4 0.2 76.9 79.4 80.9 35.6 

Normal 20.1 72.2 5.4 1.0 0.2 0.7 0.4 65.1 72.2 85.3 19.3 

High Normal 9.0 10.0 74.8 4.2 1.3 0.2 0.5 72.4 74.8 91.7 16.2 

Grade 1 

Hypertension 
13.5 5.8 10.6 65.1 1.4 2.9 0.7 71.4 65.1 94.6 18.7 

Grade 2 

Hypertension 
11.2 8.9 8.4 17.9 45.2 7.9 0.5 54.2 45.2 98.3 5.3 

Grade 3 

Hypertension 
19.6 12.5 14.8 21.9 15.2 14.3 1.7 12.0 14.3 98.1 1.3 

Isolated Systolic 

Hypertension 
28.1 11.5 17.1 27.4 7.2 0.6 8.1 13.6 8.1 99.4 3.6 

Average  68.4 69.3 87.7  
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training the models. Consequently, lower correlation 

coefficients were obtained compared to samples with BP 

values in the middle range. This problem is more noticeable 

when looking at the classification results in Table IV. As is 

seen, when the percentage of actual class members decreases, 

the accuracy of the algorithm also decreases.  

It is also worth mentioning that the used dataset included 

signals that were recorded from patients in Intensive Care 

Units (ICU) and, as a result, the data mainly encompassed 

those who were in abnormal conditions or had been on 

medications, which itself, could affect the signals and their 

relations to BP. In addition, there is no published information 

regarding the instruments that recorded the signals, and 

therefore the variations in recording errors could also 

adversely affect the quality of the results. 

The obtained results show that, for estimating the systolic 

BP, the logarithm of dicrotic notch RI and the logarithm of 

�� ∗ '(�� are the most important features, and for 

estimating the diastolic BP, the logarithm of �� ∗ '(�� and 

the logarithm of inflection point RI are the most important 

features.  

Fig. 14 shows the relative importance of the features for 

estimating the mean BP. As is seen, in addition to the 

logarithm of �� ∗ '(�� and the logarithm of dicrotic RI, the 

LF/HF components of HRV have significant importance in BP 

estimation. 

In Fig. 15, the effects of adding different features on the 

performance of our BP estimation method is shown. From left 

to right, in each step, one feature was added to the previous 

ones and then, an AdaBoost model was trained. Subsequently, 

MAE, STD and correlation coefficient between the estimated 

and real mean BP values were calculated and plotted. As is 

seen, in the last two steps there is an increment of about 0.13 

in correlation coefficient, which emphasizes the importance of 

the logarithm of �� ∗ '(�� and the logarithm of dicrotic RI 

features in BP estimation. Also, there is a jump in the third 

step which indicates a strong relationship between the BP and 

the heart rate. 

Among the models, AdaBoost generated the lowest MAE 

value and the highest correlation coefficient, which 

demonstrates the better performance of non-linear and 

ensemble models in estimating BP.  

VI. CONCLUSION 

The ability to estimate the BP of a person from his PPG 

signal provides three important possibilities: first, estimating 

the BP of an individual without using a cuff, second, 

 
Fig. 12. The effects of noise on PPG signal in different SNRs. a) 
High level of noise (SNR=15dB), b) average Level of noise 

(SNR=20dB), and c) low level of noise (SNR=30dB). Fig. 15. The trend of mean BP estimation error and corrolation coeeficient 
versus added features. From left to right, new features are added to the previous 

ones. 

 

Fig. 14. The relative importance of features in the Mean BP estimation. 
The values are extracted from the AdaBoost model with Decision Tree 

Regressor as its estimator and information gain criterion for feature 
selection. 

 
Fig. 13. Mean absolute and mean STD of temporal error in the 

corresponding detected key points are shown in blue and green, 

respectively. MAP in each SNR is shown in red. 
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continuous monitoring of the BP of an individual  without 

periodically inflating a cuff around his arm, and third, 

estimating  the BP of a person using the LED light and the 

camera of his smartphone.  

    In this paper, we used the morphological features of the 

PPG signal to estimate BP. As PPG signals have different 

shapes in different people, algorithms with low sensitivities to 

these differences were designed for detecting the key points of 

the PPG signal. Using 14 features, along with the nonlinear 

function of a few of them, and also utilizing an ensemble 

learning method, we have achieved a correlation coefficient of 

0.78 for the systolic BP and a correlation coefficient of 0.72 

for the diastolic one between the estimated and the real values. 

Our results fulfill AAMI-SP10 standard requirements for 

diastolic and mean BPs, and achieve grade A for diastolic, 

grade B for mean and grade C for systolic BPs based on the 

BHS standard. 
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