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Abstract We consider the problem of walking a robot in an unknown polygon called
“street”, starting from a point s to reach a target . The robot is assumed to have
minimal sensing capability in a way that cannot infer any geometric properties of
the environment, such as its coordinates, angles or distances; but it is equipped with
a sensor that can only detect the discontinuities in the depth information (or gaps).
Our robot can also locate the target point ¢ as soon as it enters in robot’s visibility
region. In addition, one pebble is assumed to be available to the robot to be used as
an identifiable point and to mark any position of the street. Our goal is to generate
a shortest possible path for such robot from s to ¢ in such a scene. We offer a data
structure similar to Gap Navigation Tree to maintain the essential sensed data of the
explored street. We present an online strategy that guides our robot to navigate the
scene and reach the target. The strategy is based only on what is sensed at each point,
and on what is saved in the data structure. Although the robot has a limited capability,
we show that the robot’s detour from the shortest path can be restricted such that our
generated path is at most 11 times as long as the shortest path to the target. We also
consider a special case of the problem in which the street is rectilinear and the search
path has to be rectilinear. We propose a search strategy for this case that generates an
L-shortest path from s to 7.
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1 Introduction

Path planning is one of the basic problems in computational geometry, online algo-
rithms, and robotics (Icking et al. 1999, Mitchell 1998, Tang et al. 2006, Xu 2009).
In some robotics applications, the environment is unknown and no geometric map
of the scene is available (Gfeller et al. 2008) in advance and one problem is to find
a movement path for a robot to reach a target. In some path planning problems in
robotics, the robot’s sensors are the only tool available to collect information from
the scene, and the volume of information gathered from the environment depends on
the capability of the sensors. Among many variations, robots with a simple sensing
model has attracted some researchers since the robot has low cost, is less sensitive
to failure, is robust against sensing uncertainties and noise, and applicable to many
situations (Chen et al. 2003, Gfeller et al. 2008).

In this research, we consider robots with limited abilities. More specifically, we
assume that our robot has an abstract sensor that can only detect the order of discon-
tinuities in the depth information (or gaps) in its visibility region. Each discontinuity
corresponds to a portion of the scene that is not visible to the robot (see Fig. 1). The
robot assigns a label L or R to every gap g depending on which side of the gap the
hidden region is located. Also, the robot recognizes a target point ¢ whenever it is in
the robot’s omnidirectional and unbounded field of view. In order to cover the hidden
region behind each gap, the robot moves towards the gap in an arbitrary number of
steps. Note that the robot cannot measure any angles or distances to the walls of the
scene, or infer its current position. In addition, we assume that the robot has access to
a single pebble which is a detectable object that can be put any place and can be lifted
again (Tabatabaei and Ghodsi 2013).

Throughout this paper, the workspace is assumed to be a restricted simple polygon
called a street. A simple polygon P with two vertices s and 7 is called a street if the
counter-clockwise polygonal chain R, from s to # and the clockwise chain L4y
from s to ¢ are mutually weakly visible (Klein 1992). This means that each point on the
left chain L.p4i, can see at least one point on the right chain R.j,i, and vice versa, (see
Fig. 1a). In some literatures, a street is also known as L-R visible polygon (Das et al.
1997). A point robot equipped with the gap sensor starts navigating this environment
from s to reach the target #. The robot has no geometric map of the scene and has to
make decisions based only on the information gathered through the sensor to achieve
the target.

Klein proposed the first competitive online strategy for searching a target point
in a street (Klein 1992) and called this problem as walking in streets. The robot
employed in Klein (1992) is equipped with a 360 degree vision system. Also, it can
measure each angle or distance to the walls of the street. As the robot moves, a partial
map is constructed from what has been seen so far. Klein proved an upper bound
of 5.72 for the competitive ratio (the ratio of the length of the traversed path to the
shortest path from s to ¢) of this problem. Also, it was proved later that there is no
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Fig. 1 a A street in which
Lcpain 1s the left chain and
Rehain is the right chain. The gap C
colored region is the visibility
polygon of the point robot ¢ in
the street. b The position of
discontinuities in the depth
information detected by the
sensor
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strategy with the competitive ratio less than /2 for this problem. A strategy similar
to Klein’s with the competitive ratio of = 4 1 has been introduced in Lopez-Ortiz
and Adviser-Ragde (1996), Lopez-Ortiz and Schuierer (1995) which is robust under
small navigation errors. Other researchers have presented several algorithms with
the competitive ratios between +/2 and the upper bound of 5.72 (Kleinberg 1994,
Lopez-Ortiz and Schuierer (1995)). Icking et al. presented an optimal strategy with
the competitive ratio of /2 (Icking et al. 1999).

The limited sensing model applied in this paper was first introduced by Tovar et al.
(2003). Gap Navigation Tree (GNT) has been proposed to maintain and update the
gaps seen along the navigating path. This tree is built by detecting the discontinuities
in the depth information (gaps) and updated by the topological changes of them. These
changes are: appearances, disappearances, merges, and splits of gaps. Once the GNT
is completed, it can encode the shortest path from its root (start point of the navigation)
to any place in a simply connected environment. It is shown in Tovar et al. (2007) that,
using this data structure, the globally optimal navigation is impossible in multiply
connected environments, but locally optimal exploration can be achieved. Guilamo
et al. (2004), Sachs et al. (2004) presented an online algorithm for the well-known
visibility problem pursuit-evasion in an unknown simply connected environment using
GNT. As mentioned in Tovar et al. (2007), GNT is well suited for solving other
visibility problems. An optimal search strategy for a disc robot, using GNT, is presented
in Lopez-Padilla et al. (2013) to find a target point ¢, starting from s in a simply
connected environment.

Another minimal sensing model was introduced by Suri et al. (2008) for a simple
robot. They assumed that the robot can only sense the combinatorial (non-metric)
properties of its surroundings. The sensor can detect vertices of the polygon in its vis-
ibility region, and can report if there is a polygon edge between consecutive vertices.
Two combinatorial vectors, combinatorial visibility vector (cvv) and point identifi-
cation vector (piv), were proposed for maintaining the gathered data. Despite of the
minimal capability, they showed that the robot can obtain many geometric reasoning
and can accomplish many non-trivial tasks.

In this paper we present an online search strategy for a point robot equipped with
the gap sensor, and a single pebble. The goal is to reach the target point ¢ in a street
environment, starting from s. The minimal sensing model that we apply for our robot
is in contrast with the strong sensing model that Klein used for walking in streets
problem. A data structure that is maintained and updated similar to GNT is introduced
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Fig. 2 The dynamically changes of the GNT when the robot moves towards a gap. The dark circle denotes
the location of the robot, and squares and other circles display primitive and non-primitive nodes respectively

for designing the robot search path. We show that the search path which is generated
by our strategy is at most 11 times longer than the shortest path. Also, we show that if
the robot has access to many pebbles, this ratio reduces to 9. To our knowledge, this
is the first result that proposes a strategy with proven competitive ratio for walking in
streets with the minimal sensing model.

2 The sensing model and motion primitive
2.1 Gap sensor

Gap sensor is a naive visual sensing model. At any position ¢ of the environment, a
cyclically ordered of discontinuities in the depth information in visibility region of the
point (or V (q)) is what the robot’s sensor detects. This is shown in Fig. 1b. Also, the
robot assigns a left label to a transition from far to near and assigns a right label to a
transition from near to far (Tovar et al. 2007). The robot can only walk towards the
gaps.

GNT data structure has been introduced as a mean for navigating an unknown
scene for the robot system. Here, we briefly explain the data structure from Tovar et
al. (2007), and refer to it as T. The root of T is the robot’s location. Each child of the
root is a gap g in the robot’s visibility region; these gaps are circularly ordered around
the root. Each node, except the root, has a label of L or R. L means that the part of the
scene which is hidden behind the gap is in the left side of the gap. R means that the
part of the scene hidden behind the gap is in the right side of the gap, (Fig. 2a).
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As the robot moves, several critical events may occur that can change the combi-
natorial structure of the robot visibility region. There are four types of such critical
events each of which will update T,. These are: the appearance and disappearance
events that happen when the robot crosses the inflection rays, the merge and split
events that occur when the robot crosses the bitangent complements. When a disap-
pearance event occurs, a gap g disappears and the corresponding node to the gap g is
eliminated from 7, (see Fig. 2c). When a gap appears, a child is augmented to the root
of T, in a location where the circular ordering of the gaps is maintained. Each of the
added nodes shows a portion of the environment that was so far visible, and now is
invisible to the robot. These new nodes are specified as primitive (see Fig. 2d). If a gap
g splits into g and g3, then it will be replaced by the new nodes g; and g», (shown in
Fig. 2b, e). If two gaps g1 and g> merge into g, then g1 and g», the adjacent children of
the root, will be the children of a new node g which is added to the root (see Fig. 2f).
The robot follows the non-primitive gaps until it reaches a point at which all leaf nodes
are primitive. At this point, the robot has observed the entire environment. This data
structure, after completion, can encode the shortest paths from the start point to any
point of the environment.

2.2 Motion primitive

A point robot starts navigating the street with unit speed starting from the fixed point
s. Its sensor reports the gaps and their labels in their counterclockwise cyclic order as
they appear in robot’s visibility region. The robot carries a pebble which is a marker
device and is distinguishable. The robot can orient its heading to the gaps and walks
towards them in an arbitrary number of steps; for instance: two steps towards a gap
&x, or four steps towards a gap g,. Each step is a constant distance which is already
specified for the robot by its manufacturer. The robot moves towards a gap, but it
cannot report its distance to the gaps or the walls, nor it can measure the size of gaps,
and their angles. Whenever a critical event occurs, the robot can stop to make a reliable
decision to reach the target. Also, the robot moves towards the pebble and the target
t as soon it sees them and continues its movement until it touches the pebble or the
target.

3 Preliminarily results

At each point p of the robot’s search path, its sensor either sees the target, or achieves
a set of gaps with the label of L or R (/-gap and r-gap for abbreviation). If the target
is visible, the robot moves towards the target to reach it. When the robot reports the
position of the gaps (non-primitive gaps), it should move towards the gaps to find the
target.

Definition 1 In the set of /-gaps, the gap that is in the right side of the others is called
most-advanced left gap and is denoted by g;. Analogously, in the set of 7-gaps, the gap
that is in the left side of the others is called most-advanced right gap and is denoted

by g,, (Fig. 3a).
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Fig. 3 a g, and g; are the most-advanced gaps at the start point s. v, and v; are the corresponding reflex
vertices. b Sequences of the most-advanced gaps may occur, as the robot moves. The funnel situation which
ends as soon as the robot crosses over the segment d. Dotted chains, starting from s, are the two convex
chains of the funnel. ¢ In this case there is only one most-advanced gap, at start point s

Each gap is adjacent to a reflex vertex. The corresponding reflex vertices of g; and
gr are denoted by v; and v, (see Fig. 3a). The following property holds:

Lemma 1 On any point of the robot’s search path, if the target is not visible, then it
is behind one of the most-advanced gaps.

Proof Let the target be behind a gap other then g; or g,. Without loss of generality,
assume that it is behind an r-gap, so the points that are immediately behind g, are not
visible by any point on the opposite chain. This contradicts the definition of the street.

The above property of the two gaps is similar to the main feature of the top-most
left packet and top-most right pocket in Klein (1992). As the robot moves in the
environment, g; and g, may dynamically change. The critical events that change
the structure of the robot’s visibility region can also change g; and g,. In the next
section, we show how the critical events change the left most-advanced gaps such
that a sequence of the left most-advanced gaps, [g1, &2, - - -, &m], appears in the
robot’s visibility region, while exploring the street. Similarly the sequence of the right
most-advanced gaps, [gr1, &2, - - - » &n ], may occur (see Fig. 3b).

At each point, if there is exactly one of the two gaps (g, or g;), then the target is
hidden behind the gap. Thus, there is no ambiguity and the robot moves towards the
gap, (Fig. 3c). If both of g, and g; exist, then the target is hidden behind one of these
gaps. This case is called a funnel (see Fig. 3b). As soon as the robot enters a point in
which both of g, and g; exist, a funnel situation starts. This case continues until one of
gr or g; disappears (see Fig. 3b), or they become collinear, (point 2 in Fig. 4a). When
the robot enters a point in which there is a funnel situation, the only non-trivial case
in this navigation occurs.

In earlier papers, when such a funnel situation occurs, Kelin et.al proposed in Icking
etal. (1999), Klein (1992), Kleinberg (1994), Lopez-Ortiz and Adviser-Ragde (1996),
Lopez-Ortiz and Schuierer (1995) to walk along a direction between g, and g;. In other
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words, in this case, the robot selects a point to move towards which is in equal distance
with v, and v; and repeats this process until the funnel case ends. But, the robot that
we use in this research cannot compute the point between v, and v;. So, applying their
strategy is impossible for us. Before describing our strategy, we state some features
of a street and the gaps applied in our algorithm.

When the robot enters in a funnel situation, there are two convex chains in front of
it: the left convex chain that lies on the left chain (L.p4in) of the street, and the right
convex chain that lies on the right chain (R.;4i,) of the street (see Fig. 3b). The two
chains have the following main property.

Lemma 2 When a funnel situation starts, shortest path from s to t lies completely on
the left convex chain, or on the right convex chain of the funnel.

Proof Obviously, the point in which the funnel situation starts, belongs to shortest
path from s to ¢. So, this claim is a straight result of the Lemma 1 and the theorem
below.

Theorem 1 Ghosh (2007) For any vertex vj € Lcpain(07, vj € Repain), the shortest
path from s to v makes a left turn (respectively, a right turn) at every vertex of Lchain
(respectively, Rcpqin) in the path.

Definition 2 Between the two convex chains in a funnel situation, the one which is a
part of the shortest path is called exact chain of the funnel.

Lemma 3 Each of the two convex chains in a funnel situation contains a point in
which the funnel situation ends or a new funnel situation starts.

Proof When the robot explores the street in a funnel case, the situation ends as the robot
enters a point in which either one of the most-advanced gaps (g; or g,) disappears or
the two gaps become collinear. In the former case, the inflection ray of the disappeared
gap intersects the two convex chains. The intersection points are the points which are
claimed (see Fig. 3b). In the later case, a new funnel situation starts; the most-advanced
gaps of this funnel are collinear at the point. The bitangent of the corresponding reflex
vertices of the current most-advanced gaps intersects the two convex chains. So, the
claimed points exist (points 2 and 3 in Fig. 4a).

We refer to the points mentioned in the above lemma as funnel critical points.
Clearly, one of the two points belongs to shortest path from s to 7.

Lemma 4 Assume the robot is walking along one of the convex chain of a funnel. The
exact chain of the funnel can be specified as soon as the robot reaches the critical
point of the chain.

Proof There are two situations in which the robot reaches a critical point: (1) The
robot reaches a point in which one of the most-advanced gaps disappears, obviously
the convex chain which contains the existing gap is the exact chain, (Fig. 3b). (2) The
robot reaches a point in which g; and g, are collinear. If the point is the corresponding
reflex vertex of the gap that the robot was moving towards, the chain that the robot
was walking on it is the exact chain, (point 3 in Fig. 4a). Otherwise the other chain is
the exact chain, (point 2 in Fig. 4a).
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Fig. 4 a There is a funnel situation at start point s. Points 2 and 3 are the critical points of the funnel. g,
and gj; are the most-advanced gaps at the start point. g,; and gj; are the most-advanced gaps at point i, for
i =1,2,...,6. b Illustration of constructing and updating the data structure S-GNT, as the robot walks
along the right convex chain. Dark circles denote the robot’s location, and are the roots of the data structure.
The path leads to Ry is the return path

4 Main strategy

Now, we explain our strategy for searching the street from s to ¢ such that the generated
path is at most a constant times longer than the shortest path.

In the situation in which only one of the most-advanced gaps exists, each reasonable
strategy directs the robot towards the gap. In the funnel situation, we lead the robot
to reach a critical point of the funnel. Our idea for directing the robot in this case
is inspired by the algorithm for searching a point on a line, called doubling. In the
doubling strategy, the robot moves back and forth on the line, such that at each stage
i, it walks 2/ steps in one direction, comes back to the origin, walks 2/*! steps in the
opposite direction until the target is reached.

Theorem 2 Baezayates et al. (1993) The doubling strategy for searching a point on
a line has a competitive factor of 9, and this is optimal.

If we assume the two convex chains of a funnel as a line, by applying the doubling
strategy, we can find a critical point of the funnel; the closer point to the origin. Note
that the other critical point of the funnel may enormously be far from the origin.
Therefore, directing the robot along these two chains avoiding any detour to other
places, for executing the doubling strategy, is an important step of our algorithm.

Lemma 5 The robot traces the left/right convex chain and detects its critical point if

and only if it walks towards the left/right most-advanced gap maintaining the dynamic
changes of the two most-advanced gaps.
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Proof When a funnel situation starts, the first vertex of the left/right convex chain
coincides with the reflex vertex of the current left/right most-advanced gap. The most-
advanced gap that the robot is walking towards does not change until the robot touches
its reflex vertex, or the funnel situation ends (the two gaps become collinear). Then
the first segment of the convex chain and robot’s path are the same. Other segments
are similarly coincident. As soon as the robot reaches a point in which one of the
most-advanced gaps disappears, or they are collinear, the critical point is achieved.

While the robot moves towards a most-advanced gap, the positions of the two gaps
dynamically change. In the next section, the events that update the gaps are explained.
Furthermore, a data structure for maintaining the requirement data to return to origin
in the funnel situation is introduced.

4.1 Data structure

As the robot moves along each of the two convex chains, the critical events, appear-
ance, disappearance, merge, and split, may dynamically change g, and g; as follows:
(Assume the robot moves towards g,-. The situation in which the robot moves towards
g1 1s symmetric, and updates the gaps analogously.)

1. When the robot crosses a bitangent complement of g; and another /-gap, then g;
splits and will be replaced by the /-gap (point 1 in Fig. 4a).

2. When the robot crosses a bitangent complement of g; and an r-gap, then g; splits
into two gaps. g, will be replaced by the r-gap. At this point g; and g, are collinear
and the funnel situation ends (point 2 in Fig. 4a).

3. When the robot crosses a bitangent of g, and another r-gap, at the point in which
gr disappears, g, will be replaced by the r-gap. (disappearance and split events
occur simultaneously.) In this situation, if there are more than one gap, same as
the r-gap, g, will be replaced by the one in the left side of the others (point v, in
Fig. 3b).

4. When the robot crosses a bitangent of g, and another /-gap, at the point in which g,
disappears, g; will be replaced by the [-gap. (disappearance and split events occur
simultaneously.) In this situation, if there are more than one gap, same as the [-gap,
g1 will be replaced by the one in the right side of the others (point 5 in Fig. 4a).

5. When the robot crosses over an inflection ray, each of g; or g, adjacent to the ray,
disappears and is eliminated. Each of the critical point of the funnel in Fig. 3b is
an example for this event.

In Lemma 6, we show that these events are the ones which merely change the
position of g; and g,.

Lemma 6 The critical events which update g, and g; are only of the two types of the
critical events: split and disappearance.

Proof Each appearance event creates a primitive gap which was once visible by the
robot. Obviously, the target is not behind this gap. A critical event, which merges g,
or g; with another gap, occurs when the robot crosses the bitangent complement of
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their corresponding reflex vertices of the two gaps. In order that such an event occurs,
the bitangent complement should be either in the left side of the line which connects
the current position of the robot to g; or in the right side of the line which connects
the current position of the robot to g,. Due to our strategy, walking towards the most-
advanced gaps, the robot cannot cross over the bitangent complement. So, these gaps
do not merge with another gap at all (see Fig. 4a).

In the funnel situation, the robot puts a pebble on the point to mark it as the origin,
and starts walking along one of the chains to reach the critical point. In order to execute
the doubling strategy, the data needed for returning to the origin should be memorized.
This data is saved in a new tree called S-GNT (street GNT). Initially, when the robot
is placed in the point, robot’s location is the root node, and g; and g, are the set of
the children of S-GNT. The root node moves along with the robot, and g; and g,, as
already explained, will be updated. The returning path to the origin is constructed as
follows: (Assume the robot walks along the right convex chain. The situation in which
the robot moves along the other is symmetric, and the data structure is constructed
analogously.)

— When the robot crosses over an inflection ray, a gap may appear. If this gap hides
the pebble that was so far visible, a child is augmented to the root of S-GNT in a
location that the circular ordering of the gap and g, and g; is maintained. We refer
to this gap as a comeback gap. This gap is maintained in the tree for generating the
comeback path to the origin (shown as the first reflex vertex of the right convex
chain in Fig. 4b). Other appearance events do not change the data structure.

— When the robot crosses a bitangent of reflex vertex of g, and reflex vertex of the
comeback gap, these two gaps merge. So, the comeback gap will be a child of a
new node added to the root, (the second reflex vertex of the right convex chain in
Fig. 4b). The new node is a node of comeback path.

In Fig. 4b, the process of constructing the data structure, as the robot traces the
right convex chain, is illustrated.

4.2 Algorithm

The robot starts navigating the environment based on the information gathered about
the most-advanced gaps until the target is reached.

At each point, if there is exactly one of the two gaps (g, or g;), then the goal is
hidden behind the gap. Thus, there is no ambiguity and the robot moves towards the
gap while maintaining and updating g, and g;.

In the funnel case in which both of g, and g; exist, the robot is not sure that the
target is hidden behind which of these gaps. The robot puts a pebble at this point, and
moves back and forth along the two convex chain such that at each stage i, the robot
(1) goes 2 steps along one of the two convex chains while constructing S-GNT, then
it returns back to the origin using S-GNT, and (2) goes 2/*! steps along the opposite
convex chain while constructing S-GNT, then it returns to the origin using S-GNT.
At each funnel situation, the robot continues executing the doubling strategy until the
critical point of the funnel is achieved. As soon as the robot touches a critical point of
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the current funnel, from lemma 4, the exact chain of the funnel is determined. So, at
the critical point, the robot returns to the origin to pick up the pebble and walks along
the exact chain to reach the target while maintaining and updating g, and g;. The robot
continues walking along the chain until the target is achieved or a new funnel case
starts again. In the later case, the procedure of the funnel case (the doubling procedure)
is repeated.

Note that at each stage i, in a funnel case that the robot starts going forwards along
one of the two convex chains, a new S-GNT is dynamically constructed. The robot
goes back using the S-GNT.

5 Correctness and analysis

In this section, we show that by following the path generated with our strategy, the robot
achieves the target 7, starting from s. Also, we compare the length of the generated
path to the shortest path and prove a constant competitive ratio.

Theorem 3 The strategy of searching the street, starting from s, terminates while the
target t is achieved.

Proof The key observation in our strategy is that the target is constantly hidden behind
the most-advanced gaps. Even though moving towards a most-advanced gaps may
reveal new gaps, or may update the two gaps via splitting, the number of such events
is finite because each corresponds to a crossing of a bitangent complement. When the
strategy forces a most-advanced gap to disappear, the robot is one step closer to the
target. So, the procedure must terminate with the target being achieved.

We now compare the length of the path constructed by our search strategy, and the
length of the shortest path and prove its competitive ratio.

Lemma 7 If we eliminate the robot movement to reach the critical point, and the
comeback path to the origin to pick up the pebble in each funnel situation, then the
remaining path coincides with the shortest path.

Proof When a funnel situation starts, it is not certain for the robot to know which chain
is the exact convex chain. From Lemma 4, if the robot achieves the critical point, the
exact chain is specified. So for each funnel case, the only detour from the shortest path
is the back and forth movement to reach the critical point.

Theorem 4 Our strategy for searching an unknown street achieves a competitive ratio
of 11. Allowing the robot to carry many pebbles reduces the competitive ratio to 9.

Proof By Lemma 7, if an algorithm achieves a competitive factor in a funnel case,
then it achieves the same ratio in every streets. So, we consider the generated path in
one funnel in order to find amount of deviation from the shortest path. In each funnel
situation, the robot using the S-GNT executes the doubling strategy on the two convex
chain, until it reaches the critical point of the funnel. The robot traverses at most 9
times longer than the shortest path to reach the critical point. At this point, the robot
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Fig. 5 a A rectilinear street.
The dotted path is the generated
path by our strategy. b The data
structure at the start point

(b)

comes back to the origin to pick up the pebble then walks along the exact chain. So,
in each funnel situation the robot traverses at most 11 times longer than the shortest
path to reach the critical point of the funnel. The point is on the shortest path.

6 Walking in rectilinear streets with rectilinear path

In this section, we present an algorithm for leading the robot in a rectilinear street to
move from s to ¢ such that the traversed path is as short as possible, and the robot
follows a rectilinear path.

Without loss of generality, assume that the edges of the polygon are vertical or
horizontal. In other words, they are parallel to X or Y axis. So, the segments of
a rectilinear path are parallel to X or Y axis. The robot, while detecting the gaps,
moves vertically or horizontally (along positive and negative direction of the axis)
(see Fig. 5a). Throughout the street navigation, we maintain the obtained information
from the gap sensor in a data structure, that dynamically changes, to construct an
online search strategy. This data will be represented in a tree with depth of one. At the
start point, the root of the tree is current position of the robot, and children of the root
are the sensed gaps maintained in circular order. Root of the tree, same as S-GNT,
moves along with the robot. Also, the critical events update its children (see Fig. 5b).

At any point during the searching, there are two cases: either there are some gaps
which hide the target ¢ or the target is visible. We first discuss below the strategy of
the algorithm when 7 is not visible. From Lemma 1, it should be hidden behind one
of the most-advanced gaps. The possible location of the two most-advanced gaps are
as follows:

1. The two gaps lie in the same quadrant of the X-Y plane, or one of two gaps only
exists (Ghosh and Saluja 1997). If there is a rectilinear most-advanced gap (the gap
lies on the X or Y axis), then the robot moves towards the rectilinear gap, (Fig. 6).
Otherwise, the robot takes one of the rectilinear direction of the quadrant and moves
along it.
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Fig. 6 Possible locations of the existing gaps in the data structure at the start point. At each case, the
arrow(s) shows the direction that the robot may move along it, by our strategy

2. The two gaps lie in the two consecutive quadrant (Ghosh and Saluja 1997). In this
situation, the robot takes the rectilinear direction which is between the two gaps,
(Fig. 6).

We now characterize our strategy for turning while the robot is walking along
any direction. During the moving, due to the critical events, the position of the gaps
appearing to the robot dynamically change. Split and disappearance events update
g1 and g, as explained in Sect. 4.1, (point 1 in Fig. 5a). Once updated, the tree data
structure changes and the robot may make a turn based on which of the above two
conditions occurs. Remarkably, an appearance event generates a gap that hides a
portion of the street, which was already explored. Such event does not add any node
to the data structure. In contrast with our strategy for walking in general street, by
our strategy for leading the robot in rectilinear street, a merge event may occur. So,
a most-advanced gap merges with one of the existing gap (see point 2 in Fig. 5a).
Once the merge event occurs, the robot makes a turn and moves along the other axis
containing the most-advanced gaps. During the moving, as the robot hits a wall, it
decides to turn based on the current position of the gaps in the tree (see point 3 in
Fig. 5a).

Using the above strategy, the robot searches the street until it achieves a point in
which the target is visible. The robot continues walking along the current direction
until: (i) ¢ is visible along the perpendicular direction to the current direction (the
other axis of the quadrant), or (ii) # becomes invisible. At each of these cases, the
robot turns along the perpendicular direction to the current direction. However this
process is repeated until the target ¢ is achieved (Fig. 5).

An argument, similar to the one for Theorem 3, proves the theorem below.

Theorem S Our strategy for searching the rectilinear street terminates with the target
achieved.
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Theorem 6 The search path generated by our strategy to reach the target t, starting
from s, is an Ly-shortest path. Also, the strategy achieves a competitive ratio of /2
in the Lo-metric.

Proof During the movement, due to the location of the most-advanced gaps, the robot
selects a vertical or a horizontal direction. Assume that (x;, y;) and (x,, y,) are the
reflex vertices of g; and g,, respectively, and (xs, yy) is the current location of the
robot. If the robot selects a horizontal direction then it keeps the direction until a point
p is achieved such that |x; — x| = |xg — x|, or |xg —xp| = |xy —x,-|. Similarly, if the
robot selects a vertical direction then it keeps the direction until a point p is achieved
such that |y; — yp,| = |ys — yil, or |ys — yp| = |ys — yr|. Because at the point a critical
event occurs. Note that the robot sometimes changes its direction before reaching the
point p; when a merge event arises (shown in Fig. 5a). Every path from s to cover the
hidden region behind each of the gaps expands in X-direction or Y-direction at least as
much as our path does. This shows that the point p lies on each L-shortest path from
s to t. Since each L1-shortest path is at most +/2 times as long as the corresponding
L-shortest path, competitive ratio of the algorithm is /2.

7 Conclusions

In this study, we proposed an online strategy for the walking in streets problem for
a point robot that has a minimal sensing capability. The robot can only detect the
gaps and the target in the street. Also, it carries a pebble to mark some locations
of the environment. Our strategy generates a path with a bounded detour from the
shortest path. We proved that our strategy has a competitive ratio of 11. A special
case in which the robot is forced to move along a rectilinear path in a retailer street
is considered. We proposed an algorithm for the problem which generates an Li-
shortest path from s to ¢. Introducing more general classes of polygons which admit a
competitive searching with a minimal sensing model is an interesting open problem.
Improving the competitive ratio can be considered as an opportunity for the future
research.
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