
A Class of Stored-Transfer Representations for Redundant Number Systems

G h a s s e m J a b e r i p u r

Shahid Beheshti Univ.
Tehran 19847, Iran, and

Sharif Univ. of Technology

jaberigh @mehr.sharif.ac.ir

B e h r o o z P a r h a m i

Dept. Elec. & Computer Eng.
Univ. of California

Santa Barbara, CA 93106, USA

parhami @ece.ucsb.edu

M o h a m m a d G h o d s i

Computer Engineering Dept.
Sharif Univ. of Technology

Tehran 11365, Iran

ghodsi @ sharif.ac.ir

Abstract

p H

a, b

C i

D
d
G
h
k

P
Pmin

Pmax
r

S

t
/g, V

W

x, y
c~,~

A

Ai
8
8,

Redundant representations play an important role in high-
speed computer arithmetic. One key reason is that such
representations support carry-free addition; i.e., addition
in a small, constant time, independent of operand widths.
We explore the implications of stored-transfer or transfer-
save representation of digit sets for redundant number
systems on the speed and cost of arithmetic algorithms and
show that our methods lead to some of the fastest, most
efficient implementations of carry-free arithmetic reported
thus far. The speed~efficiency arises from storing or saving,
instead of combining through addition, the transfer values
generated during carry-free arithmetic.

Guide to Notation

[g, v] Interval of values; denotes the empty set ~ if g > v
Marks a digit's main/stored-transfer component
See the definition of D
The ith transfer value in G, 0 < i < d - 1
= [a, b], Digit set (main part)
Number of transfer values in G
= { c 0, c, ce_ ~ }, Set of transfer values generated
= [log2r-], Number of bits in one radix-r digit
Word width, in bits or digits
Position sum; digits are p~
= 2a + 2c 0, Minimal value for p
= 2b + 2ce_ 1, Maximal value for p
Number representation radix
Sum; digits are s~
Transfer; digits are t;
Sum and carry components of a carry-save value
Interim sum; digits are wi
Addition operands; digits are x~ and y~
See the definition of A
= [~, 13], Digit set
Range of p where ci is a valid transfer; A_ 1 = A a =
= ca._ l - c o = ~5~, Span of G
= c~+ 1- c/, Difference of consecutive elements in G
Overlap between A~ and A;+~ (cardinality of A~ n A/+l)

P = 13 - ~ + 1 - r, Redundancy index of A
p' = b - a + 1 - r, Redundancy index of D
~', o" Functions generating main and stored transfer parts
t:, co Functions generating transfer and interim sum digits

1. I n t r o d u c t i o n

Redundancy in number representation aims to improve the
speed or efficiency of arithmetic units [Metz59], [Aviz60]
and is commonly used in modern digital systems. One
reason for speed improvement with redundancy is the
possibility of carry-free addition; i.e., addition in a small,
constant time, independent of operand widths [Parh90].
Another reason is that redundancy allows some imprecision
in the decision processes (such as quotient or root digit
selection [Parh00], [Parh01]); this tolerance for imprecision
removes enough complexity from the computation's critical
path to yield significant performance improvement. Here,
we focus on mechanisms that facilitate carry-free addition
and allow its implementation with even greater speed.

In carry-free addition, one performs the following steps on
all k digit positions of the two radix-r operands in parallel,
where x i and y; belong to the redundant digit set A = [oc, ~]:

1. Compute the position sum digit p; = x i + y~
2. Derive the interim sum digit w; and transfer digit t;+ 1

satisfying wi = p~ - rt~+ 1
3. Form the final sum digit s; = w;+ t;

For step 3 to yield a valid digit in A without producing
further transfers, wi must be restricted in D = [a, b], with
the following holding for all possible values of ti:

~ - t i < a < a + r - 1 < b < ~ - t i

Note that the digit-size additions of steps 1 and 3, though
quite fast compared to word-size additions required with
nonredundant representations, are merely used for
algorithm description and need not be explicitly performed
in hardware. The addition in step 1 can be avoided, e.g., by
noting that w; and t;+l are directly computable in hardware
as functions of x~ and y~. That is:

w, = ~x;, Yi) t,÷l = z(x,, y,)

This, in effect, fuses steps 1 and 2 and allows the designer
to choose the best possible merged implementation. It may
be the case, with certain digit sets and/or encodings, that
some form of addition is still part of the best hardware
implementation scheme for o3 and "~, but this is not required.
We are thus motivated to investigate methods for
eliminating, or else simplifying, the addition in step 3.

0 -7803-7147-X/01 /$10 .00©2001 IEEE 1304

2. Stored-Transfer Representations

In a manner similar to the stored-carry or carry-save
representation of binary numbers [Metz59], [Jabe99], we
study the implications of stored-transfer or transfer-save
representations of redundant digits where the pair (w~, t;) is
viewed as an encoding of the sum digit s~, thus obviating
the need for the final addition. We call w~ the m a i n p a r t and
t, the t r a n s f e r p a r t of a digit 's stored-transfer encoding.

Example 1: A main part that is a 4-bit 2 ' s -complement
number and a 4-valued stored transfer in [-1, 2] constitute
a 6-bit encoding of the digit set [-9, 9]. Direct encoding of
the digit set would require 5 bits. •

The latter scheme leads to a two-step formulation of carry-
free addition. In the following, we assume that any digit z
A has a transfer-save encoding (z', z"), with z' ~ D and z"
G = {c 0, Cl C~_l}; that is, primed and double-primed
variables are used to designate the main and transfer parts
of a digit.

p~, p pp

1. Compute the position sum digit p~ - x;'+ x~ + y; + y~

- s ' s") satisfying s ' - - " 2. Derives~ (~ , ~ . , i p~ rsi+ 1

Note that the generated transfer set G - { c 0, c~ c~_~},

satisfying c o < c I < ... < c~_~, is d-valued but does not
necessarily contain a set of d consecutive integers. We take
this more general view in anticipation that it may provide
added flexibility for optimizations. We will see later that
even though such generalized transfer sets do not provide
additional benefits directly, they can be used with minor
modifications to the carry-free addition algorithm. On the
other hand, the main part of a digit belongs to an interval D
= [a, b] of values. Whereas gaps in this set are also
admissible, provided that the values in the set contain one
member from each of the r residue equivalence classes j
mod r (0 < j < r - 1), we have not found this generality to
lead to any speed or cost benefit.

Of course, steps 1 and 2 in this new two-step process can
again be fused, in the manner previously outlined, leading
to a merged, or single-step, implementa t ion

S ~' --P"X" PP P PP S PP ,,.,. t pp ~ p ,~ = o t ~, xi , Y i , Yi) i+~ "- iJ (Xi , X i , ~,,)'i) i

An objection may be raised that our scheme simply shifts
the complexity of the original step 3 to the new step I. That
this is not the case will become clear as we describe our
methods. Here, we just argue that the new scheme can, in
principle, be faster than the original algorithm. For one
thing, a 4-operand addition, where two of the operands
(transfer parts) are fairly small, can indeed be faster and
less complex than two separate additions [Koba85]. For
another, the transfer-save representation (z', z") may well
contain the same total number of bits as the binary
encoding of z [Jabe00]. In such a case. the function pairs
(03, "0 and (~', o") have comparable bit-level complexities.

3. S o m e G e n e r a l R e q u i r e m e n t s

Equating the boundaries of the original digit set A - [c~, 13]
and its stored-transfer representation, i.e., [~, 13] - [a, b] +

{c 0, c 1 ce_ 1 }, leads to the requirements"

c~- a + c o]3 - b + C d-- 1

For convenience, we define redundancy indices associated
with the two digit sets [c~, 13] and [a, b] as 9 = 13 - a + 1 - r
and p' = b - a + 1 - r, respectively. We also designate 8 =
ce_ l - c o as the span of the transfer set. It is easy to show that
9 = 9' + 8. If, for the sake of representational efficiency, we
set 9" = 0, it is the case that 9 = 8. Furthermore, we define

A~ = [a + rc~, b + rc~] n [Pmin' Pmax] as the range of p, where
c i is a valid (or u s e f u l , per Definition 1 below) transfer
value, and 9~ = b + rc i - a - rci+ 1 + 1 = p ' + r - r8 i (i < d - 1)

as the overlap between Aj, and Ai+I, where 8~ = q+l - c;.

Example 2: Stored-transfer representations of some
redundant number systems are characterized in the
following table. In all cases, D is irredundant (P' = 0, 9 = 8)
and is taken to be the unsigned set [0, r - 1], except for the
last entry where D is [- r / 2 , r /2 - 1] with r even. For the two
hybrid signed-digit entries, r = 2". •

Stored-carry [0, r] { 0, 1 }
Stored-borrow [-1, r - 1]

Stored-carry-or-borrow [-1, rl 2 {- 1, 0, i)
[-1, r] 2 {-1, 1 }

Stored-double-carry [0, r + 1] 2 { 0, 1, 2 }
Hybrid S-D (h-1 B, 1 BSD) [-1 , 2"-1] 1 { -1 , 0)

Hybrid S-D (1 BSD, h-1 B) [-2"- ' , 2"-1] 2 '-~ { - 2 '-l, 0)

Minimally redundant [- r / 2 - 1 , r/2] 2 { - 1, O, 1)
asymmetric I - r~2-1 , r/2] 2 { - 1, 1 }

We next explore constraints on the digit set and transfer
values dictated by the requirements for carry-free addition,
where we make use of the following definitions:

Definition 1" A transfer value c; e G is u s e f u l if the set A i is
nonempty; i.e., there exists some position sum value p that
may be decomposed as p - w + rc~, where w e [a, b]. •

Definition 2: A transfer value c~ e G is n e c e s s a r y if the set

A ; - (A i ~ Ai+,) - (A;_~ ~ Ai), where c i constitutes the only
valid choice of transfer digit value, is nonempty. •

Definition 3: The n e c e s s i t y r a n g e of p for c i, 0 < i < d - 1,

is the possibly empty interval [b + rc~_ 1 + 1, a + rc~+ 1 - 1]
where ci is n e c e s s a r y , and neither ci_ 1, nor c;+1 is useful. •

.

Useful range for c__ 1 Necessity range for c i Useful range for %1
] - [1 - [

1 1
[]

a + rc~ Useful range for c i b + rc i
.

Fig. 1. Illustrating Definitions 1-3.

1305

For a representation system to be closed under carry-free
addition [Jabe00], the range [2a + 2c 0, 2b + 2ce_ 1] of the
position sum p should be totally contained within [a, b] +
{ rc o, rc 1 r c ~ }. This leads to the following results.

L e m m a 1" If m = max/~i i is the maximum spacing of values

in G, we must have p' > (m - 1)r for carry-free addition to
be possible with stored transfer representation.

Proof: Consider consecutive transfer values j and j + m in
G. The ranges of p for which these transfer values can be

chosen are Aj = [a + j r , b + jr] and Aj = [a + (j + m)r, b +

(j + m)r], respectively. To avoid gaps in the p values, Aj and
Aj must overlap:

b + j r + l > a + (j + m)r

This is easily converted to p' - b - a + 1 - r > (m - l)r. []

Corollary 1" Given a value for p', the maximum allowed
spacing of values in G is p' /r + 1 (i.e., ~5 < 9"/r + 1). []

Corollary 2: Given a value for p', the overlap between A;
and A~+~ (cardinality of A; n A;+~) is %~- p' + r - r~i;, i.e., the

overlap %~ is minimized, for 8; = Lp'/rJ + 1. []

Corollary 3" For p' < r - 1, the transfer set G nmst contain
an interval of integer values (i.e., ~5; = 1 for all i). •

T h e o r e m 1" The transfer set G must be at least three-
valued. Furthermore, a transfer set with four values is
generally adequate, except for a few special cases.

Proof: The min imum and maximum transfer values, i.e., c o

and ca_ 1 , should satisfy the following inequalities"

a + rc o < 2a + 2c o ~ , c o < a / (r - 2)
2b + 2ca_ ~ < b + rca_ 1 ~ b / (r - 2) < ca_ ~

To minimize d, we aim to maximize the n e c e s s i ~ range for

each c; e G. We thus choose c o = L a / (r - 2)J and minimize
9~; by choosing ~5; = Lp'/rJ + 1, for all i, as prescribed by
Corollary 2. The value of ca_ 1 can then be derived as"

Cd-1 - - Co "Jr" ~ ' ~ i --" La/(r - 2)J + (d - l)(Lp'/,J + 1)

This equation, along with the lower bound for ca_ l , yields:

La/ (r -2)J + (d-1) (Lp ' / rJ + 1) > (a + p ' + r - 1) / (r - 2)

Letting a = (r - 2)u + v and 9 " - rq + y, with 0 < v < r - 3

and 0 < y < r - 1, the condition above becomes:

u + (d-1) (q+ 1) > u + q + 1 + (v + y + 2 q + 1)/(r-2)

Solving this inequality for d, we get:

d > 2 + 0 = , dmin = 2 + ['0 "]

where 0 = (v + y + 2q + 1) / [(r - 2)(q + 1)]. Considering

that r > 3, we next show that 0 > 3 (dmi n > 5) is impossible,
and 0 = 3 (d,,,, = 5) is needed only for a few special cases.
To show that d,,,, > 5 never holds, we note that

0 - (v + y + 2 q + 1) / ((r -2) (q+l))>3

implies (3 r - 8) q < v + y - 3 r + 7 < 3 - r < 0 , which is
impossible given that (3 r - 8)q < 0 holds only if q < 0,
whereas q = Lp'/rJ > O. Similarly, setting 0 > 2 leads to:

(2 r - 6)q < v + y - 2r + 5

Given that the right-hand side of the inequality above is no
greater than 1, we must have q = 0 for r > 3. This leads to
the following special cases for which dmi n - 5"

r > 3, q = 0, v = r - 3 , a n d y - r - 1 or

r = 3, v - 0 , a n d y = 2

For all other cases (i.e., 0 < 0 < 2), we have 3 < dmi n < 4. []

The undesirable cases in Theorem 1, where 0 - 3, are
unlikely to be of practical interest. The radix-3 case
(besides not being a power of 2) implies at least five values
each for D and G, leading to 6 or more bits per digit. For

radix 2 ~, h > 2, the high redundancy implied by 9' > r - 1,
coupled with 3 bits for the 5-valued stored transfer, can be
easily avoided by suitable choice of a that ensures v < r - 3
(e.g., 0 < a < r - 4, or - r + 2 < a < -2) .

Coro l l a ry 4: For 9' - 0, we have dmi n - 3. In this case , Gmi n
= { c 0, c o + 1, c o + 2 } is adequate, where c o = La/(r - 2)J. []

Coro l l a ry 5" For 0 < 9' < r - l , we have 0 < 2 and dmi n ~_~ 4,
except when v = r-3 and y = r - l , in which case dmi" - 5. []

Corollary 6: For carry-free addition to be possible with a
digit set A, the condition p > 8 > 2 is necessary. []

This last result is consistent with the fact that all the cases
with p = 8 - 1 (e.g., some of those in Example 2) do not
support carry-free addition [Parh90].

L e m m a 2: The necess i ty range of p for c i ~ G - {c 0, c r_ 1 } is
nonempty if and only if 8i + ~i+1 > p' /r + 1.

Proof: The requirement b+ 1 +rc~_ 1 <_ a - 1 +rc~+~, with C;+l-C~_ ~

= 81+~5;+ ~ and b - a + 1 = 9' + r lead to the desired result. []

Corollary 7" For 9' < r - 1 (8; + ~i+l : 2 > p' /r + 1), all c;
G - { c 0, ca_ ~ }, are necessary transfer values. []

Coro l l a ry 8: When D is a signed digit set (i.e., a < 0 < b)

and P' < r - 1, we have c o < a / (r - 2) < 0 < b / (r - 2) _< c t_ ~,
implying that 0 is a necessary transfer value. Furthermore,
G = {-1, 0, 1 } is adequate. []

Because a four-valued G is always sufficient (except in a
few practically insignificant special cases), compared to the
binary encoding of the nonredundant digit set [0, r - 1], our
stored-transfer representations need two bits of redundancy
per digit. Virtually all practical redundant representations
use power-of-two radices and thus imply at least one bit of
redundancy. Therefore, the incremental cost of our scheme,
in its initial form, and without the enhancement to be
covered in Section 5, is one bit of redundancy per digit.

1306

4. Speed and Cost Implications

The added cost of one bit per digit position buys us
significant latency improvement in the basic operation of
carry-free addition and all other arithmetic operations that
use addition as a building block. In multioperand addition,
and thus in multiplication, as well as in subtractive and
multiplicative divison, the per-add savings are compounded
over many addition levels.

Because the main digit part can be in 2's-colnplement
format with P' = 0, much of digit-level addition circuits can
be based on readily available, and well optimized, binary
adder cells. For example, a digit adder can be built from an
h-bit binary adder, computing the (h + 1)-bit sum x[+ y~',
followed by a special (h + 5)-input, (h + 2)-output circuit;
the inputs are the aforementioned (h + 1)-bit sum and two
2-bit stored transfers x[' and y[', while the outputs are the h-
bit sum digit s[and a 2-bit generated transfer si~j". Except
for an O(h)-time digit addition, the rest of the computation
may be performed in a small constant time, independent of
the radix (see Section 5).

One way to compare the speed of addition in the stored-
transfer scheme with other representations, is to use the
notion of high-radix coefficient introduced in [Jabe01],
where signed-magnitude/l's-/2's-complement encodings of
redundant digits are studied. The high radix coefficient
corresponds to the number of simple digit-level addition
and increment operations needed for adding two redundant
numbers. As discussed above, stored-transfer representation
has a high-radix coefficient of 1, whereas those of the other
three representations are 2 for 2's-complement, 3 for l 's-
complement, and 4 for signed-magnitude. A comparison
between our stored-transfer scheme and hybrid signed--digit
representation [Phat94] will be provided in Section 6.

5. Two-Valued Stored Transfers

The representational efficiency of our stored-transfer
scheme can be improved by using the following "trick".
Consider a 3-valued transfer x" ~ {-1, 0, 1} attached to a
main digit x' ' v' :t' I ..,/.~ ! = 2u' + v, where = n l~,,d .~" and ,,~' =-t. J.
We assume that x' is encoded in two parts: a single bil
denoting v' and an arbitrary encoding of u'. A given stored-
transfer digit (2u' + 0, 0) can be recoaed as (2u" + 1,--1),
and {2u' + 1, 0) as (2u" + O, 1), thus making it unnecessary
to store the transfer value 0 The resulting 2-valued stored
transfer renders the representational efficiency of our
scheme competitive with the most efficient redundant
representations. The cost of this recoding is small, given
that it affects only a single bit v' in the encoding of x'. The
case of a 3-valued transfer x" e { 0, 1, 2 } i~; similar: recode
(2u' + 0, 1) as (2u' + 1, 0), and {2u' + 1, 1) as (2u' + 0, 2}.

This scheme, which may be viewed as reintroducing step 3
of the carry-free addition process, but in much simpler t:brl~

involving single-bit logical operations, can be applied after
each carry-free addition operation to keep representations
efficient in the arithmetic circuits and their associated
registers or it can be applied only at the interface between
the arithmetic unit and storage system.

Ad-hoc simplifications and efficient implementations for
special cases of P', and G, may be derived. For example we
give the following algorithm for addition of two stored-
transfer digits x~, and y;, where P' = 0 and G = {-1, 1 }:

1. Form the h-bit 2' s-complement value z i - x"i +Yi"

2. Derive the carry-save sum (u~, v) = z~ + x'~ + Yi'
3. Add ui and v~ to form the binary position sum p;

4. Derive s'; and Si+l" satisfying s ' - i Pi - - r s i + l "

5. Adjust s"; and the least significant bit of s~'

If we encode G as { 0, 1 }, the rightmost bit of z; is always 0,
the next bit is derived by an XNOR operation, and the
identical leftmost h - 2 bits by a NOR operation. Standard
full-adders may be used in step 2. Step 3 requires an h-bit
(h - 1 if an extra half-adder is used in step 2) adder which
can be of any suitable design. In step 4, s i" and s,+," are
directly derived in constant time from Pi and its two most
significant bits, respectively. Step 5 involves 1 gate delay,
as previously discussed. Only step 3 has a latency that
depends on h. Moreover, steps 1 & 2 and 3 & 4 may be
partially overlapped to further reduce the constant-time
component of the addition latency [Jabe00a].

6. Very High Radix Representations

One context in which our scheme is particularly cost-
effective is when the radix r is rather large. In this case, we
have both lower relative redundancy and greater latency
improvement over other radix-r redundant representations.
In particular, our scheme can be viewed as a competitor for
the hybrid redundancy scheme that provides a mechanism
for high-radix redundant representation via incorporating
binary signed-digit positions after each group of h - 1
ordinary binary positions [Phat94], [Phat99]. Our scheme
shares many advantages of hybrid redundancy, while being
capable of providing full symmetry in the number system
(if desired), offering lower latency, and providing greater
flexibility in circuit implementation.

We first compare the representation of k-digit radix-2"
numbers in the hybrid scheme, having 1 BSD and h - 1
ordinary bits per digit, with the two-valued stored transfer
representation containing an h-bit main part, with P' = 0
and G = {-i , 1 }. Both schemes require a total of k(h + 1)
bits. The range of a k-digit number in the hybrid scheme
and in our scheme are I-r~2, r - 1JR and I -r~2- 1, r/2]R,
respectively, where R = (r k - 1) / (r - 1). The maximal
symmetric subrange is I-r~2, r/2]R in both cases; that is,
where symmetry is required, the two schemes exhibit the
same representational efficiency.

1307

Details regarding speed and circuit-cost comparisons will
be reported in future. Preliminary results [Jabe00a] indicate
that, compared to hybrid redundancy, a few gates are saved
in each digit position corresponding to a B position in
hybrid redundancy while a comparable number of extra
gates are needed for each position corresponding to a BSD
position. It thus seems that circuit-cost advantage exists for
even moderate radices (h > 2) and the advantage becomes
significant as we go to higher radices. These observations,
along with the fact that any h-bit adder design can be used
with stored-transfer representation, whereas hybrid
redundancy implies a rather rigid realization, allows for
experimentation with various design options and flexibility
in optimizing implementation parameters.

7. Conversion to/from 2's Complement

To convert a 2's-complement number to a stored-transfer
representation in radix 2 h, where 0, 1 e G, we deal with the
h-bit groups of the 2' s-complement number in parallel. We
sign-extend (if necessary) the input number to an equivalent
2's-complement number whose width is a multiple of h.
Then we use the ith group as the ith digit's main part, and,
except for the most significant group and to = 0, set ti+l
equal to the most significant bit of the ith group. If ti+l = 0,
the transfer clearly has no effect and the numerical value is
preserved. When tg+l = 1, its worth within the h-bit group is
2 h-a which is the same as 2 h (transfer) p lus -2 h-1 (negatively
weighted bit in the 2's-complement main part). A constant-
time postconversion adjustment, such as the one discussed
in Section 5, is needed if G does not include { 0, 1 }.

For the reverse conversion, we add the main parts with their
corresponding transfers, all in parallel. This yields a
redundant number with 2' s-complement digits. The rest of
the process follows conventional redundant-to-binary
conversion techniques [Parh00]. We note that converting a
2's-complement number to its stored-transfer equivalent
requires little or no circuitry, since it is done by inserting a
copy of some bits in place of the transfers. But the reverse
conversion, as for any other redundant representation,
involes word-width carry propagation.

8. Conclusion

We have shown that the stored-transfer representation of
certain redundant numbers offers speed and cost benefits in
the carry-free addition process. We proved the necessity of
at least three transfer digit values and sufficiency of four
values (in all practical situations), for carry-free addition.
We further showed that by a simple adjustment in final
stage of the carry-free addition algorithm, one can reduce
the number of stored transfers to two values, thus requiring
one bit for storage. Our stored transfer scheme is thus
competitive with other practical redundant representations
with regard to storage cost. In particular it has cost, speed,
and symmetry advantages over hybrid redundancy.

We also demonstrated that converting a 2's-complement
number to stored-transfer form implies virtually no cost or
latency, while the reverse conversion needs the obligatory
carry propagation. This affinity with 2's-complement
numbers, in representation and circuit implementation, is a
key strength of the stored-transfer scheme.

Derivation of algorithms for stored-transfer multiplication
and division is quite feasible. Very-high-radix SRT division
with signed-digit partial remainders and signed-digit
quotient [Flyn01] can be modified to accept stored-transfer
operands. A series of arithmetic operations can thus be
performed without carry propagation by representing the
inputs, intermediate results, and outputs in stored-transfer
format. Results on other operations, and associated
arithmetic support functions such as shifting, will be
reported in the near future.

References
[Aviz61] Avizienis, A., "Signed-Digit Number Representations for Fast

Parallel Arithmetic," IRE Trans. Electronic Computers, Vol.
10, pp. 389-400, Sep. 1961.

[Flyn01] Flynn, M.J . and S.F. Oberman, Advanced Computer
Arithmetic Design, Wiley, 2001.

[Jabe99] Jaberipur, G., "A Generalization of Carry Save Adders for
Higher Radix Multi-Operand Addition," Public (unclassified)
summary of a 1985 confidential technical report, Ref. # 1976,
Iran Telecommunication Research Center, Nov. 1999.

[Jabe00] Jaberipur, G., "High Radix Carry-Free Computer Arithmetic:
Ph.D. Dissertation Proposal", Computer Engineering Dept.,
Sharif Univ. of Technology, Tehran, h'an, Mar. 2000.

[Jabe00a] Jaberipur, G. and S.-M. Fakhraie, "Design of Inter-Digit Carry
Free Adders for Signed Digit Stored-Borrow-or-Double-Carry
(SSC) Numbers," Internal Report, Electrical & Computer
Engineering Dept., Tehran Univ., Aug. 2000.

[Jabe01] Jaberipur, G. and Ghodsi, M., "High Radix Signed Digit
Number Systems: Representation Paradigms," submited.

[Koba85] Kobayashi, H., "A Mutioperand Two's Complement Addition
Algorithm," Proc. 7th IEEE Syrup. Computer Arithmetic, pp.
16-19, June 1985.

[Metz59] Metze, G. and J.E. Robertson, "Elimination of Carry
Propagation in Digital Computers," Proc. Int'l Conf.
Information Processing, Paris, pp. 389-396, 1959.

[Parh90] Parhami, B., "Generalized Signed-Digit Number Systems: A
Unifying Framework for Redundant Number
Representations," IEEE Trans. Computers, Vol. 39, No. 1, pp.
89-98, Jan. 1990.

[Parh00] Parhami, B., Computer Arithmetic: Algorithms and Hardware
Designs, Oxford, 2000.

[Parh01] Parhami, B., "Number Reprsentation and Computer
Arithmetic," in Encyclopedia of Information Systems,
Academic Press, to appear.

[Phat94] Phatak, D.S. and I. Koren, "Hybrid Signed-Digit Number
Systems: A Unified Framework for Redundant Number
Representations with Bounded Carry Propagation Chains",
IEEE Trans. Computers, Vol. 43, pp. 880-891, Aug. 1994.

[Phat99] Phatak, D.S., T. Goff, and I. Koren, "Redundancy
Management in Arithmetic Processing via Redundant Binary
Representations", Proc. 33rd Asilomar Conf. Signals Systems
and Computers, Oct. 1999, pp. 1475-1479.

1308

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

