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Abstract—Goal: Continuous Blood Pressure monitoring can
provide invaluable information about individuals’ health condi-
tions. However, BP is conventionally measured using inconvenient
cuff-based instruments, which prevents continuous BP monitor-
ing. This work presents an efficient algorithm, based on the Pulse
Arrival Time (PAT), for the continuous and cuff-less estimation
of the Systolic Blood Pressure (SBP), Diastolic Blood Pressure
(DBP), and Mean Arterial Pressure (MAP) values. Methods: The
proposed framework estimates the BP values through processing
vital signals and extracting two types of features, which are based
on either physiological parameters or whole-based representation
of vital signals. Finally, the regression algorithms are employed
for the BP estimation. Although the proposed algorithm works
reliably without any need for calibration, an optional calibration
procedure is also suggested, which can improve the system’s
accuracy even further. Results: The proposed method is evaluated
on about a thousand subjects using the Association for the Ad-
vancement of Medical Instrumentation (AAMI) and the British
Hypertension Society (BHS) standards. The method complies
with the AAMI standard in the estimation of DBP and MAP
values. Regarding the BHS protocol, the results achieve grade
A for the estimation of DBP and grade B for the estimation
of MAP. Conclusion: We conclude that by using the PAT in
combination with informative features from the vital signals, the
BP can be accurately and reliably estimated in a non-invasive
fashion. Significance: The results indicate that the proposed
algorithm for the cuff-less estimation of the blood pressure can
potentially enable mobile health-care gadgets to monitor the BP
continuously.

Index Terms—Blood Pressure, Mobile Health, Pulse Arrival
Time (PAT), Photoplethysmograph (PPG), Electrocardiograph
(ECG)

I. INTRODUCTION

BASED on the World Heath Organization (WHO) report,
hypertension prevalence is 24 and 20.5 percent in men

and women, respectively [1]. Unfortunately, most of the hyper-
tension patients are not aware of their disease, while it harms
their internal body organs silently (e.g. brain, eyes, kidneys,
and viscus), which is why it is called the silent killer [2] .

For accurate diagnosis and treatment of hypertension, con-
tinuous Blood Pressure (BP) measurement is necessary. BP is
a periodic signal with the Heart Rate (HR) frequency that is
normally bounded in a limited range. The BP swings between
maximum and minimum values, which are called Systolic
Blood Pressure (SBP) and Diastolic Blood Pressure (DBP),
respectively. If, in a rest situation, an individual’s SBP or DBP
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reaches more than 140 mmHg or 90 mmHg, respectively, the
person is called hypertensive [1]. The average of the BP signal
in a single cardiac cycle, Mean Arterial Pressure (MAP), is
another description of the BP signal. BP is influenced by many
factors like food taking, exercise, mental situations, stress,
and etc, thus, it varies considerably over time. As a result,
continuous BP monitoring seems vital, in order to help doctors
to diagnose and control patients’ hypertension in an effective
way.

A traditional BP measurement method, yet the most accurate
noninvasive one, is using mercury sphygmomanometers [3].
In this method, a nurse wraps an inflatable cuff around the
patient’s arm and inflates it. After enough inflation, he/she
deflates the cuff slowly while listening for a rhythmic sound.
The first time that the sound is heard, the blood begins to flow
in patient’s vessel, which indicates the systolic pressure. When
the sound fades, the pressure of the cuff is equal to the diastolic
pressure. The cuff makes this method inconvenient and it can
get germy especially in the public places. Moreover, due to its
inconvenience, using an inflatable cuff prevents a continuous
monitoring.

Recently, in the literature, there has been a huge attention to
cuff-less BP measurement methods toward the goal of contin-
uous BP monitoring. The most prominent methods suggested
for achieving this objective are described in the sequel.

Using the Pulse Wave Velocity (PWV) is the most com-
mon method [4]. PWV is the velocity of the pressure wave
propagation in the vessels. This method is based on wave
propagation theory of fluids in elastic pipes. On the other
side, in many works, the Pulse Transit Time (PTT), the time
interval that heart beat transfers to a body peripheral, is used
for the PWV estimation. Ahmad et al. [5] and Xuan et al.
[6] showed that there is a significant correlation between BP
and PTT, but this correlation depends on many parameters,
which are varying among individuals [7], [4]. Many other
works tried to fit regression models for BP estimation using
PTT [8], [9], [10], but did not satisfy the standard criteria.
Wong et al. [11] studied the correlation between individuals’
BP and their PTT in different situations. They investigated
the correlation between the normal subject’s BP and PTT in
a six-month period. Gesche et al. [12] suggested a calibration
procedure to eliminate this dependency. However, such a
calibration is reliable for only a short time interval [13].
Although calibration-based methods can not be reliably used
as replacements of the conventional BP measurement devices,
they are applicable for BP monitoring in short intervals such
as exercise tests [14].
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Despite their merits, the PWV based methods are faced
with several difficulties such as dependency to individual
physiological parameters, which necessitates elaborate cali-
bration procedures. This concern prevents the PWV based
BP measurement methods to become approved by established
health-care standards because the standards does not allow
calibration procedures. Consequently, the PWV based methods
cannot practically substitute the traditional BP measurement
methods.

This work presents a novel approach that exploits various
machine learning and signal processing algorithms to achieve
an accurate and continuous estimation of BP in health-care
monitoring systems. In summary, after denoising the PPG
and ECG signals, their informative features are extracted, and
finally, these features serve as an input to a regression model,
which estimates the BP value.

The rest of this paper is organized as follows: Section II
explains the physical background of the blood flow in the vas-
cular system. Section III presents the proposed methodology
for cuff-less BP estimation. Section IV explains calibration-
based and calibration-free variations of the algorithm in more
details. Section V demonstrates the results and compares them
with health standards as well as other works, and finally,
Section VII concludes the paper.

II. BACKGROUND

The vascular system can be modeled as connected elastic
tubes in which the blood flows. In the next two subsections we
will present a brief discussion about the theory and properties
of arterial walls as well as physics of the wave propagation in
arteries.

A. The Arterial Wall

The arterial wall constitutes of 4 layers namely, en-
dothelium, elastin, collagen, and smooth-muscle. Endothelium
serves as a wall for blood flow inside vessels, and it has a
negligible effect on arterial wall mechanical properties. Elastin
has a considerable elastic properties, which can produce
tension on the arterial walls. Collagen is much more stiffer,
as compared to the elastin, and exerts tension as soon as
the arterial wall becomes stretched. Smooth-muscle modulates
arterial elasticity by producing tension [7].

Due to its properties, elastin is responsible for the arte-
rial elasticity at low BP values; while collagen significantly
determines the arterial elasticity at high BP values. In the
peripheral arteries, smooth-muscle plays a significant role in
the wall mechanics, while in the central arteries, the role of
elastin is more significant. Aging or diseases can contribute
to strong changes in the mechanical properties of the arterial
wall. Compared to peripheral arteries, aging affects the central
arteries more considerably by replacing elastin with collagen
[15].

B. Wave propagation in Arteries

Propagation of the pressure wave in the vascular system
can be modeled by the propagation of a pressure wave inside

tubes that have mechanical properties similar to arterial walls.
A pressure wave propagates from the proximal end through the
tube, and reaches the distal end after a time interval, called
PTT. Elastic modulus (E) of the tube wall in central arteries
is related to the Pressure (P ) in the tube as:

E = E0.e
α.(P−P0), (1)

where E0, P0, and α are subject-specific parameters [16].
Compliance (C) is defined as the changing rate of the tube
cross section in terms of P . By writing the conservation of
mass and momentum equations and solving them, we find that
C is a function of P through the following equation:

C(P ) =
Am

πP1[1 + (P−P0

P1
)2]
, (2)

where P0, P1, and Am are varying among individuals [7].
By writing the wave propagation equations inside an elastic
tube with these characteristics (see [17] for derivation) the
following equation is achieved:

P (x, t) = f(x± t/
√
LC(P )), (3)

where L = ρ/A, in which ρ is the blood density. According to
(3), the PWV is equal to 1/

√
LC(P ). Therefore, PTT, which

is the time interval for traversing the pressure wave through a
tube of length l, is defined by:

PTT = l
√
LC(P ). (4)

By substituting C(P ) from (2) and L, (4) can be reformulated
as:

PTT = l

√
ρAm

πAP1[1 + (P−P0

P1
)2]
. (5)

In fact, (5) describes the relationship between the PTT and P,
in which P0, P1, Am, and A are subject-specific parameters,
and l is related to the experimental setup in which the PTT is
measured.

In literature, it is prevalent to simplify equation (5) further
by assuming C(P ) to be constant [18], and approximating
the subject-specific parameters using calibration procedures.
However, a number of researchers believe that this sim-
plification limits the accuracy of such methodologies, and
enforces an elaborated calibration procedure [12]. To address
this concern, in Section III, we propose a novel methodology,
which employs machine learning algorithms to approximate
the BP-PTT relationship.

Pulse Arrival Time (PAT), which is defined as the time
interval between the electrical activation of the heart and
arrival of the pulse pressure at a distal point, can be used as a
measure of the PTT. In other words, PAT consists of the PTT in
addition to the time interval between the electrical activation
and the mechanical movement of the heart. Although, it is
shown that using PAT instead of PTT can reduce the DBP
estimation accuracy [19], in literature, it is widely used as a
proximal reference due to its convenience of measurement [7].

In order to measure the PTT (or PAT) value between
proximal and distal in a non-invasive manner, various vital sig-
nals such as photoplethysmograph (PPG), electrocardiogram
(ECG), as well as other signals such as ballistocardiogram
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Fig. 1. Block-diagram of the proposed cuff-less BP estimation method.

(BCG) and seismocardiogram (SCG) can be used [7]. In this
work, due to the availability of large databases of ECG and
PPG signal records, which is required for machine learning
purposes, we use the ECG as the proximal reference, and
the PPG as the distal reference (see Section III-A). However,
utilizing other signals, particularly the SCG and BCG signals
as proximal timing reference can potentially increase the
accuracy of the proposed method in estimation of DBP (refer
to [19] for more information).

III. PROPOSED METHODOLOGY

Fig. 1 shows the basic block diagram of the proposed cuff-
less BP estimation algorithm in this paper, which consists of
the following steps: i) Buffering the ECG and PPG signals
as the primary inputs of the algorithm ii) preprocessing the
ECG and PPG signals consisting of removing artifacts and
deniosing iii) extraction of informative features from the
preprocessed signals iv) reduction of the dimension of the
extracted features v) calibration-free regression, and finally,
vi) an optional calibration step. These blocks are elaborated
in the following subsections.

A. Database

In this work, the Physionet’s Multi-parameter Intelligent
Monitoring in Intensive Care (MIMIC) II (version 3, accessed
on Sept. 2015) online waveform database [20] is used as a
source for the ECG and PPG signals as well as the Arterial
Blood Pressure (ABP) signal. The ABP signal is used for
the calculation of the SBP and DBP as target values. In
order to collect the required raw signals from this source,
we have developed a data collector program, which facilitates
the process of downloading and converting records with the
required signals. Additionally, the data collector program
stores them with an appropriate data structure, i.e. Hierarchal
Data Format (HDF) [21]. Utilizing this file structure not only
speeds up the process of storing and retrieving the data, but
also is very efficient in terms of memory and handling massive
database sizes. The resulting database fields consist of the
previously mentioned ECG, PPG, and ABP signals as well
as the Frequency of Sampling (FS) and the record name as an
unique ID, which are essential to the future blocks.

The collected database consists of 5599 record parts having
all of the ECG, PPG, and ABP signals. However, after
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Fig. 2. Histograms of the database parameters: a) SBP, b) MAP, c) DBP, and
d) HR

TABLE I
BP AND HEART RATE RANGES IN THE DATABASE

Min Max STD Mean

(mmHg) (mmHg) (mmHg) (mmHg)

DBP 60.2 128.3 9.2 70.9

MAP 68.6 136.2 9.7 93.2

SBP 81.5 178.8 18.7 137.9

HR 54.4 155.8 14.6 93.6

removing the record parts with insufficient record durations
(less than 10 minutes) or with very high or very low BP values
(e.g SBP ≥ 180, DBP ≥ 130, SBP ≤ 80, DBP ≤ 60), the
final database consists of 3663 record parts associated with
about a thousand unique subjects. Each part has its own unique
ID, which indicates its record and part numbers. ID field is
used in the training and test process to prevent overlapping
the subjects of the training set with that of in the test set. Fig.
2 and Table I demonstrates some statistical information about
the distribution and ranges of the DBP, MAP, SBP, and HR
values in the final database.

B. Preprocessing

In order to remove the deteriorating effects of noise and
artifacts from the raw signals, we have implemented a prepro-
cessing block to filter and denoise the signals. Among various
preprocessing approaches in the literature, we have analyzed
the performance of various filtering and denoising methods in-
cluding Finite Impulse Response (FIR) filters, Infinite Impulse
Response (IIR), Empirical Mode Decomposition (EMD) [22],
and Discrete Wavelet Decomposition (DWT) [23]. Finally,
the wavelet denoising is selected because, compared to other
methods, preprocessing the vital signals with DWT provides
a number of merits such as a better phase response, more
efficiency in terms of computational complexity, and adaptivity
in different Signal to Noise Ratio (SNR) regimes and even
non-stationary artifacts.
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In general, there are three major interference sources, which
are threatening the ECG signal quality: A) The 50 or 60 Hz
power-line noise that is almost stationary and constitutes the
major percentage of noise power in these signals. B) The
base-line wandering of the signal, which is considered as the
respiration artifact and appears as a low-frequency component
in the time domain, and it can deteriorate the accuracy of
digitalization due to the saturation of analog circuitry or
reduced effective precision of them. C) High-frequency and
non-stationary noises that are due to muscular activities.

Fig. 3 shows the preprocessing pipeline of the ECG and
PPG signals. In order to make the following parts invariant
to the probable changes of the sampling frequency of the
input signals, this block first re-samples inputs at a fixed
frequency of 1KHz, which is equal to the high-resolution
ECG sample rate. Afterwards, the signal is decomposed by
means of the DWT with the Daubechies 8 (db8) mother
wavelet and to 10 decomposition levels (see reference [23]
for a detailed discussion about the optimal mother wavelet
and decomposition level selection). Then the components
corresponding to the very low frequency range of 0 to 0.25
Hz (associated to the base-line wandering) and ultra-high
frequencies between 250 Hz to 500 Hz (associated to the
power-line harmonics and the muscular activity artifacts) are
eliminated by zeroing their decomposition coefficients. The
conventional wavelet denoising is preformed on the remaining
decomposition coefficients with soft Rigrsure thresholding
strategy [24], [25]. Finally, cleaned signal is recovered by the
reconstruction of the decomposition.

Fig. 4 shows the performance of this block on a sample
signal. As it is evident in this figure, the low-frequency base-
line wandering of the PPG signal and the high-frequency
power-line interference on the ECG signal has been reduced
considerably, while the signal morphology is preserved.

C. Feature Extraction

The feature extractor block extracts two types of informative
features from PPG and ECG signals. The first type is based
on physiological parameters (e.g., Heart Rate, Augmentation
Index, Arterial Stiffness Index, etc). In the second type,
however, the feature vector is merely a representation of signal
shape and timing. As feature extraction is the integral part
of the proposed cuff-less BP estimation algorithm, it will be
discussed in Section IV, in more detail.

According to the official documents from the Physionet
organization, in the MIMIC II database, PPG signals are
recorded at the sampling rate of 125Hz and no special process-
ing is applied to them. However, in the MIMIC II database,
regarding the ECG signal, a turning point compressor is used
to reduce the sampling frequency of ECG signals from 500
Hz to 125 Hz. Consequently, compared to original signals,
down-sampled signals might have at most about 8 ms time
jitter [20]. This phenomenon considerably limits the accuracy
of the feature extractor at the first place and consequently,
reduces the performance of the final regression model. In order
to compensate for the issue, this paper proposes to extract
multiple feature vectors from different time windows within
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Fig. 3. Raw signal preprocessing pipeline.
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Fig. 4. Example signals before and after the preprocessing block. a) Raw PPG
signal. b) Preprocessed PPG signal. c) Raw ECG signal. d) Preprocessed ECG
signal.

each record and then averaging them to reduce the time jitter
effect, which can be modeled as a Gaussian noise.
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D. Dimensionality Reduction

The features extracted in the previous block are relatively
correlated with one another, which limits the training effi-
ciency of the models and results in a need for more valuable
training data. On the other hand, the whole-based features,
which will be elaborated upon in Section IV-A, are parts of
the real signals with a considerable vector length. Training the
regression models requires a massive size of training dataset
and is computationally inefficient. Reducing the length of the
original feature vectors alleviates this problem. For the sake of
these benefits the basic Principal Components Analysis (PCA)
dimensionality reduction is utilized in this work to reduce the
feature length of about 190 associated with the whole-based
features to 15, while preserving 98% of energy content of
eigenvectors.

E. Regression Models

In the creation of the dataset for the supervised learning
task, the Arterial Blood Pressure (ABP) signal is used to
derive the target SBP and DBP values. In fact, ABP is a
periodic signal with the heart rate period and values equal
to instantaneous blood pressure inside the vessels. Accord-
ingly, SBP and DBP are corresponding to the minimum and
maximum values of the continuous blood pressure signal
(ABP), respectively. It is important to note that although the
ABP signal and the proposed methodology in this work are
both referred to as continuous BP measurement approaches,
but the meaning of continuous is different between them. In
the case of ABP, continuous means instantaneous with the
measurement frequency in an order of milliseconds (depending
on the sensor and sampling frequency); however, the proposed
methodology estimates the BP with the estimation frequency
in an order of seconds (depending on the subject’s heart-rate),
which can also be considered as continuous.

Although the same feature vectors are used for the
estimation of the SBP, DBP, and MAP, completely separate
models are trained here for each of these targets. For
the regression task, the following four machine learning
algorithms are compared against one another in Section V-B.

Regularized Linear Regression (RLR): Linear regression
models, which are appropriately regularized by means of a
K-fold cross validation, are trained for evaluating the linearity
of the problem. It is well known that the final trained models
are not applicable when the feature vector and the target have
a strong non-linear relationship. However, they are simple,
easy to train, less prone to over-fitting, and, compared to
other alternatives, require less training samples, and hence
they are more efficient, which makes their implementation
more efficient.

Decision Tree Regression: Decision trees build models in
the form of a tree structure, which consists of a number of
decision nodes that each selects a branch based on a trained
condition. An input traverses decision nodes of a tree to a leaf
node which determines the final prediction value. Decision
trees are models which are easy to understand and interpret.

However, in some problems, they can create over-complex
structures that do not generalize well, and hence demonstrate
a poor performance.

Support Vector Machine (SVM): Support vector machines
are among the most powerful learning algorithms in terms
of creating strong models with a reasonable training effort
and a high noise tolerance. The Libsvm library [26] is used
for training an “epsilon-SVR” with “RBF kernel” machine.
Hyper-parameters, which are the misclassification penalty C,
kernel parameter γ and the tolerance of termination criterion
ε, are chosen via an exhaustive grid search.

Adaptive Boosting (AdaBoost): Adaptive boosting, in
contrast to the SVM, creates a prediction by combining the
outputs of a number of weak learners into a weighted sum that
predicts the target value. Although each of the weak learners
is merely a simple model that its prediction performance is
insufficient for many applications, their weighted combination
is comparable to the performance of using strong learners. In
addition, compared to complex and strong models, AdaBoost
models are less prone to over-fitting, and hence require less
training samples. Here, AdaBoost models consisting of about
1000 decision trees are trained using the great Scikit-learn
library [27]. For training the regression model, the “AdaBoost
R2” algorithm [28] with the linear loss function is used.

Random Forest Regression (RFR): Random forests are
ensemble learning methods in which the final prediction is
created by combining predictions from a number of weak
learners (e.g. decision trees). For the sake of having a low
bias and a reasonably low prediction variance, each tree is
trained on a random subset of the training data. In a regression
problem, the final prediction of a random forest model is the
average of the predictions by each regression tree. Here, there
is no limitation on the maximum depth of each tree. The
number of trees in the final regression model is selected by
cross validation. The Scikit-learn library [27] is also used here
for the model training purposes.

IV. FEATURE EXTRACTION AND CALIBRATION METHODS

As it is briefly mentioned in Section III-C, the resultant
feature vector from the feature extractor serves as an input to
the regression model. In general, two BP estimation methods
are proposed in this work. In the first method, the blood
pressure value is estimated based on a general pre-trained
model and without any modification for each individual (i.e.
calibration-free). The second methodology, an extension to
the first method, creates calibration models on top of the
pre-trained calibration-free models. The major functionality
of a calibration model is the refinement of a fixed general
model to make better predictions for each individual by using
the information from a few calibration points. Each of these
methodologies is discussed in the following subsections.

A. Calibration-Free Method
In order to estimate the BP in a cuff-less fashion, there are

various methodologies in the literature which use the PAT as
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Fig. 5. Examples of real PPG signals with inappropriate shape for an accurate
extraction of the physiological parameters. Each sub-plot demonstrates the
PPG signal shape for a different subject.

well as other features from vital signals. However, to the best
of our knowledge, this is the first design that works out of the
box and presents, compared to standard guidelines, reasonable
BP estimation accuracies (for more information see Section V
and Table IV and V) without any need for calibration.

To achieve this goal, two sets of features are extracted from
ECG and PPG signals. The first one is based on features that
are inspired by the physiological parameters from vital signals.
The vector size of these features is relatively small, which
helps creating models by a reasonable training computation
and by using a feasible number of records. The main disadvan-
tage of these features is that there exist samples with different
signal morphology from the ideal and typical morphologies
(see Fig. 7), which prevents the accurate and reliable extraction
of physiological parameters from them. (See Fig. 5)

The second feature extraction approach, however, tries
to automate the parameter selection process by providing
a whole-based representation of the signals. This approach
relies on non-linear learning models to extract information.
Compared to the previous method, this approach is more
robust to the variations of signal shape and works reasonably
for almost all valid signals. The major problem of this
approach is that the length of the extracted feature vectors are
relatively big, and therefore requires more training samples.

Extraction of Physiological Parameters: Most of these
features are extracted from the shape of PPG signals, and
they are borrowed or inspired from various cardiovascular
parameters. Others are measurements of the time shift between
a few points of the ECG and PPG signals, which are, in
fact, related to the measurements of the PAT parameter. The

R-R Interval

R-Peak

Systolic Peak

Diastolic Peak

PATp

PATd

PATf

Fig. 6. Calculation of PAT from the time taken for the heart beat pulse to
arrive in the finger PPG signal. a) ECG signal. b) PPG signal

complete list of these features is as follows:

1) PAT features: PAT values are obtained by the measure-
ment of the time interval between the ECG R-peak and
three points on the PPG signal: the PPG maximum peak
(PATp), the PPG minimum (PATf), and the point at
which the maximum slope of the PPG waveform occurs
(PATd).(See Fig. 6)

2) Heart rate Heart rate is calculated by the measurement
of the peak-to-peak time interval of the PPG or ECG
signals.

3) Augmentation Index (AI): Augmentation is a measure of
the wave reflection on arteries [29], it is calculated by
taking the ratio between the systolic peak and the first
inflection point after it as (see Fig. 7),

AI =
x

y
. (6)

4) Large Artery Stiffness Index (LASI): LASI is an indicator
of the arterial stiffness, and it is inversely related to
the time interval between the systolic peak and the first
inflection point after it. (see Fig. 7)

5) Inflection Point Area ratio (IPA): IPA is defined as the
ratio of the areas under the PPG curve between selected
points, denoted by S1, S2, S3 and S4 in Fig. 7. The
ratio of heart pumping and pulse wave reflection parts
in the PPG signal waveform can be used to measure
the impedance mismatch between different parts of the
arterial system. Therefore, IPA can be considered as an
indicator of the total peripheral resistance [29]. In this
paper, S1, S2, S3 and S4 areas are used directly as
features.

Extraction of the Whole-based features: This type of fea-
tures are, in fact, representations of the time domain signal
in a specific interval. Fig. 8 shows an example of extraction
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Fig. 7. Extraction of PPG signal features.

of these features. The whole based features are extracted as
follows:

1) A fixed-size interval of the ECG and PPG signals, which
is long enough to contain at least two heart beat periods,
is selected as a processing window.

2) R peaks and systolic peaks of the ECG and PPG signals
are determined, respectively.

3) The first ECG R peak is selected as a time reference and
the PPG signal is shifted left equal to the time reference
point.

4) The first PPG systolic point is selected as the corre-
sponding peak, and a PAT candidate value is measured
afterwards.

5) If the measured PAT value is less than a predefined
minimum acceptable PAT value, then the first systolic
PPG peak is discarded and the next one is considered
as the first PPG peak in this window.

6) The PPG signal part, which is between the first and
the second PPG systolic peaks, is selected and cropped;
other parts are zeroed.

7) The resultant PPG signal part is shifted left by the
predefined minimum PAT value, and it is re-sampled.

It should be reminded that each of the ”parameter-based”
and ”whole-based” feature extraction methods can be used to
create the required feature vectors for the regression models
in both of the training and test phases (see Section V-A for a
comparison).

B. Calibration-Based Method

The proposed methods in Section IV-A were completely
calibration free. However, in order to further increase the
accuracy of the cuff-less BP estimation, calibration methods
are proposed as optional and complement parts of the system.
To achieve this goal, separate calibration models can be used
on top of the previous calibration-free models, which are
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Fig. 8. Extraction of the whole-based features. Appropriate peaks selected
from PPG and ECG signals, the specified part of the signal is cropped and
shifted appropriately.

created using the method introduced in Section IV-A (see Fig.
1).

In the creation and evaluation of the calibration-based
models, the following additional steps have been taken:

1) A dataset consisting of the extracted features, target
values (SBP or DBP), and part IDs is created.

2) This dataset is partitioned into two smaller datasets.
3) The first dataset is used in the training and evaluation

of a calibration-free model.
4) The second dataset is divided into a number of groups,

each group consisting of different parts of a specific
record.

5) In each group, using a leave-one-out fashion, one part
is used as a calibration point and other parts are used in
the evaluation of the final calibration-based model.

V. RESULTS

Testing each model is performed by a 10-fold separation
of dataset samples to train and test sets. Special care is taken
to ensure that there is no overlap between the train and test
data. In the training and evaluation of the calibration-based
models, the ID field is used to identify different parts of each
record and the calibration process is performed and evaluated
on different parts of each record, separately. On this basis, the
following results are reported.

A. Parameter-Based Versus Whole-Based Approach

Table II presents a comparison between the parameter-
based and the whole-based methods. The best results in each
feature and target set are indicated with gray background
color. From Table II, it is clearly evident that in all cases,
the performance of the parameter-based feature extraction
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approach is slightly better than the whole-based method.
However, this fairly small advantage comes with the penalty
of incapability of the parameter-based approach in the high-
accuracy delineation of important signal points, which can be
due to either differences in signal shapes among individuals
or due to possible mechanical or electrical faults in the data
recording phase. (See Fig. 5 for examples of such signals.)

B. Machine Learning Algorithm Selection

In addition to the comparison between the two feature
extraction approaches, Table II also presents a comparison
between the performance of various learning methods. In this
comparison, simple regression models (i.e. linear regression
and decision tree), strong and non-linear models (i.e. RBF
kernel SVM) as well as boosting and ensemble methods are
included.

From Table II, it is evident that the performance of the BP
estimation using Linear Regression is much lower than the
estimation performance when using strong non-linear learning
algorithms such as kernel machines or ensemble learning
methods. Therefore, from the analysis of Table II, it can be
inferred that there exists a considerable non-linearity and in-
herent complexity in this problem that necessitates employing
powerful regression algorithms. Especially, in the whole-based
approach, Linear Regression and Decision Tree are almost
incapable of producing acceptable accuracies. On the other
hand, other models such as SVM, AdaBoost, and Random
Forest are more promising. Considering the Mean Absolute
Error (MAE) criterion, the AdaBoost approach outperforms
the others by a margin. The model weights were inspected
using the Gini importance [30], which measures the impor-
tance of each feature in terms of the total reduction of the
tree splitting criterion. It turned out that, compared to other
features, PATd feature is playing a more significant role in the
BP prediction.

Fig. 9 and Fig. 10 present histograms of estimation error,
when the AdaBoost models and parameter-based features are
used. From the estimation error histograms, it can be seen
that error values are normally distributed around zero. The
underlying reason behind the greater estimation errors for SBP
values compared to those for DBP ones is that the variance of
SBP target values is about twice as much as that of the DBP
target variance (also, see Table I).

Fig. 11 and Fig. 12 present Bland-Altman and Regression
plots for SBP and DBP targets. It can be deduced from these
plots that although a much percentage of the estimated values
are within the 10 mmHg error lines; however, the samples
with very low or very high BP values are not estimated as
accurate as other samples. The main reason behind this issue
is the existence of fewer number of subjects with very high or
very low blood pressures in the training dataset, which limits
the regression model performance in predicting infrequent BP
values.

C. Calibration-free Versus One-point Calibration Method

A comparison between the calibration-free and calibration-
based methods is presented in Table III. In this comparison,
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Fig. 9. DBP error histogram from the AdaBoost regression.
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Fig. 10. SBP error histogram from the AdaBoost regression.

parameter-based features and AdaBoost regression are used to
evaluate the proposed methods. In this table, STD, MAE, and
output-target correlation (r) values of each method are com-
pared against others. From Table III, it is evident that the pro-
posed calibration-based approach outperforms the calibration-
free approach with a considerable margin. Although using
calibration dramatically increases the BP estimation accuracy,
but since current health-care standards do not suggest any
established methodology, as they do not provide any instruc-
tion for calibration procedure in BP measurement devices, a
fair comparison with these standards and our calibration-based
results is impossible [31]. It is also worth mentioning that the
reason behind the smaller subject numbers in the calibration-
based method is that separate subjects, which are not included
in calibration-free model training, are used here. In addition,
we have only selected the subjects which have a considerable
BP variation between their signal parts.
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TABLE II
COMPARISON OF THE PERFORMANCE USING THE TWO FEATURE SETS AND VARIOUS LEARNING ALGORITHMS.

Systolic Blood Pressure (mmHg) Diastolic Blood Pressure (mmHg)

Feature Set Parameter-based Whole-based Parameter-based Whole-based

Learner / Performance MAE STD MAE STD MAE STD MAE STD

Linear Regression 14.71 10.79 14.14 10.44 6.74 6.11 6.75 6.12

Decision Tree 16.28 16.28 17.15 14.97 7.75 8.54 8.44 9.17

Support Vector Machine 12.26 10.32 12.65 10.33 5.91 5.78 6.19 6.07

AdaBoost 11.17 10.09 11.87 10.30 5.35 6.14 5.78 6.61

Random Forest 11.80 9.87 12.39 10.09 5.83 5.71 6.39 6.06
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Fig. 11. Bland-Altman plot for a) SBP and b) DBP targets using the AdaBoost
regression.
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Fig. 12. Regression plot for a) SBP and b) DBP targets using the AdaBoost
regression.

In the next few sub-sections, we will focus on the
calibration-free approach to present our results; however, it
should be considered that these accuracies can be enhanced
substantially by utilizing the calibration method as it is intro-
duced in Section IV-B.

D. Comparison with other works

Table III also demonstrates a comparison between the
proposed approaches and other works in literature employing
PAT measurements for the BP estimation. To perform a fair
comparison, calibration-free methodologies should be only
compared with themselves. Considering this, it is noticeable
from Table III that our calibration-free approach, compared
to other works, presents reasonable results (specially in STD
and r criteria). It should also be noted that, compared to other
works, the number of test subjects in the evaluation of this
work is considerably higher, which means that our results
enjoy a higher statistical reliability.

E. Evaluation using the BHS Standard

Table IV presents an evaluation of the proposed methodol-
ogy using the parameter-based features and AdaBoost learning
by the British Hypertension Society (BHS) standard. BHS
grades BP measurement devices based on their cumulative
percentage of errors under three different thresholds, i.e. 5,
10 and 15 mmHg [36]. According to the BHS standard,
the proposed method is consistent with the grade A in the
estimation of DBP and with the grade B in the estimation of
the MAP value.

F. Evaluation using the AAMI Standard

Table V demonstrates a comparison between the results
of using the parameter-based features and Random Forest
regression with the Advancement of Medical Instrumentation
(AAMI) criterion [37]. The AAMI requires BP measurement
devices to have ME and STD values lower than 5 mmHg and
8 mmHg, respectively. According to Table V, the proposed
method has ME values much lower than the maximum accept-
able ME value. Regarding the STD criterion, the STD values
for DBP and MAP are within the 8 mmHg standard margin.
However, the STD value of the SBP estimation is slightly out
of the AAMI acceptable limit.

It is also noteworthy to mention that AAMI requires devices
to be evaluated on a statistical population of at least 85
subjects; however, thanks to the huge number of available
records in the MIMIC dataset (see Section III-A), we have
verified the proposed method on a population of 942 subjects
which guarantees a considerably higher statistical reliability
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TABLE III
COMPARISON WITH OTHER WORKS

DBP MAP SBP
Work Subjects STD MAE r STD MAE r STD MAE r

(evaluation) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)
This Work (calib-free) 942 6.14 5.35 0.48 5.38 5.92 0.56 10.09 11.17 0.59

This Work (calib-based) 57 3.52 4.31 0.57 - - - 5.45 8.21 0.54
SVR [32] (calib-free) 851 8.45 6.34 - 9.54 7.52 - 16.17 12.38 -

ECG IBP [33] (calib-based) 22 - - 0.42 - - 0.46 - - 0.47
rPTT [34] (calib-based) 12 - - 0.14 - - 0.28 - - 0.62
BPTT [35] (calib-based) 30 6.00 - - - - - 7.61 - -

TABLE IV
COMPARISON WITH THE BHS STANDARD

Cumulative Error Percentage

≤ 5mmHg ≤ 10mmHg ≤ 15mmHg

Our Results

DBP 62.7% 87.1% 95.7%

MAP 54.2% 81.8% 93.1%

SBP 34.1% 56.5% 72.7%

BHS [36]

grade A 60% 85% 95%

grade B 50% 75% 90%

grade C 40% 65% 85%

TABLE V
COMPARISON WITH THE AAMI STANDARD

ME STD Subjects

(mmHg) (mmHg)

Our Results

Diastolic 0.36 5.70 942

Mean Pressure 0.16 5.25 942

Systolic -0.06 9.88 942

AAMI [37] SBP and DBP ≤ 5 ≤ 8 ≥ 85

than the AAMI requirements. Here, the reason behind using
the Random Forest regression instead of AdaBoost is, as it
is evident from Table III, Random Forest learning method
presents results with lower STD values, which is an important
criterion of the AAMI standard.

G. BP Classification Performance

In many health-care monitoring applications, the interpreta-
tion of the BP values is preferred to reporting the numerical
BP values. Table VI presents the accuracy of the proposed
algorithm in classifying BP values using the parameter-based
features and AdaBoost learning method. In order to measure
the performance of the algorithm in classifying BP values,
three different BP ranges are defined for each of the SBP
and DBP targets, and the classification accuracy is measured
by getting the percentage of correct detections within each
BP class range. From Table VI, it is clearly evident that the
proposed method enjoys the capability to accurately classify
SBP and DBP values.

TABLE VI
ACCURACY OF THE ALGORITHM IN BP CLASSIFICATION

DBP SBP

Class Range (mmHg) Accuracy Range (mmHg) Accuracy

Desired BP ≤ 80 88% BP ≤ 120 87%

Pre-hypertension 80 < BP ≤ 90 91% 120 < BP ≤ 140 73%

Hypertension 90 < BP 98% 140 < BP 82%

VI. DISCUSSION

It should be noted that the MIMIC database, used in this
paper and many other works, contains clinical data obtained
from Intensive Care Units (ICU), which means that almost
all samples are influenced by drugs that can potentially cause
abnormal BP variations. In addition, due to using records of
ICU patients, the average age of subjects in this study is higher
than the average of the total population age. These conditions,
compared to the standard requirements (see Section V-E and
V-F), puts even more strain on the BP estimation system.

As another important point, in this work, the ECG and
PPG signals are used as input vital signals because of their
availability in the Physionet MIMIC dataset [20]; however,
using other signals (e.g. BCG, SCG, etc), specially for proxi-
mal time reference, can potentially produce more accurate BP
estimations [19]. Apart from vital signals, there are a number
of features including age, weight, and hight, which can be
added to the features from vital signals to produce even more
desirable accuracies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of continuous
and non-invasive BP estimation in health-care monitoring
systems. Primarily, the proposed methodology consists of
signal denoising, feature extraction, and regression stages. It
was shown that the proposed BP estimation algorithm works
properly, even without any need for calibration procedures.
The estimation accuracy of the algorithm is evaluated using
the BHS and AAMI standards. According to the BHS, our
proposed calibration-free method has grade A in estimation
of the DBP, and grade B in estimation of the mean blood
pressure. According to the AAMI, the results for the DBP
and MAP are approved by a considerable margin. In addition
to the calibration-free method, a calibration procedure is also
suggested in order to increase the estimation accuracy further.
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