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Redundant representations play an important role in high- 
speed computer arithmetic. One key reason is that such 
representations support carry-free addition; i.e., addition 
in a small, constant time, independent of operand widths. 
We explore the implications of stored-transfer or transfer- 
save representation of digit sets for redundant number 
systems on the speed and cost of arithmetic algorithms and 
show that our methods lead to some of the fastest, most 
efficient implementations of carry-free arithmetic reported 
thus far. The speed~efficiency arises from storing or saving, 
instead of combining through addition, the transfer values 
generated during carry-free arithmetic. 

Guide to Notation 

[g, v] Interval of values; denotes the empty set ~ if g > v 
Marks a digit's main/stored-transfer component 
See the definition of D 
The ith transfer value in G, 0 < i < d -  1 
= [a, b], Digit set (main part) 
Number of transfer values in G 
= { c 0, c, . . . . .  ce_ ~ }, Set of transfer values generated 
= [log2r-], Number of bits in one radix-r digit 
Word width, in bits or digits 
Position sum; digits are p~ 
= 2a + 2c 0, Minimal value for p 
= 2b + 2ce_ 1, Maximal value for p 
Number representation radix 
Sum; digits are s~ 
Transfer; digits are t; 
Sum and carry components of a carry-save value 
Interim sum; digits are wi 
Addition operands; digits are x~ and y~ 
See the definition of A 
= [~, 13], Digit set 
Range of p where ci is a valid transfer; A_ 1 = A a = 
= ca._ l -  c o = ~5~, Span of G 
= c~+ 1- c/, Difference of consecutive elements in G 
Overlap between A~ and A;+~ (cardinality of A~ n A/+l) 

P = 13 - ~ + 1 - r, Redundancy index of A 
p' = b - a + 1 - r, Redundancy index of D 
~', o"  Functions generating main and stored transfer parts 
t:, co Functions generating transfer and interim sum digits 

1. I n t r o d u c t i o n  

Redundancy in number representation aims to improve the 
speed or efficiency of arithmetic units [Metz59], [Aviz60] 
and is commonly used in modern digital systems. One 
reason for speed improvement with redundancy is the 
possibility of carry-free addition; i.e., addition in a small, 
constant time, independent of operand widths [Parh90]. 
Another reason is that redundancy allows some imprecision 
in the decision processes (such as quotient or root digit 
selection [Parh00], [Parh01]); this tolerance for imprecision 
removes enough complexity from the computation's critical 
path to yield significant performance improvement. Here, 
we focus on mechanisms that facilitate carry-free addition 
and allow its implementation with even greater speed. 

In carry-free addition, one performs the following steps on 
all k digit positions of the two radix-r operands in parallel, 
where x i and y; belong to the redundant digit set A = [oc, ~]: 

1. Compute the position sum digit p; = x i + y~ 
2. Derive the interim sum digit w; and transfer digit t;+ 1 

satisfying wi = p~ - rt~+ 1 
3. Form the final sum digit s; = w;+ t; 

For step 3 to yield a valid digit in A without producing 
further transfers, wi must be restricted in D = [a, b], with 
the following holding for all possible values of ti: 

~ - t i < a < a +  r -  1 < b < ~ - t i  

Note that the digit-size additions of steps 1 and 3, though 
quite fast compared to word-size additions required with 
nonredundant representations, are merely used for 
algorithm description and need not be explicitly performed 
in hardware. The addition in step 1 can be avoided, e.g., by 
noting that w; and t;+l are directly computable in hardware 
as functions of x~ and y~. That is: 

w, = ~x;,  Yi) t,÷l = z(x,, y,) 

This, in effect, fuses steps 1 and 2 and allows the designer 
to choose the best possible merged implementation. It may 
be the case, with certain digit sets and/or encodings, that 
some form of addition is still part of the best hardware 
implementation scheme for o3 and "~, but this is not required. 
We are thus motivated to investigate methods for 
eliminating, or else simplifying, the addition in step 3. 
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2. Stored-Transfer Representations 

In a manner  similar to the stored-carry or carry-save 
representation of  binary numbers [Metz59], [Jabe99], we 
study the implications of stored-transfer or transfer-save 
representations of  redundant  digits where the pair (w~, t;) is 
viewed as an encoding of the sum digit s~, thus obviating 
the need for the final addition. We call w~ the m a i n  p a r t  and 
t, the t r a n s f e r  p a r t  of a digit 's  stored-transfer encoding. 

Example 1: A main part that is a 4-bit 2 ' s -complement  
number  and a 4-valued stored transfer in [-1, 2] constitute 
a 6-bit encoding of the digit set [-9, 9]. Direct encoding of 
the digit set would require 5 bits. • 

The latter scheme leads to a two-step formulation of carry- 
free addition. In the following, we assume that any digit z 
A has a transfer-save encoding (z', z"), with z' ~ D and z" 
G = {c 0, Cl . . . . .  C~_l}; that is, primed and double-primed 
variables are used to designate the main and transfer parts 
of a digit. 

p~, p pp 

1. Compute  the position sum digit p~ -  x;'+ x~ + y; + y~ 

- s '  s")  satisfying s ' -  - " 2. Derives~ ( ~ , ~ . ,  i p~ rsi+ 1 

Note that the generated transfer set G -  { c 0, c~ . . . . .  c~_~}, 

satisfying c o < c I < ... < c~_~, is d-valued but does not 
necessarily contain a set of d consecutive integers. We take 
this more general view in anticipation that it may provide 
added flexibility for optimizations. We will see later that 
even though such generalized transfer sets do not provide 
additional benefits directly, they can be used with minor 
modifications to the carry-free addition algorithm. On the 
other hand, the main part of a digit belongs to an interval D 
= [a, b] of  values. Whereas  gaps in this set are also 
admissible, provided that the values in the set contain one 
member  from each of the r residue equivalence classes j 
mod r (0 < j < r -  1), we have not found this generality to 
lead to any speed or cost benefit. 

Of  course, steps 1 and 2 in this new two-step process can 
again be fused, in the manner  previously outlined, leading 
to a merged,  or single-step, implementa t ion  

S ~' --P"X" PP P PP S PP ,,.,. t pp ~ p ,~ = o t ~, xi , Y i ,  Yi ) i+~ "- iJ (Xi ,  X i , ~,,  )'i ) i 

An objection may be raised that our scheme simply shifts 
the complexity of the original step 3 to the new step I. That 
this is not the case will become clear as we describe our 
methods. Here, we just argue that the new scheme can, in 
principle, be faster than the original algorithm. For one 
thing, a 4-operand addition, where two of the operands 
(transfer parts) are fairly small, can indeed be faster and 
less complex than two separate additions [Koba85]. For 
another, the transfer-save representation (z', z") may well 
contain the same total number  of bits as the binary 
encoding of z [Jabe00]. In such a case. the function pairs 
(03, "0 and (~', o")  have comparable  bit-level complexities. 

3. S o m e  G e n e r a l  R e q u i r e m e n t s  

Equating the boundaries of the original digit set A - [c~, 13] 
and its stored-transfer representation, i.e., [~, 13] - [a, b] + 

{c 0, c 1 . . . . .  ce_ 1 }, leads to the requirements" 

c~- a + c o ]3 - b + C d-- 1 

For convenience, we define redundancy indices associated 
with the two digit sets [c~, 13] and [a, b] as 9 = 13 - a + 1 - r 
and p' = b - a + 1 - r, respectively. We also designate 8 = 
ce_ l -  c o as the span of the transfer set. It is easy to show that 
9 = 9' + 8. If, for the sake of representational efficiency, we 
set 9" = 0, it is the case that 9 = 8. Furthermore,  we define 

A~ = [a + rc~, b + rc~] n [Pmin' Pmax] as the range of p, where 
c i is a valid (or u s e f u l ,  per Definition 1 below) transfer 
value, and 9~ = b + rc  i - a -  rci+ 1 + 1 = p '  + r -  r8  i (i < d -  1) 

as the overlap between Aj, and Ai+I, where 8~ = q+l - c;. 

Example 2: Stored-transfer representations of some 
redundant number  systems are characterized in the 
following table. In all cases, D is irredundant (P' = 0, 9 = 8) 
and is taken to be the unsigned set [0, r -  1], except for the 
last entry where D is [ - r / 2 ,  r /2  - 1] with r even. For the two 
hybrid signed-digit entries, r = 2". • 

Stored-carry [0, r] { 0, 1 } 
Stored-borrow [-1, r - 1 ] 

Stored-carry-or-borrow [-1, rl 2 {- 1, 0, i ) 
[-1, r] 2 {-1, 1 } 

Stored-double-carry [0, r + 1 ] 2 { 0, 1, 2 } 
Hybrid S-D (h-1 B, 1 BSD) [ -1 ,  2"-1]  1 { -1 ,  0)  

Hybrid S-D (1 BSD, h-1 B) [-2"- ' ,  2"-1]  2 '-~ { - 2  '-l, 0)  

Minimally redundant [ - r / 2 - 1 ,  r/2] 2 { -  1, O, 1 ) 
asymmetric I - r~2-1 ,  r/2] 2 { -  1, 1 } 

We next explore constraints on the digit set and transfer 
values dictated by the requirements for carry-free addition, 
where we make use of the following definitions: 

Definition 1" A transfer value c; e G is u s e f u l  if the set A i is 
nonempty; i.e., there exists some position sum value p that 
may be decomposed as p - w + rc~, where w e [a, b]. • 

Definition 2: A transfer value c~ e G is n e c e s s a r y  if the set 

A ; -  (A i ~ Ai+,) - (A;_~ ~ Ai), where c i constitutes the only 
valid choice of transfer digit value, is nonempty.  • 

Definition 3: The n e c e s s i t y  r a n g e  of p for c i, 0 < i < d -  1, 

is the possibly empty interval [b + rc~_ 1 + 1, a + rc~+ 1 - 1] 
where ci is  n e c e s s a r y ,  and neither ci_ 1, nor c;+1 is useful. • 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Useful range for c__ 1 Necessity range for c i Useful range for %1 
] - [  1 - [  

1 1 
[ ] 

a + rc~ Useful range for c i b + rc  i 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 1. Illustrating Definitions 1-3. 
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For a representation system to be closed under carry-free 
addition [Jabe00], the range [2a + 2c 0, 2b + 2ce_ 1] of the 
position sum p should be totally contained within [a, b] + 
{ rc o, rc 1 . . . . .  r c ~  }. This leads to the following results. 

L e m m a  1" If m = max/~i i is the maximum spacing of values 

in G, we must  have p' > ( m -  1)r for carry-free addition to 
be possible with stored transfer representation. 

Proof: Consider consecutive transfer values j and j + m in 
G. The ranges of p for which these transfer values can be 

chosen are Aj = [a + j r ,  b + jr] and Aj .... = [a + (j + m)r, b + 

(j + m)r], respectively. To avoid gaps in the p values, Aj and 
Aj .... must  overlap: 

b + j r  + l > a + (j + m)r  

This is easily converted to p' - b - a + 1 - r > (m - l)r. [] 

Corollary 1" Given a value for p', the maximum allowed 
spacing of values in G is p' /r  + 1 (i.e., ~5 < 9"/r + 1). [] 

Corollary 2: Given a value for p', the overlap between A; 
and A~+~ (cardinality of A; n A;+~) is %~- p' + r -  r~i;, i.e., the 

overlap %~ is minimized, for 8; = Lp'/rJ + 1. [] 

Corollary 3" For p'  < r -  1, the transfer set G nmst contain 
an interval of integer values (i.e., ~5; = 1 for all i). • 

T h e o r e m  1" The transfer set G must be at least three- 
valued. Furthermore,  a transfer set with four values is 
generally adequate, except for a few special cases. 

Proof: The min imum and maximum transfer values, i.e., c o 

and ca_ 1 , should satisfy the following inequalities" 

a + rc o < 2a + 2c o ~ ,  c o < a / ( r -  2) 
2b + 2ca_ ~ < b + rca_ 1 ~ b / ( r -  2) < ca_ ~ 

To minimize d, we aim to maximize the n e c e s s i ~  range for 

each c; e G. We thus choose c o = L a / ( r -  2)J and minimize 
9~; by choosing ~5; = Lp'/rJ + 1, for all i, as prescribed by 
Corollary 2. The value of ca_ 1 can then be derived as" 

Cd-1 - -  Co "Jr" ~ ' ~ i  --" La/(r - 2)J + ( d -  l)(Lp'/,J + 1) 

This equation, along with the lower bound for ca_ l , yields: 

La/ (r -2)J  + (d-1) (Lp ' / rJ  + 1) > ( a + p ' + r - 1 ) / ( r - 2 )  

Letting a = ( r -  2)u + v and 9 " -  rq + y, with 0 < v < r -  3 

and 0 < y < r -  1, the condition above becomes: 

u + (d-1) (q+ 1) > u + q + 1 + ( v + y + 2 q +  1)/(r-2) 

Solving this inequality for d, we get: 

d > 2 + 0  = ,  dmin = 2 + ['0 "] 

where 0 = (v + y + 2q + 1) / [ ( r -  2)(q + 1)]. Considering 

that r > 3, we next show that 0 > 3 (dmi n > 5)  is impossible, 
and 0 = 3 (d,,,, = 5) is needed only for a few special cases. 
To show that d,,,, > 5 never holds, we note that 

0 - ( v + y + 2 q +  1) / ( (r -2 ) (q+l ) )>3  

implies ( 3 r -  8 ) q <  v + y - 3 r + 7  < 3 - r < 0 ,  which is 
impossible given that ( 3 r -  8)q < 0 holds only if q < 0, 
whereas q = Lp'/rJ > O. Similarly, setting 0 > 2 leads to: 

( 2 r -  6)q < v + y -  2r + 5 

Given that the right-hand side of the inequality above is no 
greater than 1, we must have q = 0 for r > 3. This leads to 
the following special cases for which dmi n -  5" 

r >  3, q = 0, v = r - 3 ,  a n d y - r -  1 or 

r =  3, v - 0 ,  a n d y =  2 

For all other cases (i.e., 0 < 0 < 2), we have 3 < dmi n < 4. [] 

The undesirable cases in Theorem 1, where 0 - 3, are 
unlikely to be of practical interest. The radix-3 case 
(besides not being a power of 2) implies at least five values 
each for D and G, leading to 6 or more bits per digit. For 

radix 2 ~, h > 2, the high redundancy implied by 9' > r -  1, 
coupled with 3 bits for the 5-valued stored transfer, can be 
easily avoided by suitable choice of a that ensures v < r -  3 
(e.g., 0 < a < r -  4, or - r  + 2 < a < -2) .  

Coro l l a ry  4: For 9' - 0, we have dmi n - 3. In this case ,  Gmi n 
= { c 0, c o + 1, c o + 2 } is adequate, where c o = La/(r - 2)J. [] 

Coro l l a ry  5" For 0 < 9' < r - l ,  we have 0 < 2 and dmi n ~_~ 4,  
except when v = r-3 and y = r - l ,  in which case dmi" - 5. [] 

Corollary 6: For carry-free addition to be possible with a 
digit set A, the condition p > 8 > 2 is necessary. [] 

This last result is consistent with the fact that all the cases 
with p = 8 - 1 (e.g., some of those in Example 2) do not 
support carry-free addition [Parh90]. 

L e m m a  2: The necess i ty  range  of p for c i ~ G -  {c 0, c r_ 1 } is 
nonempty if and only if 8i + ~i+1 > p' /r  + 1. 

Proof: The requirement b+ 1 +rc~_ 1 <_ a - 1  +rc~+~, with C;+l-C~_ ~ 

= 81+~5;+ ~ and b - a + 1 = 9' + r lead to the desired result. [] 

Corollary 7" For 9' < r -  1 (8; + ~i+l : 2 > p' /r  + 1), all c; 
G -  { c 0, ca_ ~ }, are necessary  transfer values. [] 

Coro l l a ry  8: When D is a signed digit set (i.e., a < 0 < b) 

and P' < r -  1, we have c o < a / ( r -  2) < 0 < b / ( r -  2) _< c t_ ~, 
implying that 0 is a necessary transfer value. Furthermore,  
G = {-1, 0, 1 } is adequate. [] 

Because a four-valued G is always sufficient (except in a 
few practically insignificant special cases), compared to the 
binary encoding of the nonredundant digit set [0, r -  1 ], our 
stored-transfer representations need two bits of redundancy 
per digit. Virtually all practical redundant representations 
use power-of-two radices and thus imply at least one bit of 
redundancy. Therefore, the incremental cost of our scheme, 
in its initial form, and without the enhancement  to be 
covered in Section 5, is one bit of redundancy per digit. 
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4. Speed and Cost Implications 

The added cost of one bit per digit position buys us 
significant latency improvement in the basic operation of 
carry-free addition and all other arithmetic operations that 
use addition as a building block. In multioperand addition, 
and thus in multiplication, as well as in subtractive and 
multiplicative divison, the per-add savings are compounded 
over many addition levels. 

Because the main digit part can be in 2's-colnplement 
format with P' = 0, much of digit-level addition circuits can 
be based on readily available, and well optimized, binary 
adder cells. For example, a digit adder can be built from an 
h-bit binary adder, computing the (h + 1)-bit sum x[ + y~', 
followed by a special (h + 5)-input, (h + 2)-output circuit; 
the inputs are the aforementioned (h + 1)-bit sum and two 
2-bit stored transfers x[' and y[', while the outputs are the h- 
bit sum digit s[ and a 2-bit generated transfer si~j". Except 
for an O(h)-time digit addition, the rest of the computation 
may be performed in a small constant time, independent of 
the radix (see Section 5). 

One way to compare the speed of addition in the stored- 
transfer scheme with other representations, is to use the 
notion of high-radix coefficient introduced in [Jabe01], 
where signed-magnitude/l's-/2's-complement encodings of 
redundant digits are studied. The high radix coefficient 
corresponds to the number of simple digit-level addition 
and increment operations needed for adding two redundant 
numbers. As discussed above, stored-transfer representation 
has a high-radix coefficient of 1, whereas those of the other 
three representations are 2 for 2's-complement, 3 for l 's- 
complement, and 4 for signed-magnitude. A comparison 
between our stored-transfer scheme and hybrid signed--digit 
representation [Phat94] will be provided in Section 6. 

5. Two-Valued Stored Transfers 

The representational efficiency of our stored-transfer 
scheme can be improved by using the following "trick". 
Consider a 3-valued transfer x" ~ {-1, 0, 1} attached to a 
main digit x' ' v' :t' I ..,/.~ ! = 2u' + v, where = n l~,,d .~" and ,,~' =-t. . . . .  J. 
We assume that x' is encoded in two parts: a single bil 
denoting v' and an arbitrary encoding of u'. A given stored- 
transfer digit (2u' + 0, 0) can be recoaed as (2u" + 1,--1), 
and {2u' + 1, 0) as (2u" + O, 1), thus making it unnecessary 
to store the transfer value 0 The resulting 2-valued stored 
transfer renders the representational efficiency of our 
scheme competitive with the most efficient redundant 
representations. The cost of this recoding is small, given 
that it affects only a single bit v' in the encoding of x'. The 
case of a 3-valued transfer x" e { 0, 1, 2 } i~; similar: recode 
(2u' + 0, 1) as (2u' + 1, 0), and {2u' + 1, 1) as (2u' + 0, 2}. 

This scheme, which may be viewed as reintroducing step 3 
of the carry-free addition process, but in much simpler t:brl~ 

involving single-bit logical operations, can be applied after 
each carry-free addition operation to keep representations 
efficient in the arithmetic circuits and their associated 
registers or it can be applied only at the interface between 
the arithmetic unit and storage system. 

Ad-hoc simplifications and efficient implementations for 
special cases of P', and G, may be derived. For example we 
give the following algorithm for addition of two stored- 
transfer digits x~, and y;, where P' = 0 and G = {-1, 1 }: 

1. Form the h-bit 2' s-complement value z i -  x"i +Yi" 

2. Derive the carry-save sum (u~, v) = z~ + x'~ + Yi' 
3. Add ui and v~ to form the binary position sum p; 

4. Derive s'; and Si+l" satisfying s ' - i  Pi - -  r s i + l "  

5. Adjust s"; and the least significant bit of s~' 

If we encode G as { 0, 1 }, the rightmost bit of z; is always 0, 
the next bit is derived by an XNOR operation, and the 
identical leftmost h - 2 bits by a NOR operation. Standard 
full-adders may be used in step 2. Step 3 requires an h-bit 
(h - 1 if an extra half-adder is used in step 2) adder which 
can be of any suitable design. In step 4, s i" and s,+," are 
directly derived in constant time from Pi and its two most 
significant bits, respectively. Step 5 involves 1 gate delay, 
as previously discussed. Only step 3 has a latency that 
depends on h. Moreover, steps 1 & 2 and 3 & 4 may be 
partially overlapped to further reduce the constant-time 
component of the addition latency [Jabe00a]. 

6. Very High Radix Representations 

One context in which our scheme is particularly cost- 
effective is when the radix r is rather large. In this case, we 
have both lower relative redundancy and greater latency 
improvement over other radix-r redundant representations. 
In particular, our scheme can be viewed as a competitor for 
the hybrid redundancy scheme that provides a mechanism 
for high-radix redundant representation via incorporating 
binary signed-digit positions after each group of h - 1 
ordinary binary positions [Phat94], [Phat99]. Our scheme 
shares many advantages of hybrid redundancy, while being 
capable of providing full symmetry in the number system 
(if desired), offering lower latency, and providing greater 
flexibility in circuit implementation. 

We first compare the representation of k-digit radix-2" 
numbers in the hybrid scheme, having 1 BSD and h -  1 
ordinary bits per digit, with the two-valued stored transfer 
representation containing an h-bit main part, with P' = 0 
and G = {-i ,  1 }. Both schemes require a total of k(h + 1) 
bits. The range of a k-digit number in the hybrid scheme 
and in our scheme are I-r~2, r -  1JR and I -r~2-  1, r/2]R, 
respectively, where R = (r k - 1 ) / ( r -  1). The maximal 
symmetric subrange is I-r~2, r/2]R in both cases; that is, 
where symmetry is required, the two schemes exhibit the 
same representational efficiency. 
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Details regarding speed and circuit-cost comparisons will 
be reported in future. Preliminary results [Jabe00a] indicate 
that, compared to hybrid redundancy, a few gates are saved 
in each digit position corresponding to a B position in 
hybrid redundancy while a comparable number of extra 
gates are needed for each position corresponding to a BSD 
position. It thus seems that circuit-cost advantage exists for 
even moderate radices (h > 2) and the advantage becomes 
significant as we go to higher radices. These observations, 
along with the fact that any h-bit adder design can be used 
with stored-transfer representation, whereas hybrid 
redundancy implies a rather rigid realization, allows for 
experimentation with various design options and flexibility 
in optimizing implementation parameters. 

7. Conversion to/from 2's Complement 

To convert a 2's-complement number to a stored-transfer 
representation in radix 2 h, where 0, 1 e G, we deal with the 
h-bit groups of the 2' s-complement number in parallel. We 
sign-extend (if necessary) the input number to an equivalent 
2's-complement number whose width is a multiple of h. 
Then we use the ith group as the ith digit's main part, and, 
except for the most significant group and to = 0, set ti+l 
equal to the most significant bit of the ith group. If ti+l = 0, 
the transfer clearly has no effect and the numerical value is 
preserved. When tg+l = 1, its worth within the h-bit group is 
2 h-a which is the same as 2 h (transfer) p lus -2  h-1 (negatively 
weighted bit in the 2's-complement main part). A constant- 
time postconversion adjustment, such as the one discussed 
in Section 5, is needed if G does not include { 0, 1 }. 

For the reverse conversion, we add the main parts with their 
corresponding transfers, all in parallel. This yields a 
redundant number with 2' s-complement digits. The rest of 
the process follows conventional redundant-to-binary 
conversion techniques [Parh00]. We note that converting a 
2's-complement number to its stored-transfer equivalent 
requires little or no circuitry, since it is done by inserting a 
copy of some bits in place of the transfers. But the reverse 
conversion, as for any other redundant representation, 
involes word-width carry propagation. 

8. Conclusion 

We have shown that the stored-transfer representation of 
certain redundant numbers offers speed and cost benefits in 
the carry-free addition process. We proved the necessity of 
at least three transfer digit values and sufficiency of four 
values (in all practical situations), for carry-free addition. 
We further showed that by a simple adjustment in final 
stage of the carry-free addition algorithm, one can reduce 
the number of stored transfers to two values, thus requiring 
one bit for storage. Our stored transfer scheme is thus 
competitive with other practical redundant representations 
with regard to storage cost. In particular it has cost, speed, 
and symmetry advantages over hybrid redundancy. 

We also demonstrated that converting a 2's-complement 
number to stored-transfer form implies virtually no cost or 
latency, while the reverse conversion needs the obligatory 
carry propagation. This affinity with 2's-complement 
numbers, in representation and circuit implementation, is a 
key strength of the stored-transfer scheme. 

Derivation of algorithms for stored-transfer multiplication 
and division is quite feasible. Very-high-radix SRT division 
with signed-digit partial remainders and signed-digit 
quotient [Flyn01] can be modified to accept stored-transfer 
operands. A series of arithmetic operations can thus be 
performed without carry propagation by representing the 
inputs, intermediate results, and outputs in stored-transfer 
format. Results on other operations, and associated 
arithmetic support functions such as shifting, will be 
reported in the near future. 
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