
IEE
E P

ro
of

Using Data Variety for Efficient
Progressive Big Data Processing in

Warehouse-Scale Computers

Hossein Ahmadvand and
Maziar Goudarzi, Senior Member, IEEE

Abstract—Warehouse Scale Computers (WSC) are often used for various big

data jobs where the big data under processing comes from a variety of sources.

We show that different data portions, from the same or different sources, have

different significances in determining the final outcome of the computation, and

hence, by prioritizing them and assigning more resources to processing of more

important data, the WSC can be used more efficiently in terms of time as well as

cost. We provide a simple low-overhead mechanism to quickly assess the

significance of each data portion, and show its effectiveness in finding the best

ranking of data portions. We continue by demonstrating how this ranking is used in

resource allocation to improve time and cost by up to 24 and 9 percent

respectively, and also discuss other uses of this ranking information, e.g., in faster

progressive approximation of the final outcome of big data job without processing

entire data, and in more effective use of renewable energies in WSCs.

Index Terms—Big data, sampling, efficiency, resource allocation,

order of processing

Ç

1 INTRODUCTION

WAREHOUSE scale computing [1] views the entire computing
resources in a data center as a large computer employed by inter-
net-scale service providers for massive scales. Efficiency, in terms
of performance, cost, and energy, is definitely a determining factor
for user satisfaction as well as cost reduction in such expensive
computing facilities. MapReduce [4] is a programming paradigm
introduced by Google for such massive computers, and has since
gained widespread use for other big data applications as well.
Improving efficiency of such jobs in WSCs is thus of interest for
both the user of the big data job as well as the owner of the facility.
Prior art has explored efficient resource assignment [7], hardware
acceleration [12], [14], approximate computations [6] as well as
other techniques [10] for more efficient MapReduce processing on
WSCs, but to the best of our knowledge data variety, in terms of
the difference in significance of various chunks of data in determin-
ing the final output of the big data job, has not been previously
explored for efficiency of big data jobs in WSCs. For example,
imagine the vote-counting process in an election; if the votes in
some states have higher influence on the election outcome, it makes
sense to assign more resources to count them for faster approxima-
tion of the final result. Note that efficiency in this example is the
approximation accuracy after unit time, but it can be defined other-
wise in other examples.

We show that indeed various same-sized portions of data have
different influences on the final outcome of computation. Thus, if a
low-overhead technique can sort the data portions based on their
significance, one can start processing from more important data
portions, or assign more resources (by any available mechanism
such as VM sizing) to more important data, or assign scarce renew-
able energy to process more important data, or other uses indeed
depending on what efficiency metric she has in mind.

Debatably, in some cases such as progressive approximation as
above example, this may require to split the conventionally mono-
lithic MapReduce job, e.g., Hadoop, into a number of smaller Map-
Reduce sub-jobs each of which combines previously reduced (key,
value) pairs from the reduce stage of previous sub-job—see the
arrows in Fig. 1—with the pairs generated by its own map stage. In
such case, at the end of each sub-job, an approximate outcome is
generated which progressively converges to the final outcome.
Such multi-stage computation introduces data and compute over-
heads in terms of (i) storing reduced (key, value) pairs of each sub-
job until the shuffle phase of subsequent job, and (ii) changing the
load of each shuffle and reduce phase to incorporate above addi-
tional pairs with the intermediate data of current sub-job. Obvi-
ously these overheads should also be considered, experimentally
or analytically, in such cases.

To implement this multistage MapReduce, we used Apache
Spark and Scala language: each input data block is converted to a
Resilient Distributed Dataset (RDD). After the first stage of multi-
stage MapReduce, the intermediate RDD is stored in the storage
and is combined with other RDDs in later stages using Scala con-
structs such as join and union. Spark Streaming could have also
been used with modifications for the same purpose, but we did not
use it since it better suits fine-grained micro-batching whereas our
technique deals with rather large blocks.

2 RELATED WORK

Approximate computing [6], [8] explores the tradeoff between the
accuracy of the results vs. efficiency. In such sense, our proposal
can also be viewed as a progressive approximation of the output:
at the end of each MapReduce sub-job, partial outputs are pro-
vided that approximate the final output. Processing more impor-
tant data first, provides a faster approximation of the final output
by processing unit volume of data.

Authors in [13] deal with the portions of code and variables that
more significantly affect the final outcome of processing. They pro-
vide techniques and tools to automatically analyze the source code
of the computation and assess the influence of variables and code
portions in output quality so as to tradeoff quality for energy effi-
ciency or time. In contrast, we deal with the input of the program,
and aim to determine the portions of data that more significantly
influence the final output.

Conventional MapReduce architecture is changed in [3] to
produce progressive outputs to obtain “early returns” and
approximations. They provide a pipelined version of Hadoop,
named Hadoop Online Prototype (HOP), and discuss opportuni-
ties and advantages of such framework especially in large jobs,
as well as challenges introduced by such pipelining. In case of a
progressive computation as in [3], when multiple jobs are to be
run one after the other in the pipeline, the choice of data splits
to feed the pipeline at each round affects rationality of the
changes observed in the progressively generated outputs. Mech-
anisms are proposed in [2] for data sampling and for defining
progress intervals so that progressive computation becomes
scalable to multiple back to back jobs. The sampling here refers
to selection of data blocks whereas we sample from within each
data block to assess relative significance of the blocks. None of
the above works rank the data splits for more effective progres-
sive computation, nor they use this information for better
resource assignment as we do.

Other literature exists on algorithms for progressive computa-
tion [9], [11], and [16]] where large data space is pruned progres-
sively to find the answer. Frameworks are also provided for
progressive analytics [5] to help programmers focus on their analy-
sis algorithms and to streamline implementation of progressive ana-
lytics pipelines. These are complementary to our techniques and can
be combinedwith it for wider use cases inmore complex analytics.

� The authors are with the Department of Computer Engineering, Sharif University of
Technology, Tehran, Azadi Avenue 11365-11155, Iran.
E-mail: ahmadvand@ce.sharif.edu, goudarzi@sharif.edu.

Manuscript received 9 July 2016; revised 10 Nov. 2016; accepted 29 Nov. 2016. Date of
publication 0 . 0000; date of current version 0 . 0000.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2016.2636293

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. X, XXXXX 2017 1

1556-6056� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

IEE
E P

ro
of3 MOTIVATION

We ran three publicly available benchmarks, namely WordCount,
InvertedIndex, and Grep, from BigDataBench benchmark suite [15]
on 3 public datasets, namely IMDB, Gutenberg, and Quotes, used
intact, but divided into 0.5 GB portions. We generated all possible
permutations of these portions, then ran the benchmark on each
sequence of portions while taking note of the partial outcome incre-
mentally produced after processing each portion, and compared
them against the final outcome. Obviously, the partial outcomes
gradually converge to the final one, but the speed of this conver-
gence differs depending on the sequence employed. Fig. 2 shows
the results for WordCount; horizontal axis shows the percentage of
data processed, and the vertical axis represents normalized distance
between the partial and final outcomes; the definition of this distance
obviously depends on the big data application. We used below def-
initions for our three benchmarks:

Grep: difference between the number of lines in which the match
was found.

InvertedIndex: difference between the size of the output index files
(as a measure of the number of indexes created.)

WordCount: difference between total number of words counted.

As Fig. 2 shows, there is a large gap between the worst and the
best sequence of processing the data portions; e.g., after half of data is
processed in WordCount, the worst sequence is still 71.9 percent far
from the final outcome whereas the best one is only 28 percent far.
Similar behavior is observed forGrep and InvertedIndex benchmarks
respectively showing 62.3 and 73.9 percent difference between the
best and the worst sequences at 50 percent of total data. An mHealth
workload (chest movements sensed by sensors on human body) and
a financial workload (investments of companies in different states)
also showed 48 and 43 percent differences respectively. As an intui-
tive analogue, imagine vote-counting in an election: the sequence of
counting the votes collected in different regions determines the speed
of approaching the election final outcome.

We argue that the above observation is due to the difference in
significance of each data portion, and it can be used in a number of
ways for higher efficiency in big data processing on WSCs. We
define significance measure for each data portion in each application
similar to above definitions of distance; i.e., the number of

matching lines, created indexes, and counted words in the data
portion for Grep, InvertedIndex, and WordCount respectively.
Fig. 3 shows the distribution of significance measures of data por-
tions for each application which obviously highly differs even
among data portions from the same source.

4 PROPOSED APPROACH

Our proposal, Fig. 4, consists of two steps: a fast ranking step where
data portions are quickly evaluated and ranked based on their esti-
mated significance, and a multi-stage MapReduce step (see Fig. 1)
where the actual resource allocation and big data processing is per-
formed on these data portions. Note that the per-stage operations
depend on the optimization in mind—see Section 6—but it would
typically consist of processing the data portions in descending
order of significance.

The ranking step requires an efficient light-weight mechanism
to avoid high overhead. We employed a simple sampling mecha-
nism and a simple measure of significance: for a given size PS (Por-
tion Size) for data portions, we take SS (Sample Size) number of
1 MB samples from each data portion uniformly distributed over
the portion, and process it for the job in question, then we compute
the significance measure defined for the job, and sort the data
portions accordingly. We also examined randomly distributed
sampling, but the results were only marginally different. As the sig-
nificance measure, we used the definitions given in Section 3 above.
The choices of PS and SS values are discussed in Section 5.

There are three parameters to tune here: (i) SS: the number of
samples per data portion, represents a tradeoff between the per-
portion overhead in the ranking step versus the accuracy of the
ranking; (ii) PS: data portion size, determines the granularity of the
ranking; and (iii) NumStages: the number of computation stages in
the multi-stage MapReduce computation, determines the granular-
ity of progression toward the final outcome.

Since a MapReduce job is originally defined as a monolithic
computation, a key point here is whether it is practically possible
to run multistage MapReduce jobs or not, and what overheads it

Fig. 1. Overall view of multistage MapReduce processing we propose. Reduced
(key, value) pairs are passed to later shuffle stages.

Fig. 2. Results of processing the data portions in various orders for WordCount
benchmark for 0.5GB as size of data portions.

Fig. 3. Distribution of significance measures vs. data portions.

Fig. 4. Overall flow of our proposal

2 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. X, XXXXX 2017

IEE
E P

ro
of

imposes. It is important to note that the notion of (key, value) pairs
makes it inherently possible to break a larger MapReduce job into
smaller ones: each small MapReduce job by definition produces a
list of (key, value) pairs each with a unique key during its reduce
phase; these pairs can be added to the pairs produced by the map
phase of the subsequent small MapReduce sub-job, and passed to
its reduce phase by the same shuffle operation to obtain new pro-
gressively more complete (key, value) pairs. This is repeated until
the end of the original large MapReduce job. At the end of each
stage, however, one might need to run a Merge function to produce
the partial outputs corresponding to the computations completed
till then. Consequently, there are three overheads to analyze here:
(i) passing reduce outputs of each stage to the next one, (ii) reduc-
tion of additional (key, value) pairs from previous MapReduce
stage, and (iii) the merge possibly required at the end of each stage.

5 EXPERIMENTAL RESULTS

We evaluated 3 benchmarks from BigDataBench suite [515] as in
Section 3. The datasets comprised of 14 GB of data from 3 different
sources. Experiments were run on an intel Core-i7 4-core CPU at
2.8 GHz with 4 GB of RAM.

Effectiveness of our ranking: We set PS ¼ 0:5 GB and SS ¼ 5 in
this set of experiments. Note also that we have set NumStages ¼ 28
equal to the number of data portions in these experiments to
achieve the highest resolution; thus, at each stage, only one data
portion is MapReduced. The sequence obtained by our ranking
step is compared to the best, the worst, and conventional random
sequence in Table 1 regarding distances to the final outcome—see
vertical axis of Fig. 2. Our ranking step reduces Mean Square Error
(MSE) by over 20x compared to the random sequence. Table 2 gives
three major data points of the compared sequences.

Sensitivity to SS and PS: We tried other data portion sizes (PS ¼
0.5 GB, 1 GB, 2 GB) and sample sizes (SS ¼ 1, 5, and 10 samples per
data portion) and compared the results in terms of computation
overhead as well as the accuracy of the ranking they produce. Since
each sample is a 1MB data, the overhead is simple to compute in
terms of data amount to process in the ranking step; this overhead
spans from 0.05 percent (SS ¼ 1, PS ¼ 2 GB) to 2 percent (SS ¼ 10,
PS ¼ 0.5 GB). The time it takes to process this data is however
higher than that since it incurs the overhead of setting up MapRe-
duce sessions for small sizes of data (one run per aggregate

samples of each data portion). Table 3 shows this overhead. In
return for this overhead, the ranking step returns a sorted list of
data portions. We defined the RD (Ranking Difference) measure in
Eq. (1) to compare the lists that different rankings produce:

RD ¼
XN¼Number of portions

i¼1

N � ið Þ � Xi � Yij jð Þ
() ,�

N �
XN

i ¼ 1

Xi

�

(1)

Where Xi and Yi are the significance measures of the ith element
of the sorted list of data portions obtained respectively by process-
ing whole data portions (i.e., the golden list), and by our sampling
and ranking method described above. The ideal case is RD ¼ 0.
The RD values are also reported in Table 3 which shows that for
this dataset, SS ¼ 5 is enough even for PS ¼ 2 GB. Note that
choice of SS and PS depends on the dataset. For a case where large
variation of significance measure across data portions is observed
in the dataset, smaller PS and larger SS is needed to obtain more
uniformity within a data portion as well as better differentiation
among different portions. Thus, intra- as well as inter-portion var-
iations should be sampled for appropriate decision.

Table 3 shows the ranking overhead. Compared to the best total
processing time by our approach as reported in Table 4 for Word-
Count, these overheads are very small: 0.1 to 5.9 percent depending
on the sample size, and specifically 0.8 for the PS ¼ 2 GB and
SS ¼ 5 case above. For InvertedIndex and Grep, the ranking over-
heads were respectively 0.55% and 0.85% of total processing time
in our experiments for PS ¼ 2 GB and SS ¼ 5 compared to the
fastest processing time obtained by our technique, similar to Word-
Count case in Table 4.

Data-Variety-Aware Resource Allocation. With close-to-the-best
ranking of data portions obtained by our light-weight method,
resource allocation can be done proportional to the significance of
the data portions to be processed at each stage to obtain higher effi-
ciency. Other uses are described in Section 6.

TABLE 1
MSE of Sequences Compared to the Best Possible One

Mean Square Error (MSE) Ours
vs. Best

Random
vs. Best

Worst
vs. Best

Grep 3.696 160.082 263.285
InvertedIndex 6.037 136.302 288.655
WordCount 3.641 74.751 172.575

TABLE 2
Data Points of Compared Sequences

Amount of
data processed

(%)

Normalized distance to final outcome (%)

Best
sequence

Our
sequence

Random
sequence

Worst
Sequence

Grep
25 43.87 43.87 82.69 97.76
50 18.83 19.85 58.12 81.16
75 2.24 2.24 25.45 56.13

Inverted
Index

25 41.32 41.32 77.16 98.09
50 14.14 14.85 52.86 85.86
75 1.91 1.91 12.63 58.68

Word
Count

25 58.56 58.56 72.54 92.27
50 28.07 29.56 49.61 71.93
75 7.73 8.13 24.14 41.44

TABLE 3
Overheads and Ranking-Differences of Our Sampling

Benchmark Time spent for ranking (s) RD: Ranking DifferenceSS

PS
1 5 10 1 5 10

WordCount

0.5GB 1.88 8.71 17.12 0.079 0.0034 0.0021

1GB 0.96 4.33 8.63 0.158 0.0068 0.0014

2GB 0.51 2.19 4.33 0.083 0 0

InvertedIndex

0.5GB 196.06 1084.79 2230.66 0.3423 0.0481 0.0673

1GB 98.67 527.78 1084.79 0.6847 0.0961 0.0197

2GB 56.05 269.40 527.78 7�10-7 4�10-7 1�10-7

Grep

0.5GB 0.54 2.66 5.54 0.2217 0.0397 0.0214

1GB 0.28 1.33 2.66 0.4435 0.0793 0.1228

2GB 0.17 0.67 1.33 0.0476 1�10-4 0

TABLE 4
Comparison of Variety-Oblivious and -Aware Resource Allocations

Resource
Allocation

Cost
(relative)

Time
(s)

Total
time(s)

Total
cost

Data-variety-oblivious

1st half on S1 0.3 205.2
320.2 119.06

2nd half on S2 0.5 115
1st half on S2 0.5 116

317 118.32nd half on S1 0.3 201

Our
data-variety-aware
approach

Upper half on S1 0.3 247.5
348.5 124.75Lower half on S2 0.5 101

Upper half on S2 0.5 136
287.8 113.5Lower half on S1 0.3 151.8

Na€ıve MapReduce
All data on S1 0.3 398.8 398.8 119.64
All data on S2 0.5 245 245 122.5

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. X, XXXXX 2017 3

IEE
E P

ro
of

Assuming two server configurations, S1 with 4 GB RAM and 4-
core CPU, S2 with double those resources, and with normalized
costs of respectively 0.3 and 0.5 as per Amazon EC2 cloud, we com-
pare different choices of resource allocation in a case with PS ¼
0.5 GB and NumStages ¼ 2. Data-variety-oblivious scenario choo-
ses data portions randomly but our data-variety-aware one first
sorts data portions by our ranking step above and then allocates
resources to process upper and lower halves of the list.

As Table 4 shows forWordCount application, by assigningmore
resources to more significant data, both total time as well as cost are
respectively reduced by 9.2 and 4.1 percent compared to the best
alternative possible by the oblivious counterpart. Similarly, for
Grep and InvertedIndex, our approach saves run-time from respec-
tively 180.4s and 74334.0s by 6.3 and 23.6 percent, and reduces cost
from 66.7 and 27269.9 by 2.8 and 9.0 percent; i.e., we save more at
higher costs and time. Compared with na€ıve MapReduce, where
entire data is processed in parallel on one type of machine, our tech-
nique takes 5.1 and 7.3 percent lower cost respectively for na€ıve case
on S1 and S2 machines, and even finishes 27.8 percent faster
than na€ıve case on S1. Although na€ıve MapReduce on S2 takes
14.8 percent less time than us, note that our progressive computa-
tion has already provided a partial output at time 136s (i.e.,
44 percent earlier than na€ıve MapReduce) corresponding to
70.5 percent of the final output; further note that MapReduce is
basically used for batch jobswhere time is of less concern than cost.

6 DISCUSSION OF USAGES

We showed that different data portions have different significances
in determining the final outcome of a big data job. In addition to
the resource allocation in WSC case shown above, this phenome-
non can benefit the user in a number of ways: (i) if limitations in
time or resources force us to process only part of entire data, two
interesting problems can be defined: (a) “In a given time limit, or
under energy limit such as a solar-equipped WSC, which data por-
tions should be processed so as to get the closest result to the
golden outcome achievable by processing entire data?”, and (b)
“Which data portions should be processed so as to get to a given
distance from the golden final outcome in the minimum amount of
time or resource?”; (ii) if entire data is to be ultimately processed,
but we are interested in more rapidly approaching the golden final
outcome (e.g., vote-counting example), the number of stages
employed is of interest since it determines the amount of inter-
stage overhead as well as the number of partial outcome announce-
ments (c.f. election vote reports case above); (iii) stages can also
overlap in time if enough resources are available.

7 SUMMARY AND CONCLUSION

We showed the significance and use of the differences among data
portions in a MapReduce computation to improve time and cost
efficiency in WSC. We presented a quick and effective mechanism
to rank the portions before processing for above purpose. This
opportunity in such big data computations in WSCs can be used to
more time- and cost-efficiently process the entire data, or process
partial data with optimized approximation in case of resource,
time, or energy limitations.

To use our technique, one only needs to define a significance
measure to compare data portions, use a sampling or other light-
weight mechanism to assess data portions, and a multistage Map-
Reduce paradigm, e.g., Spark, for progressive computation. We
showed the value this approach can provide, and discussed a num-
ber of ways we envision as its use cases.

Many avenues exist to further this work including sampling
methods, categorization of MapReduce applications, variety-aware
resource allocation techniques as well as progressive approximate
computation: in cases where the statistical distribution of data is

known, other sampling methods such as importance sampling and
Cochran sampling can be used to set the number of samples for a
target confidence interval; Big data workloads can be more deeply
examined to classify the workloads that can, or cannot, benefit
from the technique proposed in this work; Efficient variety-aware
resource allocation algorithms are needed to take best advantage
of the observation introduced in this paper; Finally, approximate
and progressive computations mentioned in Section 6 are also
important further research to do.

ACKNOWLEDGMENTS

This research is supported by grant number G930826 from Sharif
University of Technology. We are grateful for their support.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. H€olzle, Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, 2nd Ed. San Rafael, CA,
USA: Morgan & Claypool Publishers, 2013.

[2] B. Chandramouli, J. Goldstein, and A. Quamar, “Scalable progressive ana-
lytics on big data in the cloud,” Proc. VLDB Endowment, vol. 6, no. 14,
pp. 1726–1737, 2013.

[3] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein, “MapReduce
online,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation,
May 2010, pp. 21–21.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. 6th Conf. Symp. Operating Syst. Des. Implementation,
2004, pp. 10–10.

[5] J.-D. Fekete and R. Primet, “Progressive analytics: A computation para-
digm for exploratory data analysis,” CoRR, vol. abs/1607.05162, 2016.
[Online]. Available: http://arxiv.org/abs/1607.05162

[6] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “ApproxHadoop:
Bringing approximations to MapReduce frameworks,” in Proc. 20th Int.
Conf. Archit. Support Program. Languages Operating Syst., 2015, pp. 383–397.

[7] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi, “Energy-
aware scheduling of MapReduce jobs for big data applications,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 10, pp. 2720–2733, Oct. 2015.

[8] S. Mittal, “A survey of techniques for approximate computing,” ACM Com-
put. Surveys, vol. 48, 2016, Art. no. 62.

[9] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation
in database systems,” ACM Trans. Database Syst., vol. 30, no. 1, pp. 41–42,
2005.

[10] I. Polato, R. R�e, A. Goldman, and F. Kon, “A comprehensive view of
Hadoop research—A systematic literature review,” J. Netw. Comput. Appl.,
vol. 46, pp. 1–25, 2014.

[11] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in Proc. 27th Int. Conf. Very Large Data Bases, 2001, pp. 301–
310.

[12] K. O. Toshimori Honjo, “Hardware acceleration of hadoop MapReduce,” in
Proc. Int. Conf. Big Data, 2013, pp. 118–124.

[13] V. Vassiliadis, et al., “Towards automatic significance analysis for approxi-
mate computing,” in Proc. IEEE/ACM Int. Symp. Code Generation Optimiza-
tion, 2016, pp. 182–183.

[14] B. W. Yi Shan, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang,
“FPMR: MapReduce framework on FPGA, A case study of RankBoost
acceleration,” in Proc. 18th Annu. ACM/SIGDA Int. Symp. Field Programmable
Gate Arrays, 2010, pp. 93–102.

[15] L. Wang, et al., “BigDataBench: A big data benchmark suite from
internet services,” in Proc. Int. Symp. High Performance Comput. Archit. 2014,
pp. 488–499.

[16] D. Zhang, Y. Du, T. Xia, and Y. Tao, “Progessive computation of the min-
dist optimal-location query,” in Proc. 32nd Int. Conf. Very Large Data Bases,
2006, pp. 643–654.

4 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. X, XXXXX 2017

