
Visibility Extension via Mirror-Edges to Cover Invisible
Segments

Arash Vaezi1

Department of Computer Engineering, Sharif University of Technology avaezi@ce.sharif.edu

Mohammad Ghodsi

Department of Computer Engineering, Sharif University of Technology, Institute for
Research in Fundamental Sciences (IPM), Tehran, Iran. This author’s research was
partially supported by the IPM under grant No: CS1392-2-01, ghodsi@sharif.edu

Abstract

Given a simple polygon P with n vertices, the visibility polygon (VP) of a point

q, or a segment pq inside P can be computed in linear time. We propose a linear

time algorithm to extend the VP of a viewer (point or segment), by converting

some edges of P into mirrors, such that a given non-visible segment uw can also

be seen from the viewer. Various definitions for the visibility of a segment, such

as weak, strong, or complete visibility are considered. Our algorithm finds every

edge that, when converted to a mirror, makes uw visible to our viewer. We find

out exactly which interval of uw becomes visible, by every edge middling as a

mirror, all in linear time. In other words, in this article, we present an algorithm

that, in linear time, for every edge e of P reveals precisely which part of uw is

mirror-visible through e.

Keywords: Visibility Polygon; Mirror; Viewer

1. Introduction

Visibility is the state of being able to see or be seen by a viewer. Given a

set of obstacles in the Euclidean space, two points in the space are said to be

visible to each other, if the line segment that joins them does not intersect any

1Corresponding author

Preprint submitted to Journal February 14, 2019



obstacles. The problem of visibility determination is the process of deciding5

what surfaces can be seen by a certain viewer.

In general, we have a simple polygon P with n vertices and a viewer that is

a point (q), or a segment (pq) inside P. The goal is to find the maximal sub-

polygon of P visible to the viewer. This sub-polygon is normally called visibility

polygon (VP(q) or VP(pq)). Many variations of visibility polygons have been10

studied so far. There are linear time algorithms to compute VP(q) ([11],[9]) or

when the viewer is a segment [9].

Visibility in the presence of mirrors was first introduced by Klee in 1969 [7].

He asked whether every polygon whose edges are all mirrors is illuminable from

every interior point. In 1995 Tokarsky constructed an all-mirror polygon inside15

which there exists a dark point [8].

It was shown in 2010 that the VP of a given point or segment can be com-

puted in the presence of one mirror-edge in O(n) time [10]. Also, it was shown

in the same paper that the union of two visibility polygons, which is a VP con-

sisting of all the points that are in at least one of the two visibility polygons, can20

be computed in O(n) time. A similar discussion reveals that we can compute

the intersection of two visibility polygons in linear time. The intersection visi-

bility polygon contains all the points in the intersection of two given visibility

polygons.

Visibility with mirrors subject to different types of reflection also has been25

studied before [3]. There are two reflection effects for the mirror-edges, diffuse-

reflection to reflect light with all possible angles from a given surface and, spec-

ular reflection which is the mirror-like reflection of light from a surface. In

specular reflection, a single incoming direction is reflected into a single outgoing

direction. The direction in which light is reflected is defined by the law-of-30

reflection. Since we are working in the plane, this law states that the incoming

and the outgoing angles with the normal through the edge are the same. Some

have also specified the maximum number of allowed reflections via mirrors in

between [4].

We consider only the specular single type of reflection. We discuss different35

2



variants of the problem of finding every edge e that when converted to a mirror

(and thus called mirror-edge) can make at least a part of a specific invisible

segment visible (also called e-mirror-visible) to a given point or segment. We

propose linear time algorithms for these problems. Considering a segment as a

viewer, we deal with all different definitions of visibility, namely, weak, complete40

and strong visibility, which was introduced by [5]. Also, we can easily find

mirror-visible intervals of the invisible segment (uw) considering every edge as

a mirror in linear time in the complexity of P.

This paper is organized as follows: In Section 2, notations are described.

Next in Section 3, we present a linear time algorithm to recognize every mirror-45

edge e of P that can make any part of the given segment uw e-mirror-visible to

q. In Section 4, we will show that the e-mirror-visible interval of uw to q can

be computed in constant time. In Section 5, we deal with a given segment (as

a viewer) instead of a point. And finally, Section 6 contains the conclusion.

2. Notations and assumptions50

Suppose P is a simple polygon where int(P) denotes its interior. Two points

x and y are visible to each other, if and only if the relatively open line segment

xy lies completely in int(P). The visibility polygon of a point q in P, denoted

as VP(q), consisting of all points of P visible to q. Edges of VP(q) that are

not edges of P are called windows. The weak visibility polygon of a segment pq,55

denoted as WVP(pq), is the maximal sub-polygon of P visible to at least one

point (not the endpoints) of pq. The visibility of an edge e = (vi, vi+1) of P
can be defined in different ways [5]: P is said to be completely visible from e if

for every point z ∈ P and for any point w ∈ e, w and z are visible (denoted

as CVP short from completely visible polygon). Also, P is said to be strongly60

visible from e if there exists a point w ∈ e such that for every point z ∈ P, w

and z are visible (SVP). These different visibilities can be computed in linear

time (see [9] for WVP and [5] for CVP and SVP).

Suppose an edge e of P is a mirror. Two points x and y are e-mirror-visible,

3



if and only if they are directly visible with one specular reflection through a65

mirror-edge e.

Every edge of P has the potential of converting into a mirror. We can

assume that all edges are mirrors. However, the viewer can only see some edges

of P. From now on, when we talk about an edge, and we need to consider it as

a mirror in order to compute or check something, such as its mirror-visibility70

area, we call it mirror-edge.

Since only an interval of a mirror-edge is useful, we can consider the whole

edge as a mirror, and there is no need to split an edge. Since P is a simple

polygon, the viewer inside P can only see a contiguous (possibly empty) portion

of an edge in P. In other words, only one contiguous part of every edge of P is75

visible for the viewer. We need to find this part, and also make sure that it is

visible to the target segment too.

We assume that n vertices of P are ordered in clockwise order (CWO).

3. Expanding the point visibility polygon

We intend to find every mirror-edge e of P that causes a given point q to80

see any interval of a given segment uw inside P. We will find the exact interval

of uw which is e-mirror-visible to q for every mirror-edge e of P in the next

section.

3.1. Overview of the algorithm

Obviously, any potential mirror-edge e that makes uw mirror-visible to q85

should lie on VP(q) ∩WVP(uw) which can be computed in linear time [10].

If the goal is to check e-mirror-visibility of the whole uw, we should instead

compute the complete visibility polygon of uw (i.e. VP(q) ∩ CVP(uw)).

Suppose that e is intersected by VP(q) ∩WVP(uw) from v1(e) to v2(e) in

CWO . We use this part of e as a mirror. e may be potentially capable of adding90

some invisible area to the visibility polygon of the viewer. We call such edges

potential mirror-edges. Suppose there are m < n potential mirror-edges and e

4



is one of them. So, we need to find out whether any part of uw is e-mirror-

visible. The e-mirror-visibility should be considered only through v1(e) to v2(e)

because other parts of e are not visible for the viewer or for the target. Let95

L1(e) and L2(e) be the two half-lines from the ray-reflection of q at v1(e) and

v2(e) respectively.

Also for every mirror-edge ei, we define q′(ei) to be the image of q considering

ei from v1(ei) to v2(ei) as a mirror (ei is the ith 0 ≤ i ≤ m potential mirror-edge

in CWO).100

q
LBV (e)

RBV (e)

v2(e)

P

v1(e)

u

w

q′(e)

L2(e)

Visible region through the mirror

L1(e)

e

Figure 1: The region between L1(e) and L2(e) is the visible area by q through e being a

mirror. Note that the interval from v1(e) to v2(e) is the only part of the edge e that is

useful for the viewer and may make some invisible area e-mirror-visible for q. We need to

find such intervals for every edge of P. If L2(e) crosses v1(e)LBV (e), or if L1(e) intersects

v2(e)RBV (e), e-mirror-visibility is blocked.

If uw intersects the region between L1(e) and L2(e) and no part of P ob-

structs uw, then uw is e-mirror-visible (see Figure 1). Since P is simple, the

e-mirror-visibility can only be obstructed by reflex vertices.

For each mirror-edge e, we define LBV(e) (for Left Blocking Vertex of e) and

RBV(e) (for Right Blocking Vertex of e) as below. In Subsection 3.2.2, we will105

5



prove that no other reflex vertex can block the e-mirror-visibility area except

for these two reflex vertices.

3.2. LBV s and RBV s

Definition 1. Assume that p1, p2, . . . , pk are the reflex vertices we meet when

tracing WVP(uw) starting from u in CWO before we reach a mirror-edge e.110

We define LBV (e) to be that vertex pj such that pjq′(e) (i.e. from pj to q′(e))

has all other pi (i 6= j 1 ≤ i ≤ k) reflex vertices on its left side. In other words,

if we move from pj to q′(e) all other pi reflex vertices are on our left side (see

Figure 2). If more than one vertex has this property, we choose the one with

the lowest index. If no such vertex exits, we set v1(e) as LBV (e). RBV (e) is115

defined similarly when we trace WVP(uw) from w in counter-clockwise order

(CCWO).

u

w

q

p1

p2

p3

p4

p5

v2(e2)
v1(e3)

v2(e3)

p6

v2(e1)v1(e2)

v1(e1)

q′(e1)

Figure 2: From Definition 1, vertex p5 is LBV (e1).

6



Different mirror-edges may have the same LBVs or RBVs. And, obviously

through Definition 1, for each mirror-edge e, LBV (e) and RBV (e) are unique.

Algorithm 1.120

To check whether q can see any interval of uw through mirror-edge e.

Note that this algorithm is only applicable once LBV and RBV vertices have

been identified.

Assuming that e, from v1(e) to v2(e) is in VP(q)∩WVP(uw) and L1(e) and

L2(e) are as defined above, the following cases are considered:125

1. If L1(e) and L2(e) both lie on one side of uw, then uw is not in the

e-mirror-visible area. That is, q cannot see uw through e.

2. Otherwise, if uw is between L1(e) and L2(e). I.e., it is in the middle of

the mirror-visible area, q can see uw through the mirror-edge e. For two

reasons, first, e is visible to uw, and second, the visibility area from L1(e)130

to L2(e) is a contiguous region.

3. Otherwise, L1(e) or L2(e) crosses uw. In this case, we check whether

any part of P, obstructs the whole visible area through e. For this, it

is checked whether P blocks the rays from the right or left side of e. If

LBV (e) lies on the left side of L2(e), and RBV (e) lies on the right side of135

L1(e), then q can see uw through e. In other words, starting form v2(e) if

we move on L2(e) and LBV (e) places on our left side, and also, starting

from v1(e) if we move on L1(e) and RBV (e) places on our right side, then

uw is e-mirror-visible to q. (In case of CVP(uw), it is sufficient to check

that L1(e) and L2(e) do not cross uw, except in its endpoints.)140

Otherwise, q and uw are not e-mirror-visible.

Analysis

Collision checking of a constant number of points and lines can be done in

O(1) for any mirror-edge. And, this leads to a linear time algorithm correspond-

ing to the complexity of P.145

In case 3, the reason that we only need to check if the entire mirror-visibility

area is blocked is because we know that the mirror-edge e is already visible to

7



uw from v1(e) to v2(e), and that at least one of the half-lines L1(e) or L2(e)

must cross uw. To explain a bit more, without loss of generality assume that

L1(e) crosses uw, and LBV (e) blocks the e-mirror-visibility not to see any part150

of uw, however, suppose on the contrary, that there is some e-mirror-visibility

area left on the right side of w alongside uw. This contradicts v1(e)v2(e) being

visible to uw (see Figure 3).

3.2.1. Computing LBV and RBV vertices

In this Subsection, we exhibit how to discover LBV and RBV vertices in155

linear time corresponding to the complexity of P.

Algorithm 2. First, consider the computation of LBV vertices. We already

know that the potential mirror-edges lie in VP(q) ∩WVP(uw). To make an

easy understanding, these edges are numbered in CWO as e1, e2, . . ..

To present an intuitive explanation, suppose u (the left endpoint of uw) is a160

vertex of P. For every mirror-edge ei (1 ≤ i ≤ n) we intend to find a particular

reflex vertex denoted as LBV (ei). Consider the chain c1(ei) (consisting of all

edges and vertices) of P starting from u and ending at v1(ei). A line (l1(ei))

which includes LBV (ei) and q′(ei) should hold all other reflex vertices of c1(ei)

on its left side (without loss of generality assume that no other reflex vertex165

is on this line). Note that since we already know that ei (and indeed v1(ei))

is visible to uw, no reflex vertex from other parts of P rather than c1(ei) can

block the ei-mirror-visibility area from the left side of ei. Indeed, we want to

find every line l1(ei) (or equivalently LBV (ei)) 1 ≤ i ≤ n. These lines have

one common property; holding all other reflex vertices of their corresponding170

c1(e) on their left side. This is the property of every edge of a convex hull if one

moves on its boundary in the counter-clockwise direction. So, we can construct

a convex shape on the chains c1(ei) 1 ≤ i ≤ n of P to find LBV vertices. This

convex shape clearly should have these vertices (on c1(ei) 1 ≤ i ≤ n) of P on its

left side. To take advantage of this convex shape, we create it while we move on175

a pre-constructed polygon. We may need to update this convex shape before we

reach a mirror-edge and to consider different segments of probably the updated

8



q

u

u′(e)

v2(e)v1(e)

q′(e)

e

w

LBV (e)

Figure 3: In Algorithm 1 case 3, we compare LBV (e) with L2(e) (and RBV (e) with L1(e)).

In fact, this way we only check if the mirror-visibility is completely blocked. If LBV (e) lies on

the right side of L2(e), or RBV (e) lies on the left side of L1(e), then the entire mirror-visibility

area is blocked. We can see that this checking works and there is no need to check anything

rather than the entire mirror-visibility. Assume that the entire mirror-visibility is not blocked,

and assume that L1(e) crosses uw, and also suppose that LBV (e) blocks the mirror-visibility

area so that the viewer cannot see any part of uw. In fact, although we know that the mirror-

visibility area is between L1(e) and L2(e) but according to the above-mentioned assumptions

LBV (e) must be on the right side of L1(e). So, it blocks some part of the e-mirror-visible

area. And the remaining mirror-visible area is on the right side of w. Let extend uw from w

to a point (say u
′
) till uw becomes e-mirror-visible to the viewer. As it is illustrated in this

Figure, the e-mirror-visible part starts from u
′
. However, the existence of such mirror-visible

area on the right side of w, or similarly the existence of u
′
, contradicts v1(e)v2(e) being visible

to uw.

9



w

p3

p2

p5

p1

q

u

p4

p8

p9

p7

p6

c1(e)

c2(e
′)

left-convex-shape

right-convex-shape

Figure 4: For two mirror-edges, say e and e′, c1(e) and c2(e′) illustrate the corresponding

chains. Since v1(e) (or v2(e) on the other side) is different for different mirror-edges, the

corresponding chain is different too. However, every such chain is on the vertices and edges

of P. And, one convex shape on each side can take them all into account. The ”left-convex-

shape” is on the reflex vertices of P, and is used for computing LBV vertices for all mirror-

edges. And the ”the right-convex-shape” helps to compute RBV vertices.

convex shape to discover the correct LBV vertex for the new mirror-edge. In

other words, we start constructing a convex shape on the reflex vertices of P
while we trace a specific polygon which we will discuss later. While we are180

constructing the convex shape on the reflex vertices, we may reach a mirror-

edge or a new reflex vertex. If we reach a new reflex vertex, we update the

convex shape to cover that reflex vertex too, and if we reach a new mirror-edge,

we can find the corresponding LBV vertex for the current mirror-edge using

the current convex shape we create till this step. Shortly we reveal how to use185

a convex shape and how to update it, precisely (see Figure 4).

Considering WVP(uw) we construct a new polygon by adding q′(ei)v1(ei)

and q′(ei)v2(ei) to each mirror-edge ei, and eliminating the v1(ei)v2(ei) interval

from ei.

We call this polygon TP(uw) (Tracing Polygon). Obviously, TP(uw) may190

10



w

v2(e2)
v1(e3)

p3

p6

p2

v2(e1)

p5

p1

v1(e2)

q

q′(e1)

q′(e2)

q′(e3)

u

v2(e3)

v1(e1)

TP (uw)

p4

Figure 5: Constructing TP(uw), which is useful to distinguish LBV vertices for all mirror-

edges. p1, p2, ... ,p6 are the reflex vertices of P.

not be a simple polygon, and has O(n) vertices corresponding to the complexity

of P (see Figure 5).

Starting from u we trace TP(uw) in clockwise order. While doing so, we

construct a convex shape on the reflex vertices of P we visit, using an algorithm

similar to Graham’s scan [6] in P’s order of vertices. We consider u as one reflex195

vertex. Since we already know the order of the points, Graham’s scan takes only

linear time.

As we meet a new reflex vertex, we push the line containing the newly

constructed edge of the convex shape into a stack named S and update the

stack as we move forward. When q′(ei) of a mirror-edge ei is reached in our200

trace, q′(ei) is compared with the line on the top of the stack called `. If q′(ei)

11



lies on the right side of `, ` is popped from S. Otherwise, if q′(ei) lies on, or on

the left side of `, then we assign ` as the chosen line for ei, denoted as cl(i). `

(Top(S)) is then checked with q′(ei+1), q′(ei+2), . . . , to become their possible

chosen lines, or popped up. If the stack is empty when we visit q′(ei), we assign205

LBV (ei) = v1(ei).

When a new reflex vertex is met, the convex shape and the stack is updated

accordingly (see Figure 6), and the algorithm continues.

w

p4

q

p2

p5

p1

v2(e2)
v1(e3)

v1(e4)

v2(e3)

v2(e1)
v2(e4)v1(e2)

v1(e1)

p3

p6
On the Line

q′(e3)

u

Figure 6: Updating the convex shape while tracing TP(uw) and facing with new reflex vertices.

p5 is chosen as LBV (e1), p3 and p2 as LBV (e2) and LBV (e3), respectively. As we consider u

as a reflex vertex, for the fourth mirror-edge we select p1. However, the entire e4-mirror-visible

area is on the right side of uw.

See Figure 7, for an example. Here, the stack contains 3 lines (`1, `2, `3, the

12



last on top) when we reach v1(e1). We check q′(e1) with `3, which is on Top(S),210

to see if it has q′(e1) on its left. If q′(e1) lies on the right, then q′(e1) is checked

with `2. Here, cl(1) = `3.

w

v2(e2)
v1(e3)

p3

v2(e3)

p6

p4

p2

v2(e4)

v1(e1)

v2(e1)

p5

`3 = p3p5

`2 = p2p3

`1 = p1p2

p1

v1(e2)

WV P (uw)

q

v1(e4)

q′(e1)

q′(e2)

q′(e3)

u

Figure 7: Constructing the convex hull to distinguish LBV vertices for all mirror-edges. p1,

p2, p3 and p5 are the reflex vertices that are used in the convex hull construction. Four

mirror-edges e1 to e4 are shown. In this figure, p5 is LBV(e1).

For each mirror-edge ei, we consider the two reflex vertices of cl(i), say re1

and re2 (in CCWO with respect to the convex shape). If q′(ei) lies on the left

of cl(i), then LBV (ei) = re2. Otherwise, it lies on cl(i), then LBV (ei) = re1.215

If there are more than two reflex vertices consider the last on cl(i) (re1).

13



The RBV vertices are computed similarly by tracing TP(uw) in counter-

clockwise direction starting from w.

At the end, for each ei, LBV (ei) chosen by the above-mentioned algorithm is

compared with the segment d = q′(ei)u. If LBV (ei) lies on the left side of d, or220

on d, or if LBV (ei) = u, then LBV (ei) does not obstruct the ei-mirror-visibility

area. In this case, we set LBV (ei) = v1(ei). We proceed similarly for RBV

vertices in the other direction. We need to trace WVP(uw) in both directions to

correct these cases. From now on, we know that if for a mirror-edge e, LBV (e)

lies on or on the left side of d, then v1(e) is assigned to LBV (e). RBV vertices225

should be compared with q′(ei)w.

Note that there might be some cases that LBV (e) satisfies Definition 1, but

it is on the left side of d = q′(ei)u. So, LBV (e) does not block anything even

partially. In these cases, we assign v1(e) to LBV (e). However, LBV (e) might

be between d and L1(e), we deal with this case in Section 4. Note that L1(e)230

might be on the left side or the right side of d (see Figure 8).

.

The algorithm can cover some situations where uw does not have their end-

points on the boundary of P:

1. We mentioned before that we assume that u is on P, and also we sup-235

posed that u is a reflex vertex as we wanted to start tracing TP(uw) and

constructing the convex shape. However, uw is a given segment inside P.

To find a starting point for the tracing function, we can move on P in the

counter-clockwise direction starting from v1(e1) till we reach the closest

edge of P to u. We can use one endpoint of this edge. Let at least one240

endpoint of this edge be upon uw. Note that since not any point of uw is

visible to the viewer, we can use v2(em) and move on P in clockwise di-

rection starting from v2(em), and locate a starting point to trace TP(uw),

and start constructing the right-convex-shape to discover RBV vertices

(m is the number of mirror-edges).245

2. For the case that uw does not have its endpoints on the boundary of P,

14



v1 v2

LBV (e)

v1 v2

q

u

q
′

e

w

LBV (e)

d

L1(e)

L2(e)

v1 v2

u

q
′

e

w

d

L1(e)

L2(e)

LBV (e)

q
′

u

w
L1(e)

L2(e)

LBV (e)

d

v1 v2
e

q

e
(C)

(A) (B)

(D)

P P

P P

P

u

w

q

q

RBV (e)

Figure 8: Four different positions for LBV (e) vertices are illustrated. Note that uw must see

v1v2 entirely. (A) Shows a case in which LBV is on the right side of both d = q
′
(e)u and

L1(e). In (B) LBV (e) is between d and L1(e). (C) illustrates a case that L1(e) is on the left

side of d, and LBV (e) is between L1(e) and d. (D) reveals a case that LBV (e) blocks the

entire mirror-visibility area.

there might be some mirror-edge e which can see uw from its behind. In

other words, e may see a part of the invisible target segment from w to

u, and w is on the left side of the e-mirror-visible interval when we are

standing on uw and facing to e (see Figure 9). And, we need to swap the250

position of u and w and run the algorithms mentioned above one more

time to see if these kinds of mirror-edges exist that may make an interval of

the target mirror-visible to q. So, we need to use wu instead of uw. And,

we need to run all the above-mentioned algorithms one more time using

wu, which takes an additional O(n) time complexity. Note that these two255

15



runs do not have any conflict with each other, and they find absolutely

independent mirror-edges. This is because a mirror-edge e which sees uw

from behind will be eliminated in the first run. And this is because, in

the first run, using uw, w is placed on the left side of L1(e), and e will be

eliminated through case 1 of Algorithm 1.260

All the above-mentioned operations can be performed in O(n) time.

The paper [2] also describes an algorithm for computing the LBV and RBV

vertices. Here, the LBV and RBV vertices are computed differently. Please

refer to [2] for details.

u

w
e

new − w

new − u

q

Figure 9: Mirror-edge e sees uw from its behind. And, we need to replace w with u and run

all algorithms one more time to find these kinds of mirror-edges.

3.2.2. Proof of correctness and analysis of the algorithm265

In this Subsection, we present the proof and the analysis of the algorithm.

Theorem 1. Suppose P is a simple polygon with n vertices, q is a given point

inside P, and uw is a given segment which is not directly visible by q. Every

edge e that makes uw e-mirror-visible to q can be found in O(n) time.

16



In order to provide a simple presentation for the paper, we will prove this270

theorem assuming that uw is a diagonal of P. Since the assertion that uw

is actually a diagonal is not used in the proof, the stated proof holds for any

segment inside P.

Also, without loss of generality, for the sake of simplicity from now on, we

assume that no mirror-edge can see uw from behind, and there is no need to275

run the algorithms as mentioned earlier one more time considering wu.

1. The algorithm correctly computes all LBV ’s and RBV ’s in O(n). This is

clear from Definition 1 and Algorithm 2. This algorithm constructs two

convex shapes.

2. Algorithm 1 correctly checks whether each mirror-edge e can make at least280

a part of the given segment uw e-mirror-visible to q. For this, we only

need to prove that the algorithm is correct if case 3 occurs. Other cases are

obvious. That is, if L1(e) or L2(e) or both cross uw, and if LBV (e) = pj

does not cross L2(e) where we decide that uw is e-mirror-visible from q,

then no other reflex vertices can completely obstruct the e-mirror-visible285

area. Suppose on the contrary, that another vertex pl completely obstructs

the visible area while pj does not. In this case, q′(e)pl is on the right side

of L2(e) and thus is on the right side of q′(e)pj which contradicts pj being

LBV (e). Similar arguments hold for RBV . We can also prove that no

other reflex vertices (other than the left and right chains that appear when290

we trace the WVP(uw)) can obstruct the visibility.

4. Specifying the visible part of uw

In this section, we present an algorithm to determine the visible interval of

the given segment (uw) which is e-mirror-visible through a given mirror-edge

(e).295

Lemma 2. We have a simple polygon P, a point q as a viewer, and a segment

uw, inside P. In linear time corresponding to the complexity of P, for every

mirror-edge e, we can compute the exact interval of uw that is e-mirror-visible.

17



We will show for a specified mirror-edge e, while we have LBV (e), we can

find the e-mirror-visible part of uw in constant time. Therefore, it takes O(n)300

time to distinguish the visible intervals of uw, for every mirror-edge.

Consider a mirror-edge e, without loss of generality suppose we know uw is e-

mirror-visible. We can find the visible part of uw using the following algorithm:

Algorithm 3 (to find the visible part of uw through mirror-edge e).305

Let u′(e) and w′(e) corresponding to u and w, be the endpoints of the e-mirror-

visible interval of uw, respectively.

Note that Algorithm 2 provides all LBV and RBV vertices of all mirror-

edges.

1. If LBV (e) = v1(e): Then the intersection of L1(e) and uw determines310

u′(e). Clearly, if L1(e) places in the left side of uw then u itself is u′(e).

2. If LBV (e) 6= v1(e): If LBV (e) does not lie on the right side of L1(e), then

again the intersection of L1(e) and uw determines u′(e). Otherwise,

we compute the intersection of the extension of q′(e)LBV (e) and uw. The

intersection point is u′(e).315

Acting the same way we can find w′.

Correctness and analysis of Algorithm 3

First step is obvious because there is nothing to obstruct the mirror-visibility

area, and it takes constant time. About the second step, if LBV (e) lies–on or–

on the left side of L1(e), the intersection point of L1(e) and uw is u′(e). Note320

that we already know that L1(e) is not in the right side of w because we knew

uw is e-mirror-visible to q. If LBV (e) lies on the right side of L1, then from

Definition 1 we know LBV (e) is e-mirror-visible. We only need to prove that the

extension of q′(e)LBV (e) determines u′(e). There may be several reflex vertices

on the right side of L1(e). Suppose on the contrary, u′′(e), the intersection of325

uw and q′pj (pj 6= LBV (e) is a reflex vertex on the right side of L1), is closer

to u. Then, the line q′pju′′(e) must be on the right side of LBV (e), which

contradicts Definition 1 (see Figure 10).

18



q

p1

p2

p3

p4

p5

u

w
u′(e2)

p′3

v1(e1)

v2(e1)

v2(e2)v1(e2)

q′(e2)

Figure 10: p3 = LBV (e2), and the intersection of the extension of q′(e2)p3 and uw is u′(e2).

Since no direction for L1(e), or property of q being in the left side of e was

used, the same proof holds for RBV (e).330

5. Extending a segment visibility polygon

In this section, we deal with different cases of the problem of making two

invisible segments mirror-visible to each other.

Lemma 3. We are given a simple polygon P and two segments, say xy and

uw, inside P. Assume that uw is not visible to xy. For every mirror-edge e,335

we can find out if uw is weakly, completely, or strongly mirror-visible to xy, in

linear time corresponding to the complexity of P.

19



To prove Lemma 3, we use all of the above-mentioned algorithms. However,

here as we deal with a segment as a viewer, we encounter more difficulties than in

the previous sections. For instance, we need to consider different vertices in place340

of v1(e), or v2(e) in Algorithm 1. And, to find these vertices the intersection of

different visibility polygons may be required. Also, different half-lines may be

used as replacement for L1(e) and L2(e).

We have the following cases:

1. The whole xy can see the whole uw.345

2. The whole xy can see at least one point of uw.

3. xy can see the whole uw in a weak visible way.

4. At least one point of xy can see at least one point of uw.

We deal with these cases in the following subsections. Without loss of gener-

ality, consider a mirror-edge e on P. In each subsection, we find appropriate350

substitutes for v1(e), v2(e), L1(e), and L2(e).

5.1. The whole xy can see the whole uw

First, we compute the intersection visibility polygon of the endpoints of xy (x

and y). Then, while tracing the complete visibility polygon of uw (CVP(uw)),

we select the common part of each edge with the intersection visibility polygon355

of the endpoints. As a result, we have v1(e) and v2(e) for every mirror-edge e.

This step only takes O(n) time complexity.

Consider x as a viewer, let the reflective ray from v1(e) be L1,x(e), and the

reflective ray from v2(e) be L2,x(e). Similarly, we define L1,y(e) and L2,y(e) for

y.360

We should use L1,x(e) as L1(e), and L2,y(e) as L2(e) in Algorithm 1. Since

we know any potential mirror-edge from v1(e) to v2(e) is completely visible for

xy, it is sufficient to check L1,x(e) to lie in the left side of u, and L2,y(e) to lie in

the right side of w.

20



5.2. The whole xy can see at least one point of uw365

In this subsection, we want to find out if there is any point on uw which is

e-mirror-visible to the whole xy.

We can use a method similar to the previous subsection, only now the

strongly visibility polygon of uw (SVP(uw)) is required. We use L1,x(e) as

L1(e), and L2,y(e) as L2(e).370

Considering SVP(uw), there is an interval or at least a point on uw which

holds the property of being strongly visible.

For the last step, we need to find out if this point or segment has an inter-

section with the interval from u′(e) to w′(e).

5.3. xy can see the whole uw in a weak visible way375

There may be no point on xy to see the whole uw by itself. Here, we want

to find out if uw is completely e-mirror-visible considering all the points on xy.

We use the intersection of WVP(xy) and CVP(uw), to find all the potential

mirror-edges (v1 and v2 vertices).

Since we deal with the weak visibility polygon, we may face some mirror-380

edges which are visible to none of the endpoints of xy, but to an interval of

xy in the middle. We need to find this interval for each mirror-edge. In fact,

different mirror-edges may have different points on xy, to make their L1 and L2

half-lines. It is sufficient to check these half-lines with the endpoints of uw to

make sure that the mirror-visibility region covers uw completely.385

For a specific mirror-edge ei, let x(ei) and y(ei) be the points on xy corre-

sponding to x and y respectively. We can use the ray reflection of x(ei) on ei

as L1(ei), and the ray reflection of y(ei) as L2(ei) in Algorithm 1. In O(n) time

we can find these points on xy for all mirror-edges through the following way:

Definition 2. Consider a potential mirror-edge e (from v1(e) to v2(e)) such390

that there are two reflex vertices that block the visibility of a portion of xy before

v1(e) and after v2(e) in P’vertex order. Define r1(e) and r2(e) to be these reflex

vertices, respectively.

21



Obviously, if there is no r1(e) or r2(e) then there is no obstruction, and we

can use the corresponding v1(e) and v2(e), to find L1(e) and L2(e).395

See Figure 11, in this figure we have r1(e) and r2(e) vertices. The blue

sub-segment of xy can see e completely, but all the points –from x(e) to the

blue sub-segment, and from the blue sub-segment to y(e)– cannot see at least

some part of e. For the points on the other side of these yellow points, e is not

visible. The reflected rays from e ,which is between the green half-lines, is the400

area which segment xy can see, in a weak visible way, through e. We call these

half-lines L1,y(e) and L2,x(e).

v2(e)

x
r1(e)

r2(e)

ev1(e)

x(e)

y(e)

L2,x(e)

L1,y(e)

y

Figure 11: r1(e), r2(e), x(e) and y(e) are shown for mirror-edge e.

In order to find x(e) and y(e), we only need r1(e) and r2(e), because we

can extend v2(e)r1(e) and v1(e)r2(e) to find their intersection with xy. The

intersection points are x(e) and y(e).405

Suppose there are m potential mirror-edges, we should find r1(ej) and r2(ej)

1 ≤ j ≤ m. The idea is similar to Algorithm 2.

Computing r1(e) and r2(e) reflex vertices for all mirror-edges:

To compute these reflex vertices we use two convex shapes over the reflex

vertices in two directions. For a particular mirror-edge e, r1(e)v2 should hold410

all left-side reflex vertices on its left, and of course r2(e)v1 should hold all the

right-side reflex vertices on its right. Note that it is not important if there were

22



more than one reflex vertex on either r1(e)v2 or r2(e)v1 (see Figure 12).

v2(e)

x

y

ev1(e)

x
′

y
′

Convex Shape

L2,x
′

r1(e)

r2(e)

Figure 12: Constructing convex shape similar to Algorithm 2.

In this subsection, we use L1,y(e) and L2,x(e) instead of L1(e) and L2(e)

respectively. Also, while using Algorithm 2, we need CVP(uw) in place of415

WVP(uw) to construct TP(uw) .

5.4. At least one point of xy can see at least one point of uw

Here we can behave similar to the previous subsection except that we need

WVP(xy) ∩ WVP(uw) to find potential mirror-edges. And, considering a

mirror-edge e, we use L1,x(e) and L2,y(e) half-lines to be used in Algorithm420

1.

Also, we need WVP(uw) in the construction of TP(uw) because it is suffi-

cient to make e-mirror-visible any point on xy to any point on uw.

6. Discussion

We dealt with the problem of extending the visibility polygon of a given425

point or a segment in a simple polygon so that another segment becomes visible

to the viewer.

23



We tried to achieve this purpose by converting some edges of the polygon

to mirrors. The goal is to find all such edges, and the mirror-visible part of

the target segment by each of these edges individually. Using the algorithm we430

proposed, this can be done in linear time corresponding to the complexity of

the simple polygon.

We covered all the possible types of visibility when we dealt with a given

segment as a viewer, and we wanted to extend its visibility to see another given

segment. We proved all the possible cases need just O(n) time.435

We only discussed finding the edges to be mirrors, but it is shown that having

two mirrors, the resulting visibility polygon, may not be a simple polygon [11].

Also, having h mirrors, the number of vertices of the resulting visibility polygon,

can be O(n + h2), and for h mirrors, each projection, and its relative visibility

polygon can be computed in O(n) time, which leads to overall time complexity440

of O(hn).

The problem can be extended as; put mirrors inside the polygon, a point

with a limited visibility area, find some edges which can give the point a specific

vision or different visions and so on.

References445

[1] A. Vaezi, M. Ghodsi. How to Extend Visibility Polygons by Mirrors to Cover

Invisible Segments. In: WALCOM, 42–53, 2017.

[2] A. Vaezi, Ghodsi, M. Extending Visibility Polygons by Mirrors to Cover Specific

Targets. In: EuroCG, 13–16, 2013.

[3] B. Aronov, A. R. Davis, T. K. Day, S. P. Pal, D. Prasad. Visibility with one450

reflection. Discrete & computational Geometry, 19: 553–574, 1998.

[4] B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, D. Prasad. Visibility with multiple

specular reflections. Discrete & computational Geometry, 20: 6178, 1998.

[5] D. Avis, G. T. Toussaint. An optional algorithm for determining the visibility of a

polygon from an edge. IEEE Transactions on Computers, C-30: 910-1014, 1981.455

24



[6] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf Computational Ge-

ometry Algorithms and Applications. Springer, third edition Department of Com-

puter Science Utrecht University, 13,14 2008.

[7] V. Klee. Is every polygonal region illuminable from some point? Computational

Geometry: Amer.Math. Monthly, 76: 180, 1969.460

[8] G. T. Tokarsky. Polygonal rooms not illuminable from every point. American

Mathematical Monthly, 102: 867–879, 1995.

[9] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time

algorithms for visibility and shortest path problems inside triangulated simple

polygons. Algorithmica, 2: 209–233, 1987.465

[10] B. Kouhestani, M. Asgaripour, S. S. Mahdavi, A. Nouri, and A. Mohades. Visibil-

ity Polygons in the Presence of a Mirror Edge. In Proc. 26th European Workshop

on Computational Geometry, 26: 209–212, 2010.

[11] D. T. Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image

Processing, 22: 207–221, 1983.470

25


	Introduction
	Notations and assumptions
	Expanding the point visibility polygon
	Overview of the algorithm
	LBVs and RBVs
	Computing LBV and RBV vertices
	Proof of correctness and analysis of the algorithm


	Specifying the visible part of uw
	Extending a segment visibility polygon
	The whole xy can see the whole uw 
	The whole xy can see at least one point of uw 
	xy can see the whole uw in a weak visible way
	At least one point of xy can see at least one point of uw

	Discussion

