
1

APPENDIX A
SOME STATISTICAL ANALYSIS OF THE AN-
GLES BETWEEN THE EIGENVECTORS OF TWO
EXPRESSION SUBSPACES

In this Appendix, we show the difference between a
happy subspace and a neutral subspace by comparing
their eigenvectors. In order to compare two eigenvec-
tors, we calculated the angle between them.

Two subspaces might be the same, but their eigen-
vectors might not be in the same order (in terms of
the order of their eigenvalues). For this reason, we
considered the minimum angle between each eigen-
vector of one subspace and all the eigenvectors of
the other subspace. Fig. 1 shows the minimum angles
between the happy and neutral subspaces for their
first ten eigenvectors. For this experiment, the neutral
subspace was constructed using 300 neutral images
from 300 subjects in the FRGC database. The happy
subspace was constructed using 100 happy images
from 100 subjects in the same database (the number
of happy images is much less than the number of
the neutral images in this database.). We repeated
constructing the subspaces with different sets of im-
ages for many times. Fig. 1 shows the average of the
minimum angles.

In order to make sure that the angles are not due
to the different sets of images used to create the
happy and neural subspaces, we also compared the
eigenvectors of the neutral subspace with another
neutral subspace created from a different set of neutral
images. Fig. 1 shows the minimum angles between
the two neutral subspaces, which were averaged over
many trials. As seen in this figure, the minimum
angle between a happy and a neutral subspace is con-
siderably greater than the minimum angle between
two neutral subspaces, which shows the difference
between neutral and happy subspaces.
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Fig. 1. The minimum angle between the eigenvectors
of a neutral subspace and a happy subspace and the
minimum angle between the eigenvectors of the same
neutral subspace and another neutral subspace.

APPENDIX B
PROOF OF THE THEOREM
We prove the theorem for ni = 2 and ni = 3. The
proof can be easily extended for ni > 3. When ni = 2
the scatter matrix of class i is

Si
w = (xi1−mi)(xi1−mi)

T+(xi2−mi)(xi2−mi)
T (1)

By substituting mi with xi1+xi2

2 , (1) can be written
as

Si
w =

(
xi1 − xi2

2

)(
xi1 − xi2

2

)T

+

(
xi2 − xi1

2

)(
xi2 − xi1

2

)T

(2)
Hence,

Si
w =

1

2
(xi1 − xi2)(xi1 − xi2)

T =
1

2
di1d

T
i1 (3)

which proves the theorem for ni = 2.
When ni = 3

Si
w =

(
xi1 −

xi1 + xi2 + xi3

3

)(
xi1 −

xi1 + xi2 + xi3

3

)T

+

(
xi2 −

xi1 + xi2 + xi3

3

)(
xi2 −

xi1 + xi2 + xi3

3

)T

+

(
xi3 −

xi1 + xi2 + xi3

3

)(
xi3 −

xi1 + xi2 + xi3

3

)T

(4)

which can be written as

Si
w =

1

9
(xi1 − xi2 + xi1 − xi3)(xi1 − xi2 + xi1 − xi3)

T

+
1

9
(xi2 − xi1 + xi2 − xi3)(xi2 − xi1 + xi2 − xi3)

T

+
1

9
(xi3 − xi1 + xi3 − xi2)(xi3 − xi1 + xi3 − xi2)

T

(5)

We can then write (5) as

Si
w =

1

9
[(xi1 − xi2)(xi1 − xi2)

T + (xi1 − xi2)(xi1 − xi3)
T︸ ︷︷ ︸

·

+(xi1 − xi3)(xi1 − xi2)
T︸ ︷︷ ︸

···

+(xi1 − xi3)(xi1 − xi3)
T ]

1

9
[(xi2 − xi1)(xi2 − xi1)

T + (xi2 − xi1)(xi2 − xi3)
T︸ ︷︷ ︸

·

+(xi2 − xi3)(xi2 − xi1)
T︸ ︷︷ ︸

··

+(xi2 − xi3)(xi2 − xi3)
T ]

1

9
[(xi3 − xi1)(xi3 − xi1)

T + (xi3 − xi1)(xi3 − xi2)
T︸ ︷︷ ︸

···

+(xi3 − xi2)(xi3 − xi1)
T︸ ︷︷ ︸

··

+(xi3 − xi2)(xi3 − xi2)
T ]

(6)
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By summing up the terms identified by one dot, we
get

(xi1 − xi2)(xi1 − xi3)
T + (xi2 − xi1)(xi2 − xi3)

T

= (xi1 − xi2)(xi1 − xi3)
T + (xi1 − xi2)(xi3 − xi2)

T

= (xi1 − xi2)(xi1 − xi3 + xi3 − xi2)
T

= (xi1 − xi2)(xi1 − xi2)
T

(7)

Similarly, the other two pairs of terms can be sim-
plified and the scatter matrix of class i can be written
as

Si
w =

1

3
(xi1 − xi2)(xi1 − xi2)

T +
1

3
(xi2 − xi3)(xi2 − xi3)

T

+
1

3
(xi3 − xi1)(xi3 − xi1)

T =
1

3

3∑
j=1

dijd
T
ij

(8)

APPENDIX C
ORTHOGONALITY OF THE SYNTHESIS ERROR
AND SYNTHESIZED PAIRWISE DISTANCE

Since the neutral subspace is an affine subspace, the
difference between any two points on this subspace
can be written as a linear combination of the neutral
eigenvectors, i.e.,

∃a1, ..., ak ∈ R|n1 − n2 = a1u1 + ...+ akuk (9)

where n1 and n2 are two points on the neutral sub-
space. Therefore, since N (h) and n are two points on
the neutral subspace, es (es = n−N (h)) can be written
as a linear combination of the neutral eigenvectors.

On the other hand, using the definition of the pro-
jection, it is straightforward to show that the synthe-
sized pairwise distance d̃ is orthogonal to the neutral
eigenvectors,

d̃⊥{u1, ...,uk} (10)

As a result, d̃ is orthogonal to any linear com-
bination of neutral eigenvectors, and therefore, it is
orthogonal to the synthesis error,

d̃⊥es (11)


