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Abstract. We study the optimal pricing for revenue maximization over social
networks in the presence of positive network externalities. In our model, the value
of a digital good for a buyer is a function of the set of buyers who have already
bought the item. In this setting, a decision to buy an item depends on its price
and also on the set of other buyers that have already owned that item. The rev-
enue maximization problem in the context of social networks has been studied by
Hartline, Mirrokni, and Sundararajan [4], following the previous line of research
on optimal viral marketing over social networks [5–7].
We consider the Bayesian setting in which there are some prior knowledge of
the probability distribution on the valuations of buyers. In particular, we study
two iterative pricing models in which a seller iteratively posts a new price for
a digital good (visible to all buyers). In one model, re-pricing of the items are
only allowed at a limited rate. For this case, we give a FPTAS for the optimal
pricing strategy in the general case. In the second model, we allow very frequent
re-pricing of the items. We show that the revenue maximization problem in this
case is inapproximable even for simple deterministic valuation functions. In the
light of this hardness result, we present constant and logarithmic approximation
algorithms when the individual distributions are identical.

1 Introduction

Despite the rapid growth, online social networks have not yet generated significant rev-
enue. Most efforts to design a comprehensive business model for monetizing such social
networks [9, 10], are based on contextual display advertising [12]. An alternative way
to monetize social networks is viral marketing, or advertising through word-of-mouth.
This can be done by understanding the externalities among buyers in a social network.
The increasing popularity of these networks has allowed companies to collect and use
information about inter-relationships among users of social networks. In particular, by
designing certain experiments, these companies can determine how users influence each
others’ activities.
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Consider an item or a service for which one buyer’s valuation is influenced by other
buyers. In many settings, such influence among users are positive. That is, the purchase
value of a buyer for a service increases as more people use this service. In this case,
we say that buyers have positive externalities on each other. Such phenomena arise in
various settings. For example, the value of a cell-phone service that offers extra dis-
counts for calls among people using the same service, increases as more friends buy
the same service. Such positive externality also appears for any high-quality service
through positive reviews or the word-of-mouth advertising.

By taking into account the positive externalities, sellers can employ forward-looking
pricing strategies that maximize their long-term expected revenue. For this purpose,
there is a clear trade-off between the revenue extracted from a buyer at the beginning,
and the revenue from future sales. For example, the seller can give large discounts
at the beginning to convince buyers to adopt the service. These buyers will, in turn,
influence other buyers and the seller can extract more revenue from the rest of the
population, later on. Other than being explored in research papers [4], this idea has
been employed in various marketing strategies in practice, e.g., in selling TiVo digital
video recorders [11].

Preliminaries. Consider a case of selling multiple copies of a digital good (with no cost
for producing a copy) to a set V of n buyers. In the presence of network externality, the
valuation of buyer i for the good is a function of buyers who already own that item,
vi : 2V → R, i.e., vi(S) is the value of the digital good for buyer i, if set S of buyers
already own that item. We say that users have positive externality on each other, if and
only if vi(S) ≤ vi(T ) for each two subsets S ⊆ T ⊆ V . In general, we assume that
the seller is not aware of the exact value of the valuation functions, but she knows the
distribution fi,S with an accumulative distribution Fi,S for each random variable vi(S),
for all S ∈ V and any buyer i. Also, we assume that each buyer is interested only in a
single copy of the item. The seller is allowed to post different prices at different time
steps and buyer i buys the item in a step t if vi(St) − pt ≥ 0, where St is the set of
buyers who own the item in step t, and pt is the price of the item in that step. Note that
vi(∅) does not need to be zero; in fact vi(∅) is the value of the item for a user before
any other buyer owns the item and influence him.

We study optimal iterative pricing strategies without price discrimination during k
time steps. In particular, we assume an iterative posted price setting in which we post
a public price pi at each step i for 1 ≤ i ≤ k. The price pi at each step i is visible to
all buyers, and each buyer might decide to buy the item based on her valuation for the
item and the price of the item in that time step. We consider myopic or impatient buyers
who buy an item at the first time in which the offered price is less than their valuations.
In order to formally define the problem, we should also define each time step. A time
step can be long enough in which the influence among users can propagate completely,
and we can not modify the price when there is a buyer who is interested to buy the item
at the current price. On the other extreme, we can consider settings in which the price
of the item changes fast enough that we do not allow the influence amongst buyers to
propagate in the same time step. In this setting, as we change the price per time step,
we assume the influence among buyers will be effective on the next time step (and not
on the same time step). In the following, we define these two problems formally.



Definition 1. The Basic(k) Problem: In the Basic(k) problem, our goal is to find a
sequence p1, . . . , pk of k prices in k consecutive time steps or days. A buyer decides to
buy the item during a time step as soon as her valuation is more than or equal to the
price offered in that time step. In contrast to the Rapid(k) problem, the buyer’s decision
in a time step immediately affects the valuations of other buyers in the same time step.
More precisely, a time step is assumed to end when no more buyers are willing to buy
the item at the price at this time step.

Definition 2. The Rapid(k) Problem: Given a number k, the Rapid(k) problem is to
design a pricing policy for k consecutive days or time steps. In this problem, a pricing
policy is to set a public price pi at the start of time step (or day) i for each 1 ≤ i ≤ k.
At the start of each time step, after the public price pi is announced, each buyer decides
whether to buy the item or not, based on the price offered on that time step and her
valuation. In the Rapid(k) problem, the decision of a buyer during a time step is not
affected by the action of other buyers in the same time step 6.

One insight about the Rapid(k) model is that buyers react slowly to the new price
and the seller can change the price before the news spreads through the network. On the
other hand, in the Basic(k) model, buyers immediately become aware of the new state
of the network (the information spreads fast), and therefore respond to the new state
of the world before the seller is capable of changing prices. Note that in the Basic(k)
problem, the price sequence will be decreasing. If the price posted at any time step is
greater than the previous price, no buyer would purchase the product at that time step.

A common assumption studied in the context of network externalities is the as-
sumption of submodular influence functions. This assumption has been explored and
justified by several previous work in this framework [3–5, 7]. In the context of revenue
maximization over social networks, Hartline et. al. [4] state this assumption as fol-
lows: suppose that at some time step, S is the set of buyers who have bought the item.
We use the notion of optimal (myopic) revenue of a buyer for S, which is Ri(S) =
maxp p · (1− Fi,S(p)). Following Hartline et.al [4], we consider the optimal revenue
function as the influence function, and assume that the optimal revenue functions (or
influence functions) are submodular, which means that for any two subsets S ⊂ T , and
any element j 6∈ S, Ri(S∪{j})−Ri(S) ≥ Ri(T ∪{j})−Ri(T ). In other words, sub-
modularity corresponds to a diminishing return property of the optimal revenue function
which has been observed in the social network context [3, 5, 7].

Definition 3. We say that all buyers have identical initial distributions if there exists a
distribution F0 so that the valuation of a player is the sum of two independent random
variables, one from F0, and another one from Fi,S , with Fi,∅ = 0.

Definition 4. A probability distribution f with accumulative distribution F satisfies the
monotone hazard rate condition if the function h(p) = f(p)/(1 − F (p)) is monotone
non-decreasing.

Our Contributions. We first show that the deterministic Basic(k) problem is polynomial-
time solvable. Moreover, for the Bayesian Basic(k) problem, we present a fully polynomial-

6 We use the terms time step and day interchangeably.



time approximation scheme. We study the structure of the optimal solution by perform-
ing experiments on randomly generated preferential attachment networks. In particular,
we observe that using a small number of price changes, the seller can achieve almost the
maximum achievable revenue by many price changes. In addition, this property seems
to be closely related to the role of externalities. In particular, the density of the random
graph, and therefore the role of network externalities increases, fewer number of price
changes are required to achieve almost optimal revenue. We show our experiments in
the full version.

Next we show that in contrast to the Basic(k) problem, the Rapid(k) problem is
intractable. For the Rapid(k) problem, we show a strong hardness result: we show that
the Rapid(k) problem is not approximable within any reasonable approximation factor
even in the deterministic case unless P=NP. This hardness result holds even if the in-
fluence functions are submodular and the probability distributions satisfy the monotone
hazard rate condition. In the light of this hardness result, we give an approximation
algorithm using a minor and natural assumption. We show that the Rapid(k) problem
for buyers with submodular influence functions and probability distributions with the
monotone hazard rate condition, and identical initial distributions admits logarithmic
approximation if k is a constant and a constant-factor approximation if k ≥ n

1
c for any

constant c.
Related work. Optimal viral marketing over social networks have been studied ex-
tensively in the computer science literature [6]. For example, Kempe, Kleinberg and
Tardos [5] study the following algorithmic question (posed by Domingos and Richard-
son [3]): How can we identify a set of k influential nodes in a social network to influence
such that after convincing this set to use this service, the subsequent adoption of the ser-
vice is maximized? Most of these models are inspired by the dynamics of adoption of
ideas or technologies in social networks and only explore influence maximization in the
spread of a free good or service over a social network [3, 5, 7]. As a result, they do not
consider the effect of pricing in adopting such services. On the other hand, the pricing
(as studied in this paper) could be an important factor on the probability of adopting a
service, and as a result in the optimal strategies for revenue maximization.

In an earlier work, Hartline, Mirrokni, and Sundararajan [4] study the optimal mar-
keting strategies in the presence of such positive externalities. They study optimal adap-
tive ordering and pricing by which the seller can maximize its expected revenue. How-
ever, in their study, they consider the marketing settings in which the seller can go to
buyers one by one (or in groups) and offer a price to those specific buyers. Allowing
such price discrimination makes the implementation of such strategies hard. Moreover,
price discrimination, although useful for revenue maximization in some settings, may
result in a negative reaction from buyers [8].

2 The Basic(k) Problem

We define B1(S, p) := {i|vi(S) ≥ p} ∪S. Assume a time step where at the beginning,
we set the global price p, and the set S of players already own the item. So B1(S, p)
specifies the set of buyers who immediately want to buy (or already own) the item.
As B1(S, p) will own the item before the time step ends, we can recursively define



Bk(S, p) = B1(Bk−1(S, p), p) and use induction to reason that Bk(S, p) will own
the item in this time step. Let B(S, p) = Bk̂(S, p), where k̂ = max{k|Bk(S, p) −
Bk−1(S, p) 6= ∅}, knowing that all buyers in B(S, p) will own the item before the time
step ends. One can easily argue that the set B(S, p) does not depend on the order of
users who choose to buy the item.

Solving Deterministic Basic(1): In the Basic(1) problem, the goal is to find a price
p1 such that p1 · |B(∅, p1)| is maximized. Let βi := sup{p|i ∈ B(∅, p)} and β :=
{βi|1 ≤ i ≤ n}. WLOG we assume that β1 > β2 . . . > βn. Player i will buy the item
if and only if the price is set to be less than or equal to βi.

Lemma 1. The optimal price p1 is in the set β.

Now we provide an algorithm to find p1 by finding all elements of the set β and
considering the profit βi · B(∅, βi) of each of them, to find the best result. Throughout
the algorithm, we will store a set S of buyers who have bought the item and a global
price g. In the beginning S = ∅ and g = ∞. The algorithm consists of |β| steps. At
the i-th step, we set the price equal to the maximum valuation of remaining players,
considering the influence set to be S. We then update the state of the network until
it stabilizes, and moves to the next step. Our main claim is as follows. At the end of
the i-th step, the set who own the item is B(∅, βi), and the maximum valuation of any
remaining player is equal to βi+1.

Generalization to Deterministic Basic(k): We attempt to solve the Basic(k) prob-
lem by executing the Basic(1) algorithm. We are looking for an optimal sequence
(p1, p2, . . . , pk) in order to maximize

∑k
i=1 |B(∅, pi)−B(∅, pi−1)| · pi. We claim that

an optimal sequence exists such that for every i, pi = βj for some 1 ≤ j ≤ |β|. This
can be shown by a proof similar to that of lemma 1. Thus the problem Basic(k) can be
solved by considering the subproblem A[k′, m] where we must choose a non-increasing
sequence π of k′ prices from the set {β1, β2, . . . βm}, to maximize the profit, and set-
ting the price at the last day to βm. This subproblem can be solved using the following
dynamic program: A[k′,m] = max1≤t<m A[k′ − 1, t] + |B(∅, βm)−B(∅, βt)| · βm.

FPTAS for the Bayesian setting: For the Bayesian (or probabilistic) Basic(k) prob-
lem, we run a similar dynamic program, but the main difficulty for this problem is that
the space of prices is continuous, and we do not have the same set of candidate prices as
we have for the deterministic case. To overcome this issue, we employ a natural idea of
discritizing the space of prices. Then we estimate the expected revenue by a sampling
technique.

3 The Rapid(k) Problem

As we will see in theorem 2, the Rapid(k) problem is hard to approximate even with
submodular influence functions and probability distributions satisfying the monotone
hazard rate condition. So we consider the Rapid(k) problem with submodular influence
functions and probability distributions satisfying the monotone hazard rate condition,
and buyers have identical initial distributions. For this problem, we present an approx-
imation algorithm whose approximation factor is logarithmic for a constant k and its
approximation factor is constant for k ≥ n

1
c for any constant c > 0 (See Algorithm 1).



Algorithm 1 Approximation algorithm for Rapid(k) problem
1: Compute a price p0 which maximizes p(1− F0(p)) and let R0 be this maximum value.
2: Compute a price p1/2 such that F0(p1/2) = 0.5.
3: With probability 1

2
, let c = 1, otherwise c = 2.

4: if c = 1 then
5: Set the price to the optimal myopic price of F0 (i.e, p0) on the first time step and terminate

the algorithm after the first time step.
6: else {c = 2}
7: Post the price p1/2 on the first time step.
8: Let S be the set of buyers that do not buy in the first day, and let their optimal revenues be

R1(V − S) ≥ R2(V − S) ≥ . . . ≥ R|S|(V − S).
9: Let pj be the price which achieves Rj(V − S), and Prj be the probability with which j

accepts pj for any 1 ≤ j ≤ |S|. Thus we have Rj(V − S) = pjPrj .
10: Let d1 < d2 < . . . < dk−1 be the indices returned by lemma 6 as an approximation of

the area under the curve R(V − S) maximizing
∑k−1

j=1 (dj − dj−1) ·Rdj (V − S).

11: Sort prices
pdj

e
for 1 ≤ j ≤ k − 1, and offer them in non-increasing order in days 2 to k.

12: end if

To analyze the expected revenue of the algorithm, we need the following lemmas:

Lemma 2. Let S be the set formed by sampling each element from a set V indepen-
dently with probability at least p. Also let f be a submodular set function defined over
V , i.e., f : 2V → R. Then we have E[f(S)] ≥ pf(V ) [4].

Lemma 3. If the valuation of a buyer is derived from a distribution satisfying the mono-
tone hazard rate condition, she will accept the optimal myopic price with probability at
least 1/e [4].

Lemma 4. Suppose that f is a probability distribution satisfying the monotone hazard
rate condition, with expected value µ and myopic revenue R = maxp p(1 − F (p)).
Then we have R(1 + e) ≥ µ.

Lemma 5. Let i be the index maximizing iai in the set {a1, a2, . . . , am}. Then we have
iai ≥

∑m
j=1 aj/(dlog(m + 1)e).

Lemma 6. For a set {a1 ≥ a2 ≥ . . . ≥ an}, let D = {d1 ≤ d2 ≤ . . . ≤ dk} be the
set of indices maximizing S(D) =

∑k
j=1(dj − dj−1)adj (assuming d0 = 0), over all

sequences of size k. Then we have S(D) ∈ Θ(
∑

i ai

logk n ).

Proof idea: We present an algorithm that iteratively selects rectangles, such that after
the m-th step the total area covered by the rectangles is at least m/ log n using 4m − 1
rectangles. At the start of the m-th step, the uncovered area is partitioned into 4m−1

independent parts. In addition, the length of the lower edge of each of these parts is
ep which is at most n/(2m−1). The algorithm solves each of these parts independently
as follows. We use 3 rectangles for each part in each step. First, using lemma 5 we
know that we can use a single rectangle to cover at least 1/ log ep of the total area of
part. Then, we cover the two resulting uncovered parts by two rectangles, which each
equally divide the lower edge of the corresponding part.



Theorem 1. The expected revenue of the algorithm 1 is at least 1
8e2(e+1) logk n of the

optimal revenue.

Proof. For simplicity assume that we are allowed to set k + 1 prices. In case c = 1, we
set the optimal myopic price of all players and therefore achieve the expected revenue
of nR0. If c = 2, consider the second day of the algorithm. By lemma 3, we know that
each remaining buyer accepts her optimal myopic price with probability at least 1/e, so
for every j we have Prj ≥ 1/e ≥ Pri/e. In addition, we know that for each j ≤ i,
Rj(V − S) ≥ Ri(V − S) ≥ pi/e. We also know that Rj(V − S) ≤ pj . As a result,
pj ≥ pi/e, for each j ≤ i. Therefore, if we offer the player j ≤ i the price pi/e, she will
accept it with probability at least Pri/e (she would have accepted pj with probability
at least Prj ≥ Pri/e; offering a lower price of pi/e will only increase the probability
of acceptance).

For now suppose that we are able to partition players to k different groups, and offer
each group a distinct price. Ignore the additional influence that players can have on each
other. In that case, we can find a set d1 < d2 < . . . < dk maximizing

∑k
j=1(dj −

dj−1) ·Rdj
(V −S). Assume that Di is the set of players y with di−1 < y ≤ di. As we

argued above, if we offer each of these players the price pdi/e, she will accept it with
probability at least Prdi/e. So the expected value of each of the players in Di when
offered pdi/e is at least Prdi/e · pdi/e = Rdi(V − S)/e2. The total expected revenue
in this case will be

∑k
j=1(di−di−1) ·Rdj (V −S)/e2, which, using lemma 6 is at least∑

i Ri(V − S)/(e2 logk n). An important observation is that, if the expected revenue
of a player when she is offered a price p is R, her expected revenue will not decrease
when she is offered a non-increasing price sequence P which contains p . As a result,
we can sort the prices that are offered to different groups, and offer them to all players
in non-increasing order.

Finally, using Lemma 2, and since every player buys at the first day independently
with probability 1/2, we conclude that any buyer i that remains at the second day ob-
serve an expected influence of Ri(V )/2 from all other buyers.

As a result, the expected revenue of our algorithm is nR0/2 (from setting p0 with
probability 1/2 in the first day) plus

∑
i Ri(V ) · (1/8) · (1/(e2 logk n)). Since we set

p1/2 with probability 1/2, a player does not buy at first day with probability 1/2, and we
achieve 1/(e2 logk n) of the value of remaining players in the second day. We also
know that the expected revenue that can be extracted from any player i is at most
E(F0) + E(Fi,V ). Thus, using lemma 4, we conclude that the approximation factor
of the algorithm is 8e2(e + 1) logk n.

At last, we prove the hardness of the Rapid(k) problem even in the deterministic
case with additive (modular) valuation functions. Specifically, we consider the follow-
ing special case of the problem: (i) k = n; (ii) The valuations of the buyers are deter-
ministic, i.e., fi,S is an impulse function, and its value is nonzero only at vi(S); and
finally (iii) The influence functions are additive; ∀i, j, S such that i 6= j and i, j /∈ S
we have vi(S ∪ {j}) = vi(S) + vi({j}), also each two buyers i 6= j, vi({j}) ∈ {0, 1},
and each buyer has a non-negative initial value, i.e, vi(∅) ≥ 0.

We use a reduction from the independent set problem; We show that using any 1
n1−ε -

approximation algorithm for the specified subproblem of Rapid(k), any instance of the



independent set problem can be solved in polynomial time. We discard details here and
show how to construct an instance of Rapid(k) from an instance of the independent set
problem in the full version.

Theorem 2. The Rapid(k) problem with additive influence functions can not be ap-
proximated within any multiplicative factor unless P=NP.

4 Concluding Remarks

In this paper, we introduce new models for studying the optimal pricing and marketing
problems over social networks. We study two specific models and show a major differ-
ence between the complexity of the optimal pricing in these settings. This paper leaves
many problems for future studies.

– We presented results for myopic buyers, but many problems remain open for strate-
gic buyers. Studying optimal pricing strategies for strategic or patient buyers is an
interesting problem. In fact, one can model the pricing problem for the seller and
the optimal strategy for buyers as a game among buyers and the seller, and study
equilibria of such a game. Two possible models have been proposed in [1, 2].

– We studied a monopolistic setting in which a seller does not compete with other
sellers. It would be nice to study this problem in the non-monpolistic settings in
which other sellers may provide similar items over time, and the seller should com-
pete with other sellers to attract parts of the market.
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