
On Planar Visibility Polygon Simplification∗

Alireza Zarei† Mohammad Ghodsi†

Abstract

The boundary of a region illuminated by a light source
may be composed of many vertices and points. In
this paper, we propose a criterion to represent such
polygons by a smaller number of vertices and, show
how this criterion can be used in offline and streaming
models.

1 Introduction

In a planar scene which is composed of a set of polyg-
onal objects in the plane, two points are visible from
each other if their connecting segment does not inter-
sect the scene objects. The set of points visible from
a point q is called its visibility polygon and is denoted
by VP(q). The visibility polygon of a point in a pla-
nar domain is always a star-shaped simple polygon.
The boundary of a visibility polygon, simply referred
to by visibility polygon in the rest of this paper, is
composed of many consecutive line segments, some of
which may be so far from the observer.

In real applications, an observer usually has a lim-
ited vision power, i.e., it can not distinguish small
visibility differences at far distances. Moreover, the
required space to maintain the exact visibility poly-
gon is too high and it will be impossible to maintain
such polygons exactly. On the other hand, the accu-
racy of the display screens is also limited. That is, to
display such a polygon on a display screen, only its
approximation is displayed.

In this paper, we consider the problem of simpli-
fying (approximating) the visibility polygon of such
observers inside a polygonal domain. This problem
is a special case of the well-known line simplification
problem for which there are several algorithms. These
methods approximate a given path of line segments by
another path with smaller number of segments which
minimizes the difference between the initial and the
simplified paths. This difference, to be formally de-
fined later, is called the error of this simplification.

There are two optimization goals in the line simpli-
fication algorithms: min-k and min-δ. In the min-k
version, there is a given error threshold and we are to

∗This research was in part supported by a grant from IPM.
(No. CS1386-2-01)

†Computer Engineering Department - Sharif University
of Thechnology, School of Computer Science - Institute
for Studies in Theoretical Physics and Mathematics (IPM),
zarei@mehr.sharif.edu, ghodsi@sharif.edu

use the minimum number of vertices in the simplified
path meeting the error threshold. In min-δ, we are
allowed to use at most k vertices for some given k in
the simplified path and the goal is to minimize the
error of the simplification.

Almost all current simplification algorithms solve
the line simplification problem under the Hausdorff
distance for L1, L2 or L∞ metrics or under the Fréchet
distance which are not proper for our purpose of sim-
plifying visibility polygons. In our target applications,
the vertices of the path that are closer to the observer
are more important than the farther points.

To solve this problem, we define a new approximat-
ing error function which considers the distance be-
tween the points of the visibility polygon and the ob-
server. We prove that this error function can be com-
puted efficiently and can be used along with current
simplification methods without increasing their time
or space complexities. Therefore, our target problem
can be solved efficiently under min-k or min-δ opti-
mization goals.

We further consider the streaming cases in which
the observer is like a radar inside a dynamic environ-
ment that circularly sweeps its neighbor and draws
its visibility polygon. In such applications, the visi-
ble points are given continuously as a stream of input
data and we assume that it is impossible to maintain
and show all of these points. Therefore, it is neces-
sary to approximate the exact visibility polygon by
another polygon of smaller number of vertices.

In this model, regardless of the number of points
in the input path, we must simplify the path by at
most k points. Also, we must continuously update
the simplification as new points are received. For
this version of the problem, our proposed method uses
O( k2√

ε
) additional storage and each point is processed

in O( k√
ε log ε

) amortized time. Then, the error of the
resulting simplification with 2k points is not bigger
than (2 + ε) times the error of the optimal simplifi-
cation with k points. This method is based on the
general algorithm proposed in [1].

There is a similar attempt in rendering based sim-
plification by Buzer [4], however, without considering
the observer position. To the best of our knowledge,
the results of this paper are the first in this area and
there are several interesting open directions in apply-
ing and extending this notion.

1



vk

q

v1

v2vn

vj−1

vj+1

vj

v3

vi

vi−1

vi+1

vs
vt

vm

vr

Figure 1: Simplifying VP(q).

2 Visibility-Dependent Simplification

We focus on the restricted version of the line sim-
plification problem. For this problem, let P be a
path defined by a sequence of points p0, p1, p2, . . . , pn.
Any subsequence Q = q0, q1, . . . , ql, ql+1 of P is a l-
simplification of P if q0 = p0 and ql+1 = pn. In
this simplification, any segment qiqi+1 of Q (0 ≤
i ≤ l) is the corresponding simplification of the sub-
path ps, ps+1, . . . , pt of P where qi = ps and qi+1 =
pt. In other words, we have replaced the subpath
ps, ps+1, . . . , pt of P with segment qiqi+1 in Q.

Therefore, Q is an approximation of P and can be
stored using smaller size of memory, however, at the
cost of losing the accuracy of P . Assume that error
is our error function used to compare similarity of
Q and P . Using this metric, we denote the error of
this approximation by error(Q) and it is defined to
be the maximum error of segments qiqi+1(0 ≤ i ≤ l)
under this metric. The error of a segment qiqi+1 un-
der a metric error is denoted by error(qiqi+1) and
is defined to be the error of approximating the sub-
path ps, ps+1, . . . , pt by segment qiqi+1 under this er-
ror metric. Usually, the definition of the error metric
error depends on the application.

Hausdorff error function, errorh, is the metric used
in almost all simplification algorithms. For a seg-
ment qiqi+1 which is the simplification of a subpath
ps, ps+1, . . . , pt, errorh(qiqi+1) is defined as the max-
imum euclidian distance of the points ps, ps+1, . . . , pt

from segment qiqi+1.
The Hausdorff error function only depends on the

initial and the simplified paths and therefore, is not
proper for simplifying visibility polygons in which the
position of the observer has an important role. As-
sume that P = p1, p2, . . . , pn, p1 of Figure 1 is the
visibility polygon of a point observer q. Here, pj is
closer to the observer than pi which is assumed to be
too far from q. If we are to simplify P by removing
one point and we have only two choices pi and pj , it
would be better to remove pi while if we use Hausdorff
error function, pi will be removed. In order to use cur-
rent simplification algorithms, we formalize this issue
as an error function as follows.

Assume that we are to approximate the path pippj

(See part A of Figure 2), a part of the visibility poly-

part A part B

p

q

t

t′

p

pi pj

p′

errorvis(t, pipj) = |tt′|
|tq|

q

errorvis(t, pipj) = |tt′|
|t′q|

p′

pj

t

t′pi

Figure 2: Visibility-dependent simplification error.

gon of the observer q, by segment pipj . From the
viewpoint of q, this approximation maps the point p
to point p′. Also, other points of segments pip and ppj

are mapped to their corresponding points of segments
pip

′ and p′pj .
The corresponding visibility-dependent error of this

simplification for a point t on the path pippj is de-
noted by errorvis(t, pipj) and is defined as |tt′|

|tq| where
t′ is the intersection point of segments tq and pipj .
This means that in this simplification and at distance
|tq| from the observer we have violated from the ini-
tial path by a value of |tt′|. This definition is also
extended to paths of more internal vertices. The visi-
bility polygon of q is a star-shaped polygon and p lies
between pi and pj on the boundary of this polygon.
Therefore, the supporting line of pq always intersects
pipj . If pi, pj and q are collinear, p and all other
points of the polygon boundary from pi to pj must
also lie on segment pipj . For such situations, the er-
ror of all points of the path from pi to pj is zero which
corresponds to our definition of the error function.

In some cases like part B of Figure 2, tq does not
intersect pipj . For such situations, point t is mapped
to point t′ which is the intersection point of pipj and
the supporting line of tq. In these cases, the visibility-
dependent error of point t is defined to be |tt′|

|t′q| . Com-
paring the definition of errorvis function for these two
cases, when the corresponding values of |tq| in parts
A and B of Figure 2 are equal, we assign greater error
value to point t in part A. This means that in the
same situations we prefer to simplify using the outer
diameters of the visibility polygon compare to the in-
ternal ones. Another benefit of this definition is that
this error function is monotone which will be defined
and used in Section 3.

Our visibility-dependent error function associated
with a path pi, pi+1, . . . , pj simplified by segment pipj ,
denoted by errorvis(pipj), is defined to be the maxi-
mum visibility-dependent error of points of this path.

This definition for visibility-dependent error func-
tion strongly relates to the notion of width. The width
of a set of points with respect to a given direction

−→
d

is the minimum distance of two lines being parallel to−→
d that enclose the point set. Let PL(i, j)(PU (i, j)) be
the set of points of subpath P (i, j) = pi, pi+1, . . . , pj

2



that lie in the closed half plane defined by the sup-
porting line of pipj which contains(does not contains)
the point observer q. We denote by wL(i, j)(wU (i, j))
the width of the points of PL(i, j)(PU (i, j)) with re-
spect to the direction −−→pipj . We have,

Lemma 1 For a subpath P (i, j) = pi, pi+1, . . . , pj of
VP(q),

errorvis(pipj) = max( wU (i,j)
d(q,pipj)+wU (i,j) ,

wL(i,j)
d(q,pipj)

)

where d(q, pipj) is the orthogonal distance of point q
from the supporting line of pipj .

A direct consequence of this lemma is that the as-
sociated error of a segment pipj belongs to a vertex
pk(i ≤ k ≤ j) which makes computation of this er-
ror function straightforward. Using this result we can
simply compute the corresponding error of any seg-
ment pipj that may appear in simplification during
the simplification process by only checking vertices of
the subpath P (i, j).

Fortunately, algorithms proposed for both re-
stricted and unrestricted versions of the line simplifi-
cation problem do not require any special property for
the error function and we can plug our error function
into. Moreover, this error function can be used under
min−k and min−δ optimization goals as well. The
only change in these algorithms is to use our error
function for a segment pipj when we want to simplify
the path pi, pi+1, . . . , pj with this segment.

3 Visibility-Dependent Simplification in Stream-
ing Model

In some applications, we can not maintain the whole
path because of the limited amount of memory or un-
necessity of maintaining these points. For example,
consider a radial sweep line which trace the scene
around a point observer. In such applications, we
want to compute an approximation of the visibility
polygon as the visible points are identified by the
sweep line.

Formally, the vertices of the visibility polygon are
given as a stream of input data and we want to sim-
plify the path. Abam et.al proposed a general algo-
rithm that can be used to simplify a path whose ver-
tices are given as a stream of input points[1]. Their
algorithm only solves the min−δ version of the line
simplification problem. Because of the large number
of the input vertices, the result of the min−k version
of the line simplification in streaming model, may be
too large to store, and therefore, no result exists for.

In order to use this algorithm on a path P (n) =
p0, p1, . . . , pn with an error function error, two con-
ditions must be satisfied:

• error must be a c-monotone error function on the
path P (n) for any n > 0. This means that for
any two segments pipj and plpm such that i ≤ l ≤
m ≤ j and pi, pj , pl and pm are vertices of the
path P (n) we have, error(plpm) ≤ c.error(pipj).

• There must be an e-approximate error oracle for
error on the path P (n) to be defined as fol-
lows. In streaming models, we may lose some
vertices of the subpath P (i, j) between points pi

and pj . Then, we can not compute the exact
value of the error function for this segment and
we must approximate this error value. We de-
note the approximated error value of a segment
pipj by error∗(pipj). We call the procedure that
computes this approximation as our error oracle.
An error oracle is e-approximate if for any seg-
ment pipj for which the oracle is called by the
algorithm we have

error(pipj) ≤ error∗(pipj) ≤ e.error(pipj).

Having these two conditions, the algorithm of
Abam et al. [1] simplifies a streaming path P by a
path Q of at most 2k internal vertices. The time the
algorithm needs to update the simplification upon the
arrival of a new point is O(log k) plus the time spent
by the error oracle. Besides the storage needed for
the simplification Q, the algorithm needs O(k) storage
plus the storage needed by the error oracle. The error
of the simplification Q obtained by this algorithm is
at most ce times the error of the optimal simplifica-
tion of P with k points in non-streaming model which
we have all points in memory. So, in order to use this
algorithm we must show that our visibility-dependent
error function, errorvis, is c-monotone and we must
propose an error oracle to approximate the error of
any segment pipj for which the oracle is called in this
algorithm.

Lemma 2 Over the visibility polygon of a point ob-
server, the visibility-dependent error function errorvis

is 2-monotone.

Proof. Assume that points pi, pj , pl and pm lie on
VP(q) such that i ≤ l ≤ m ≤ j and errorvis(plpm)
belongs to a point pk where l ≤ k ≤ m and p′k and p′′k
are respectively the intersection points of the support-
ing line of qpk and segments plpm and pipj . VP(q) is
a star-shaped polygon and q is a point in its center.
Following the order of points on the boundary of this
polygon, the supporting line of segments plq, pmq and
pkq intersect segment pipj and the supporting line of
pkq intersects plpm. There are six permutations for
positions of points pk, p′k and p′′k on the supporting
line of qpk (shown in Figure 3). For all of these con-
figurations we have

errorvis(pipj) ≥

3



part A

part D part E part F

part Cpart B

pj

q

pi pj

pl pm

pk

p′k

p′′k

q

pl pm

p′k

pk

pi

p′′k

q

pk

p′k

p′′k
pl pm

pjpi

q

pi

p′′k

p′k

pk

pl pm

q

pk

p′′k

p′k

pi

pmpl

q

pk

p′k

p′′k

pl pm

pjpi

pj

pj

Figure 3: The visibility-dependent error function is
2-monotone.

max(errorvis(pl, pipj), errorvis(pm, pipj), errorvis(pk, pipj)),

and

errorvis(p
′
k, pipj) ≤ max(errorvis(pl, pipj), errorvis(pm, pipj)).

Consequently, we have

errorvis(pipj) ≥ max(errorvis(p
′
k, pipj), errorvis(pk, pipj)).

We prove the lemma for all these configuration by
showing that

errorvis(plpm) = errorvis(pk, plpm)

≤ 2max(errorvis(p
′
k, pipj), errorvis(pk, pipj))

≤ 2errorvis(pipj).

The first equality is our assumption that pk has
the maximum error on plpm among all points of path
pl, pl+1, . . . , pm and we have already shown the last
inequality. Therefore, it is only enough to show the
middle inequality. We prove this inequality for the
case shown in part A of Figure 3 and skip the other
cases. In this configuration we have,

errorvis(pk, plpm) =
|pkp′k|
|pkq| ≤

|pkp′′k |
|pkq| = errorvis(pk, pipj)

≤ 2max(errorvis(p
′
k, pipj), errorvis(pk, pipj)).

So, we proved that errorvis(plpm) ≤ 2errorvis(pipj).
This can be proved for the other cases. Also, it can
be shown that this upper bond is tight in cases shown
in parts B and E of Figure 3. ¤

Now, we propose an approximating procedure that
approximates errorvis(pipj), the error value of any
segment pipj for which the simplification algorithm is
called.

According to Lemma 1, the approximating oracle
can approximate d(q, pipj), wL(i, j) and wU (i, j) to
find an approximation of errorvis(pipj). It is easy to
find the exact value of d(q, pipj). We use the method
described by Agarwal and Yu [2] to approximate wL

and wU .

Agarwal and Yu [2] have described a streaming al-
gorithm for maintaining a core-set that can be used
to approximate the width of a set of points in any
direction. Their algorithm requires O( 1√

ε
) space and

O( 1
log ε ) amortized time per point to maintain a core-

set from which the width of the input stream can
be computed efficiently. This is done by addition-
ally maintaining the convex hull of the core-set us-
ing the data structure by Brodal and Jacob [3]. This
data structure uses linear space and can be updated
in logarithmic time. Also it supports queries for the
extreme point in a given direction in logarithmic time.
Using these results, we have an (1+ε)-approximate er-
ror oracle for errorvis and the value of errorvis(pipj)
can be computed in O( 1

log ε ) time. Therefore, we can
prove the following lemma:

Lemma 3 There is a (1+ε)-approximate error oracle
for the visibility-dependent error function on visibility

polygon of a point observer that uses O( k2√
ε
) storage

and has O( k√
ε log ε

) amortized update time where k is

the number of the internal points of the simplification.

Combining the result of lemmas 2, 1 and 3 with the
algorithm of Abam et al. [1] described at the begin-
ning of this section, we have the following result on
simplifying the visibility polygon of a point observer
based on the visibility-dependent error function:

Theorem 4 There is a streaming algorithm that
maintains a 2k-simplification for VP(q) under the
visibility-dependent error function. This algorithm

uses O( k2√
ε
) additional storage and each point is pro-

cessed in O( k√
ε log ε

) amortized time and the error of

the result simplification is not larger than (2+ε) times
the error of the optimal offline k-simplification.

References

[1] M. A. Abam, M. de Berg, P. Hachenberger, and
A. Zarei. Streaming Algorithms for Line Simpli-
fication. In 23rd ACM Symp. on Computational
Geometry (SoCG), pages 175–183, 2007.

[2] P.K. Agarwal, H. Yu. A Space-Optimal Data-
Stream Algorithm for Coresets in the Plane. In:
Proc. 23th ACM Symposium on Computational
Geometry (SOCG), pages 1–10, 2007.

[3] G.S. Brodal and R. Jacob. Dynamic Planar Con-
vex Hull. In Proc. 43rd Annual Symposium on
Foundations of Computer Science (FOCS), pages
617–626, 2002

[4] L. Buzer. Optimal Simplification of Polygonal
Chain for Rendering. In 23rd ACM Symp. on
Computational Geometry (SoCG), pages 168–
174, 2007.

4


