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ABSTRACT
Edit distance is one of the most fundamental problems in computer

science. Tree edit distance is a natural generalization of edit dis-

tance to ordered rooted trees. Such a generalization extends the

applications of edit distance to areas such as computational biology,

structured data analysis (e.g., XML), image analysis, and compiler

optimization. Perhaps the most notable application of tree edit dis-

tance is in the analysis of RNA molecules in computational biology

where the secondary structure of RNA is typically represented as a

rooted tree.

The best-known solution for tree edit distance runs in cubic

time. Recently, Bringmann et al. show that an O (n2.99) algorithm
for weighted tree edit distance is unlikely by proving a conditional

lower bound on the computational complexity of tree edit distance.

This shows a substantial gap between the computational complexity

of tree edit distance and that of edit distance for which a simple

dynamic program solves the problem in quadratic time.

In this work, we give the first non-trivial approximation algo-

rithms for tree edit distance. Our main result is a quadratic time

approximation scheme for tree edit distance that approximates the

solution within a factor of 1 + ϵ for any constant ϵ > 0.

CCS CONCEPTS
• Theory of computation → Approximation algorithms
analysis; Graph algorithms analysis; Data structures design and

analysis; Streaming, sublinear and near linear time algorithms; Dy-

namic programming.
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1 INTRODUCTION
Edit distance is one of themost fundamental problems in combinato-

rial optimization. It has been subject to many studies since the 60’s

and even after 50 years, some of the questions regarding its com-

putational complexity are still open. Two natural generalizations

of edit distance are tree edit distance and language edit distance.

While the known algorithmic results for tree edit distance have

been mostly basic and unexciting, recent developments have been

very fruitful for language edit distance [12, 25, 30]. In this work,

our focus is on approximation algorithms for tree edit distance and

present the first non-trivial results for this problem.

Tree edit distance was first introduced by Selkow [31] in the

late 70’s. Since then, tree edit distance has found its applications in

various areas such as computational biology [9, 21, 32, 38], struc-

tured data analysis (e.g., XML) [13, 16, 18], image analysis [14], and

compiler optimization [17]. Perhaps the most notable application

of tree edit distance is in the analysis of RNA molecules in compu-

tational biology where the secondary structure of RNA is typically

represented as a rooted tree [21, 23].

While in edit distance, the goal is to transform a string s into
another string s , in tree edit distance the goal is to transform a

rooted tree T into another rooted tree T using the least number of

edit operations. We assume that both trees T and T are rooted, and

there is a left-to-right order between the sibling nodes. Moreover,

every node has a label which identifies the type of the node. The

elementary operations are node deletion, node addition, and node
relabel. In node deletion, we remove a node r and replace it with all

of its children, preserving their order. The reverse of node deletion

is node addition which allows us to select a consecutive set of

siblings and bring them under a new node r which appears at the

previous position of the relocated nodes. In node relabel, we simply

modify the label of an existing node.
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The computational aspect of the problem is also widely studied.

Tai [36] gives the first solution for tree edit distance that runs in

timeO (n6) where n is the total number of nodes in both trees. This

was later improved in a series of works to an O (n4) algorithm [39],

and an O (n3 logn) algorithm [27]. Finally, Demaine et al. provide
an O (n3) time algorithm [17]. Very recently, the seminal work of

Bringmann et al. [11] proves that the cubic running time barrier

for weighted tree edit distance cannot be beaten unless APSP1 ad-
mits a truly subcubic time solution and weighted k-clique2 admits

an O (nk−ϵ ) time solution. The existence of such a lower bound

was previously conjectured by Abboud [1] in a set of seven open

problems. Also, anO (ndmax
3) algorithm is proposed by Touzet [37]

that is subcubic when the distance between the two trees is small

(dmax here denotes an upper bound on the solution size). Despite

these studies, the literature on tree edit distance is quite poor con-

cerning approximation solutions. The only relevant results are the

O (n3/4) andO (hmax) approximation algorithms of Akutsu et al. [2]
for degree-bounded trees that run in time O (n2). hmax here de-

notes an upper bound on the heights of the two trees. A quadratic

time algorithm with approximation factor O (n2/3) follows from
the algorithm of Touzet [37] by solving the problem for instances

whose distance is smaller than n1/3 and reporting a solution of

O (n) for instances with a distance of at least n1/3. In contrast to

tree edit distance, approximation algorithms for edit distance have

been subject to many studies [4, 5, 7, 8, 22, 24, 28], culminating

in a poly(log) approximation algorithm in linear time. Recently, a

quantum algorithm is given for edit distance that approximates the

solution within a constant factor in truly subquadratic time [10] by

exploiting triangle inequality. Subsequent work discovers a novel

classic replacement for the quantum techniques and obtains a truly

subquadratic time algorithm within a constant factor for classic

computers [15].

In this work, we present a 1+ϵ approximation algorithm for tree

edit distance that runs in time Õ (n2). We show that the running time

of our algorithm improves to Õ (ndmax) when the solution size is

guaranteed to be bounded by dmax. Our results also imply an almost

linear time algorithm (Õ (n)) with an approximation factor ofO (
√
n).

Although the recent result of [11] suggests that weighted tree edit

distance is strictly (computationally) harder than edit distance, our

results suggest that both problems may be equally time-consuming,

concerning approximation algorithms for the unweighted case.

Table 1 compares our results to the previously known solutions.

Tree edit distance is a generalization of edit distance; therefore, a 1+

ϵ approximation algorithm for tree edit distance is hard to acheive

unless edit distance admits a truly subquadratic 1+ϵ approximation

scheme.

We obtain our result through several combinatorial ideas. Some

of these ideas such as heavy-light decomposition, or reducing the

problem to forest edit distance (see Section 2 for a definition) have

been used in the previous work [17, 27, 37]. These techniques are

1
finding all pairs shortest paths in a graph.

2
In the weighted k -clique problem, we are given an undirected weighted graph on n
nodes, and O (n2 ) edges with integral weights, and we seek to find a k -clique with
the highest total sum of edge weights.

Table 1: In the bounded TED problem, we are guaranteed
that the distance between the two trees is bounded by dmax.
hmax in the algorithm of [2] denotes an upper bound on the
heights of the trees.⋆ follows from theO (ndmax

3) algorithm
of Touzet [37].

Our Results

Problem Reference

Approximation Running

Ratio Time

TED Theorem 5.3 1 + ϵ Õ (n2)

bounded TED Full version 1 + ϵ Õ (ndmax)

TED Full version O (
√
n) Õ (n)

Previous Work

TED [36] exact O (n6)

TED [39] exact O (n4)

TED [27] exact O (n3 logn)

TED [17] exact O (n3)

bounded TED [37] exact O (ndmax
3)

TED [2] O (n3/4) O (n2)

TED [37]⋆ O (n2/3) O (n2)

TED [2] O (hmax) O (n2)

very classic as almost any algorithm for TED uses these ideas. How-

ever, the main techniques that enable us to achieve a 1 + ϵ approx-

imate solution are pretty novel and to the best of our knowledge

have not been used in previous work.

2 PRELIMINARIES
Given two ordered rooted trees T and T , the tree edit distance

problem (TED) seeks to transform one of the trees into another one

via the minimum number of operations. In TED, we assume both

trees are rooted, each node has a label, and the children of each

node are ordered. We call two subtrees identical if the roots’ labels
are the same, the number of the children of the roots are equal, and

the subtrees of the children of the roots are also identical in the

same order. In each operation, we are allowed to remove a node,

add a new node, or relabel an existing node, all at the same cost

of one. In each case, the order of the siblings remains the same in

each neighborhood. When we remove a node, it will be replaced by

its children (if any) without any change in the order of its siblings

or that of its children. Similarly, when we wish to add a new node,

we are allowed to select a number of consecutive siblings (in an

arbitrary neighborhood) and add the new node as their father. In

this case, the newly added node takes their place, and the replaced

nodes appear as its children in the same order. It can also be the case

that we simply add a new node without any children at any position

in a tree. Figure 1 illustrates how node deletion, node addition, and

node relabel modify a tree.

To simplify the notation, we represent each tree with a balanced
string of parentheses. Balanced here implies that every opening

parenthesis has a corresponding closing parenthesis and that the

pairs of parentheses are correctly nested. In this representation,

each nodeu is represented with a pair of opening and closing paren-

theses which enclose the children of u in the order they appear in
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c

a

e d

c b

c

a

cc b

(a) The node with label e is deleted.

c

a

d

c

b

c

a

dc b e

(b) The node with label e is inserted.

c

e

dc b

c

a

dc b

(c) The node with label a is relabeled to e.

Figure 1: Three basic operations to transform a tree into an-
other one. Modified nodes are highlighted in each example.

the tree. This representation always corresponds to a sequence of

trees which we call an ordered forest. When the first and the last

characters of the representation match, it means that the represen-

tation corresponds to a tree, and all of the nodes are nested under

a single node which is the root of the tree.

Every pair of matching parentheses has a label identical to that

of its corresponding node in the tree. We show this label on top

of the parentheses. For example, a leaf with a label a is shown

by “

a
(
a
)”. This way, node deletion, node addition, and node relabel

are equivalent to deleting a matching pair of parentheses, adding

a matching pair of parentheses, or relabeling an existing pair of

matching parentheses. When we add a node, we select a number

of consecutive siblings to be its children. Similarly, when we add a

new pair of parentheses, we select a substring, where the match of

every parenthesis is inside the substring. Figure 2 shows how these

operations change the representations of the trees.

For a string s (s) which represents a tree or an ordered forest, we

denote its i’th character by s[i] (s[i]). We also denote a substring of

s (s) from the ℓ’th character to the r ’th character by s[ℓ, r ] (s[ℓ, r ]).
For a substring s[ℓ, r ], we call a character s[i] redundant, if the
matching parenthesis of s[i] is outside of s[ℓ, r ]. Based on this,

the refined subsequence of a substring s[ℓ, r ] is the sequence of

all characters in s[ℓ, r ] that are not redundant. For a tree or an

ordered forest represented by s , we call the refined subsequence of

c
(
a
(
e
(
c
(
c
)
b
(
b
)
e
)
d
(
d
)
a
)
c
) →

c
(
a
(
c
(
c
)
b
(
b
)
d
(
d
)
a
)
c
)

(a) The node with label e is deleted.
c
(
a
(
c
(
c
)
b
(
b
)
d
(
d
)
a
)
c
) →

c
(
a
(
c
(
c
)
e
(
b
(
b
)
d
(
d
)
e
)
a
)
c
)

(b) The node with label e is inserted.
c
(
a
(
c
(
c
)
b
(
b
)
d
(
d
)
a
)
c
) →

c
(
e
(
c
(
c
)
b
(
b
)
d
(
d
)
e
)
c
)

(c) The node with label a is relabeled to e.

Figure 2: Three basic operations to transform a tree into an-
other one. The representations belong to trees of Figure 1.
Modified parentheses are underlined in each example.

a substring s[ℓ, r ] a subforest of s . Moreover, a subforest is proper if
it is the refined subsequence of a substring that has no redundant

closing parenthesis. Throughout this paper, we use T when we

refer to a forest or a tree, and we use s when we refer to its string

representation. We also use T and s when we refer to a second

forest or tree, or its string representation. Moreover, we denote

the nodes of a tree with characters u and v and use x and y for

their corresponding parentheses in the string representations. We

also denote the labels of the nodes with characters a, b, c, d, and
e. Similar to TED, forest edit distance (FED) seeks to transform

one ordered forest into another one with the minimum number of

operations.

For two ordered rooted trees T and T , we denote their tree edit
distance by ted(T ,T ). Similarly, for the string representations of

two ordered rooted trees s and s we denote it by ted(s, s ). Moreover,

we denote the forest edit distance between two ordered forests s
and s by fed(s, s ). For two nodesu andu inT andT , respectively, we
define ted(u,u) as the tree edit distance between subtrees rooted

by u and u with an additional assumption that node u is mapped

to node u. Note that ted(r , r ) may differ from ted(T ,T ), where r
and r are roots of T and T , respectively, because of the additional
assumption. In our algorithm, we add two dummy roots in the

beginning to the two trees, compute the ted of the two new roots

and output it as the ted between two input trees.

In addition, we denote the edit distance between two strings s
and s by ed(s, s ). The size of the subtree induced by a node u is

shown by size(u). Moreover, let isClosing (isOpening) be a function
that gets a parenthesis as input and outputs 1 (0) if it is a closing

parenthesis and 0 (1) otherwise. Note that Õ is similar to big O
notation but ignores poly(logn) and poly(1/ϵ ) factors.

3 OUR RESULTS AND TECHNIQUES
Let us begin by explaining a naïve O (n4) dynamic programming

algorithm for tree edit distance. We refer to the input trees by T

and T and denote the corresponding representations of the given

trees by s and s , respectively. Since both trees have n nodes in total,

the number of pairs of matching parentheses in s and s sum to n.
Notice that, each pair of matching parentheses in a string denotes

a subtree. Thus, we define the tree edit distance between two pairs

of parentheses of s and s as the tree edit distance between their
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corresponding subtrees. In this algorithm, we compute the tree edit

distance between every pair of parentheses x and y of s and s in
a bottom-up order. That is, we start with the leaves of the trees

and move on to their parents until we compute the solution for the

roots of the two trees.

Let x and x be two matching pairs of parentheses of s and s
that correspond to nodes u and u of the trees. Since we solve the

problem in a bottom-up order, when we wish to compute the tree

edit distance between x and x , the solution is given for every pair

of the children of x and x . Thus, the problem that we need to solve

is the following:

Let t and t be two balanced strings of parentheses corresponding
to two forests F and F . Along with t and t , we are given the tree edit
distance of every pair of matching parentheses of the two strings. The
goal is to compute the smallest number of edit operations on these
strings to transform t into t .

The operations that we are allowed to perform are the tree edit

operations described in Section 2. We call this problem forest edit
distance (FED). A similar definition of this problem is also given

in [39]. Notice that a fundamental difference between tree edit

distance and forest edit distance is that in forest edit distance, all

the tree edit distances are given in the input whereas, in tree edit

distance, the input only contains the two trees. We elaborate on

forest edit distance later in this section.

The naïveO (n4) time algorithm for tree edit distance uses forest

edit distance as a black box to find the tree edit distances between

every pair of nodes of the trees. It has been shown that forest

edit distance can be solved in time O (n2) for two forests with n
nodes in total [39]. Since we use FED for every pair of nodes of the

two trees, the total running time of our algorithm is O (n4). Indeed
by fixing a parameter hmax to be an upper bound on the height

of the two trees, one can show that the same algorithm runs in

time O (n3hmax) which is Õ (n3) for balanced trees. The classic tree

decomposition of Sleator and Tarjan [34] (called heavy-light tree
decomposition) is then used by Klein [27] to improve the running

time to Õ (n3). Roughly speaking, Sleator and Tarjan show that any

tree can be decomposed into a number of spines such that in any

path from the root to any leaf of the tree, we cross at mostO (logn)
spines. Moreover, such a decomposition can be found in linear time.

Thus, an algorithm for solving the problem for two spines leads to

a solution for the whole trees with a logarithmic overhead. This

technique has been applied to a variety of algorithms [6, 17, 27, 35]

to break the linear dependence on the height of the trees.

In order to design a 1+ ϵ approximation algorithm, we too make

use of the heavy-light tree decomposition of Sleator and Tarjan [34].

Based on this decomposition and the analysis that we present in

Section 5.3, an Õ (n2) time algorithm for approximating TED follows

from a similar algorithm that solves the problem for two spines

of the trees with similar running time and approximation factor

(see Figure 3). To be more specific, let us clarify what we mean by

solving the problem for two spines of the trees. In the heavy-light

decomposition, the vertices are decomposed into a set of disjoint

spines. Every spine has a property that the depth of the vertices

increase as we traverse the spine. Therefore, the second node of

a spine is a child of the first node; the third node is a child of the

second node and so on.

a

c b

c b a

b c

u1

u2

u3

u4

v1

v2

v3

v4

T :

s :
a
(
c
(
c
(
c
)
b
(
b
(
b
)
c
(
c
)
b
)
c
)
b
(
a
(
a
)
b
)
a
)

a

c b a

b b c

ū1

v̄1

v̄2 v̄3 ū3

ū2 v̄4

T :

s :
a
(
c
(
b
(
b
)
c
)
b
(
b
(
b
)
c
(
c
)
b
)
a
(
a
)
a
)

Figure 3: A spine for each of trees T and T is illustrated in
this example. Spine nodes are highlighted. The string repre-
sentations of the two trees s and s are shown below each tree.
The parentheses are colored accordingly.

The naïve O (n4) algorithm constructs the solution in a bottom-

up manner and for every pair of vertices, uses FED to solve the

problem.When the spines are involved, we do the same thing except

that we compute the solution for all vertices of a spine in a sin-

gle shot. Therefore, the depth of the recursion reduces to O (logn).
Now, assume that we are given two spines S = (u1,u2, . . .) and

S = (u1,u2, . . .) of the two trees and we would like to solve the

problem for the subtrees rooted under ui and u j for the vertices
of the spines (see Figure 4 for the inputs and outputs of the prob-

lem). That is, for any pair of nodes ui and u j , we would like to

compute/approximate ted(ui ,u j ). However, additional important

information is also provided: for any two vertices v and v such

that either v < S or v < S , ted(v,v ) is given. This information is

available since we solve the problem for the spines in a bottom-up

order. We call this problem spine edit distance. Spine edit distance
generalizes the FED problem since if both spines have only one

node, the resulting problem would be equivalent to FED for the

children of the two nodes. Figure 4 shows the input and output of

the problem for two given spines.

Indeed, our main challenge is to approximate the solution for

two spines. In an instance of spine edit distance, let us call the nodes

that appear in the spines (u1,u2, . . . and u1,u2, . . .) the highlighted
nodes and similarly, we call the parentheses corresponding to these

nodes highlighted parentheses. We refer to the rest of the nodes and
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ted u1 u2 u3 v1 v2 v3 v4
u1 6 3 2 1

u2 7 4 2 1

u3 7 4 2 1

u4 7 5 3 1

v1 6 2 0 1 1 1 1

v2 6 2 1 1 0 0 1

v3 6 2 2 2 1 1 1

v4 6 3 1 2 1 1 0

Input

ted u1 u2 u3
u1 3 5 7

u2 3 2 4

u3 4 0 2

u4 6 2 0

Output

Figure 4: The inputs and outputs of an instance of the spine
edit distance problem corresponding to the example of Fig-
ure 3. In spine edit distance, the input contains the tree edit
distances between all pairs of nodes except the pairs that
are both highlighted. The input also contains two trees each
with a spine. In the output, we should compute/approximate
the solution for the pairs of highlighted nodes.

parentheses in the subtrees as solid nodes and solid parentheses.

Spine edit distance seeks to find a solution for two intertwined FED
and ED problems (see Figure 5). On the one hand, if we only take

into account the highlighted nodes and ignore the costs for the

rest of the nodes, the problem becomes an instance of ED. On the

other hand, if we ignore these nodes and only consider the solid

nodes, the problem becomes an instance of FED. Both ED and FED
admit O (n2) time solutions even in weighted cases; however, there

is a conditional lower bound of Ω(n3−o (1) ) on the computational

complexity of weighted spine edit distance due to [11]
3
.

In Section 5.2, we explain our 1 + ϵ approximation algorithm for

spine edit distance which also carries over to TED. The intuition
behind our algorithm is the following: Recall that the goal of the

spine edit distance problem is to find the tree edit distance between

the nodes of the two spines. Fix a node ui ∈ S and a node u j ∈ S
and assume that the goal is to approximate ted(ui ,u j ) subject to
node ui being transformed into node u j . Assume that ted(uk ,ul )
is known for every k > i and l > j. Moreover, assume that we are

given a highlighted node ui′ and a nodew and are guaranteed that

there exists an optimal way to transform the subtree rooted by ui
to the subtree rooted by u j in a way that node ui′ transforms into

w and that all highlighted nodes in between ui and ui′ are removed

and all nodes in the path from u j tow are inserted. Note thatw can

be either a highlighted or a solid node in the subtree ofu j . Provided
that this information is correct, we can then formulate ted(ui ,u j ) :=
ted(ui′ ,w )+R+C +L as the solution corresponding to the nodesui
andu j . In the above formulation, R := (i ′−i−1)+ (depth(w )− j−1)
denotes the cost of removing the nodes between ui and ui′ and

3
A subcubic time solution for spine edit distance yields a subcubic time solution for

TED.

a

c

b

c

u1

u2

u3

u4

T :

Highlighted Nodes:

s :
a
(
c
(
b
(
c
(
c
)
b
)
c
)
a
)

a

b

c

ū1

ū3

ū2

T :

s :
a
(
b
(
c
(
c
)
b
)
a
)

b

c abv1 v2

v3

v4

T :

Solid Nodes:

s :
c
(
c
)
b
(
b
)
b
(
a
(
a
)
b
)

c

ab b

v̄1

v̄2 v̄3 v̄4

T :

s :
c
(
b
(
b
)
c
)
b
(
b
)
a
(
a
)

Figure 5: The example of Figure 3 is separated into an in-
stance of edit distance and an instance of forest edit dis-
tance.

inserting the nodes between u j and w . Moreover, C denotes the

cost of transforming the solid nodes in between ui and ui′ (solid
nodes in the subtree rooted by ui but not in the subtree rooted by

ui′ ) to the solid nodes in between u j andw . In addition, L denotes

the cost of changing the label of ui to the label of u j . Indeed, R
and L can be computed in time O (1); however, computing C may

be time-consuming. As we show in Section 5.2, the problem of

computing C essentially reduces to solving FED.
The first step of our algorithm is constructing a data structure

that enables us to approximate C in the above formulation in time

Õ (1). We call this data structure FEDDS. Provided that FEDDS is

available, we can approximate ted(ui ,u j ) := ted(ui′ ,w ) +R +C +L

in time Õ (1). Since the highlighted nodes of the first forest are

ignored for computing C , we only incorporate the solid nodes of

the first forest for determining C . Thus, one can interpret FEDDS
as a data structure that receives an instance of FED as input and

answers the queries of the following type in time Õ (1):

Let t and t be the string representations for two forests F and F .
Given two intervals [ℓ, r ] and [ℓ, r ] of the input strings such that
both t[ℓ, r ] and t[ℓ, r ] are balanced, what is the forest edit distance
between t[ℓ, r ] and t[ℓ, r ]?

Notice that the special case of the above problem is when both

[ℓ, r ] and [ℓ, r ] span the entire length of the two string representa-

tions and thus in the output, we have to compute the FED of the two
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Figure 6: This example illustrates how ted(u1,u1) is computed from ted(u3,u2) in the example of Figure 3. ted(u1,u1) =
ted(u3,u2) + R +C + L = 0 + 1 + 2 + 0 = 3.

forests. In Section 4.2, we design an algorithm for FEDDS with pre-

processing time Õ (n2) and query time Õ (1). Our data structure ap-
proximates the solution within a factor of 1+ ϵ . The high-level idea
is that we construct O (log

1+ϵ n) data structures FEDDSk where

k = (1 + ϵ )i for 0 ≤ i ≤ log
1+ϵ n. Each FEDDSk is responsible

for answering the queries whose solutions are close to k . For each
FEDDSk , we break the input strings into roughly O (n/k ) marked

points. After a preprocessing in timeO (n), for every pair of marked

points, we design an Õ (k2) time algorithm to compute the forest

edit distance up to a threshold of O (k ) from the beginning of the

marked points. Then, we show that since the additive error for

FEDDSk is allowed to be as large as ϵk , we can afford to modify

each query to make sure both intervals of each query start from

marked points. Hence, using the precomputed information, we can

answer each query in time Õ (1). This data structure is explained in

Section 4.2.

Theorem 4.3 [restated informally]. For any ϵ > 0, FEDDS can be
constructed in time Õ (n2). Then it can output fed between any two
proper subforests in time Õ (1) within an approximation factor of 1+ϵ .

Let us get back to the computation of spine edit distance. Now

that FEDDS is available, given that for a pair of nodesui andu j their
solution is derived from ui′ andw , one can compute ted(ui ,u j ) in
time Õ (1). However, ui′ andw are not known in advance. Indeed

one can try O (n2) possibilities for ui′ andw and solve the problem

in time Õ (n2) for ui and u j and in time Õ (n4) for all pairs of nodes
of the two spines. However, this running time is not desirable. We

improve this algorithm significantly by exploiting the following

facts:

• As the distance betweenui andui′ increases, R also increases.

Therefore, if dmax is an upper bound on the solution, then

i ′ ≤ i + dmax + 1 holds.

• The difference between the number of solid nodes on the

right of ui′ and the number of solid nodes on the right of

w appears in part C of the solution. Therefore, w also has

O (dmax) possibilities.

• ted(ui ,u j ) = d is a desirable estimate for the tree edit dis-

tances of the highlighted pairs of nodes that are no more

than ϵd away from ui and u j in the string representations.

We explain these abstract ideas in details in Section 5.2 and show

how this gives us a 1+ϵ approximate solution for spine edit distance

and in turn for tree edit distance. We face several challenges to

approximate the solution within a factor of 1 + ϵ . We briefly point

out some of the difficulties in the following:

• Our approach for solving spine edit distance is dynamic, and

we lose an error of 1+ ϵ in every step. We have to make sure

the error does not propagate.

• We may have different (additive) error thresholds based on

the values of ted(ui ,u j ). Our algorithm should be careful

about the error thresholds without having prior information

about the solution.

The above challenges make our algorithm quiet involved and

non-trivial. Finally, it follows that once we get a 1 + ϵ approximate

solution for spine edit distance, we can turn that into an algorithm

for TED with roughly the same running time.

Theorem 5.3 [restated informally]. For any ϵ > 0, TED admits an
Õ (n2) time algorithm with approximation factor 1 + ϵ .

In Section 6 of the full version of the paper, we revisit the above

ideas for the case where the tree edit distance between the two

trees is guaranteed to be at most dmax and show that the running

time of our algorithm improves to Õ (ndmax). The general idea is
that if the opening (closing) parentheses of two nodes in the input

trees differ by more than 2dmax, we know that the optimal solution

does not map them together. Thus, we do not need to compute tree

edit distance between them.

Theorem 6.4 [restated informally]. For any ϵ > 0, TED admits an
Õ (ndmax) time algorithm with approximation factor 1 + ϵ , where
dmax is an upper bound on the size of the solution.
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We further design a linear time algorithm for approximating TED
in Section 7 of the full version of the paper, with an approximation

factor of O (
√
n). First, notice that all the algorithms we discussed

so far have a super-linear running time when the distance between

the two trees is not constant. Therefore, in order to give a linear

time solution, one should go beyond the above ideas. Let us assume

for simplicity that a distance d is given to us as input, and our goal

is to either approve that the distance between the two trees is at

most d or that the solution is much larger than 20d
√
n. Note that it

is safe to assume that at least one of the two cases holds. Thus, if

d ≥
√
n the solution is always equal to d and the problem is trivial.

Hence, we assume w.l.o.g. that d <
√
n. Moreover, we assume that d

is the distance between the two trees, and based on that, try to find

a solution. If we fail, we realize that the solution is at least 20d
√
n.

To illustrate our techniques, let us assume that the two trees

have very simple structures. In the extreme case, we consider both

trees to be paths. Divide each of the trees into

√
n disjoint paths of

size

√
n that span the vertices of the two forests. We denote these

paths by P1, P2, . . . , P√n forT and P1, P2, . . . , P√n forT (see Figure

7). The key idea that enables us to approximate the solution in

near-linear time is the following structural properties:

(1) if ted(T ,T ) ≤ d holds then ted(Pi , P i ) ≤ 8d also holds for

any 1 ≤ i ≤
√
n.

(2)

∑
i ted(Pi , P i ) ≥ ted(T ,T ).
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Figure 7: The decomposition of the paths is illustrated in
this example

In words, the above two properties show that

∑
i ted(Pi , P i )

gives us an O (
√
n) approximate solution for ted(T ,T ). However,

computing

∑
i ted(Pi , P i ) may take up to O (

√
n
2

) = O (n) time for

each i and thus if we naïvely find the solution for each i ∈ [

√
n],

the total running time would be O (n3/2).
If the tree edit distance between the two trees is exactly equal

to d , we know that both properties (i) and (ii) hold. However, we

need to find a way to verify this equality. To this end, we use a

randomized procedure and analyze its correctness with concen-

tration bounds. Fix a probability p = O (logn/d ). Select a subset I
of the set {1, 2, . . . ,

√
n} such that each number appears in I inde-

pendently with probability p. Compute S =
∑
i ∈I ted(Pi , P i ) and

approximate

∑
1≤i≤

√
n ted(Pi , P i ) with 1/pS. We show that if d is

an accurate estimate for ted(T ,T ), the approximated value is close

to d w.h.p. On the other hand, if ted(T ,T ) is a multiplicative factor

O (
√
n) larger than d then the estimate we get in our algorithm is

much larger than d w.h.p. and thus we can distinguish the two

cases w.h.p. Therefore, this algorithm gives us a correct solution

w.h.p. On the computational front, we show that the running time

of our algorithm is Õ (n) if we use our Õ (ndmax) time algorithm for

estimating the TED’s of the paths.
The above ideas lead to an Õ (n) time algorithm for approximat-

ing the tree edit distance between two paths. To extend this result

to general trees, we need a proper decomposition of the trees into

smaller components. There already exist several tree decomposi-

tion techniques (e.g., separator decomposition based on [26] and

microtree/macrotree decomposition of [3]); however, none of these

techniques apply to our algorithm. Thus, we introduce a new tree

decomposition technique which we call synchronous decomposition
of trees. For a given 1 ≤ ∆ ≤ n, our algorithm decomposes one

of the trees into O (n/∆) (not necessarily connected) components

of size at most O (∆). However, our decomposition maintains the

property that for each disconnected component, there exists a node

in the tree such that adding that node to the component (along with

its incident edges) makes the component connected. Our algorithm

finds a similar decomposition for the second tree and corresponds

the decomposed components together. An example of our synchro-

nous tree decomposition is shown in Figure 8. In our linear time

algorithm, we set ∆ = O (
√
n) in the synchronous decomposition.

Via our synchronous decomposition, we are able to apply the

above technique to estimate the solution size. However, in contrast

to the case of paths, here every decomposed component may be

neighbors with O (
√
n) other components. This further complicates

the algorithm as ted(Ti ,T i ) ≤ 8d may not hold for two decomposed

components Ti and T i of the two trees. We show that these ideas

give us an almost linear time algorithm for approximating TED
within a factor of at most O (

√
n).

Theorem 7.4 [restated informally]. TED admits an Õ (n) time algo-
rithm with approximation factor O (

√
n).

4 FOREST EDIT DISTANCE
The forest edit distance problem extends the definition of edit dis-

tance to ordered forests. We use forest edit distance as an interme-

diary problem in our solution. Previous algorithms such as that of

Zhang and Shasha [39] also use it as a subproblem for solving tree

edit distance. In the forest edit distance problem (FED) the goal is
to transform the first forest into the second forest, using the basic
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Figure 8: The synchronous decomposition ofT andT is illus-
trated in this example. ForT with 9 nodes and ∆ = 3, we par-
tition T into 3 parts of size ∆. This decomposition is shown
via rectangles for the representations.

operations of TED. Additionally, we assume that we are given all

of the tree edit distances between any two pairs of nodes as input.

That is, for any pair of nodes u and u, ted(u,u) is available. Recall
that in ted(u,u) we assume that u is mapped to u.

Forest Edit Distance (FED)

Input: two ordered forests s and s of total size n and the ted’s
between any two pairs of nodes in s and s .

Output: a sequence of operations that transforms s into s with
the minimum length (fed(s, s )).

In Section 4.1, we briefly review how the technique of [33] solves

FED in time O (n + dmax
2) when the distance between the two

ordered forests is bounded by dmax. Based on this idea, in Section 4.2,

we provide a data structure FEDDS that for two given ordered

forests s and s , approximates the forest edit distance between any

two proper subforests of them. We use FEDDS in Section 5 to

approximate the forest edit distance between several subforests

with a running time almost equal to the runtime of computing only

one fed.

4.1 An O (n + dmax
2) Time Solution

In this section, we review the solution of [33] for solving FED for

two given ordered forests s and s of total size n with distance at

most dmax. We use this solution in Section 4.2 to build our data

structure for approximating the edit distances between subforests.

In the following, first we present a classic O (n2) time algorithm

for FED, and then we show how the time complexity improves to

O (n + dmax
2) in the algorithm of [33]. Let m(i ) and m(j ) be the

indices of the matched parentheses of s[i] and s[j], respectively.
Recall that ted’s between all pairs of nodes are given. We com-

pute fed(s[1, i], s[1, j])’s via a dynamic program with the following

update rule.

fed(s[1, i], s[1, j]) = min




fed(s[1, i − 1], s[1, j]) + isClosing(s[i]) if i > 0,

fed(s[1, i], s[1, j − 1]) + isClosing(s[j]) if j > 0,

fed(s[1, m(i ) − 1], s[1, m(j ) − 1]) if isClosing(s[i])

+ted(s[m(i ), i], s[m(j ), j]) & isClosing(s[j]).

Using this update rule, we compute fed(s[1, i], s[1, j])’s for all

1 ≤ i ≤ |s | and 1 ≤ j ≤ |s |. Finally, fed(s[1, i], s[1, j]) where i = |s |
and j = |s | is the forest edit distance between s and s . The running
time of this algorithm is O (n2).

It has been shown that ted reduces to almost O (n2) instances
of fed [39]. Hence, using this algorithm, we can compute the ted
between s and s in time O (n4). A more careful analysis improves

the time complexity to O (n2hh) [39], where h (h) is the height

of T (T ). Also, note that FED is a generalization of the edit dis-

tance (ED) problem since we can convert an input of ED into an

input of FED. To do this, we replace any character with a pair of

parentheses with the same label. For example, ed(“tgcat”, “atcct”) =

fed(“
t
(
t
)
g
(
g
)
c
(
c
)
a
(
a
)
t
(
t
)”, “

a
(
a
)
t
(
t
)
c
(
c
)
c
(
c
)
t
(
t
)”) = 3.

Landau and Vishkin [29] show how to solve ED in time O (n +
dmax

2) when the size of the solution is bounded by dmax. For two

strings s and s , they use the observation that if s[i + 1, i + t] =
s[j + 1, j + t], then ed(s[1, i], s[1, j]) = ed(s[1, i + t], s[1, j + t]). They
use a suffix tree to compute the queries of the following type in

constant time: given two indices i and j of s and s , what is the
largest t such that s[i + 1, i + t] = s[j + 1, j + t].

Shasha and Zhang use a more in-depth and more technically

involved analysis of the same idea to present an algorithm for the

forest edit distance problem in timeO (n+dmax
2) [33]. In Appendix

A of the full version of the paper, we recapitulate some of the ideas

of their algorithm to solve FED in time O (n + dmax
2).

Theorem 4.1 (Proved in [33]). For two ordered forests s and s of
total size n, we can find their forest edit distance in timeO (n+dmax

2),
where dmax is an upper bound on the solution size, and the tree edit
distances between nodes are given in the input.

Similar to [29], Shasha and Zhang [33] fill a (2dmax+1)× (dmax+

1) array in time O (dmax
2) that has all the information of the n × n

dynamic programming table. This array for any k and d stores the

largest i such that fed(s[1, i], s[1, i+k]) ≤ d . Using this array, we can
find fed(s[1, i], s[1, j]) for any i and j in time O (log dmax) by doing
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a binary search on the diagonal k = j − i to find fed(s[1, i], s[1, j]),
if the distance is at most dmax or report fed(s[1, i], s[1, j]) > dmax
if the binary search could not find it. In Section 4.2, we use Theo-

rem 4.1 to approximate the forest edit distances between all proper

subforests of the two ordered forests.

4.2 Forest Edit Distance Data Structure
In this section, we design a data structure for two ordered forests s
and s that approximates the forest edit distance between any two

proper subforests of them.We call this data structure FEDDS. Recall
that, for an ordered forest s , a subforest is the refined subsequence

of the corresponding substring of s . Also, recall that a subforest is
proper if no redundant closing parenthesis is present before the

refinement. For a 1+ϵ approximate solution (ϵ > 0) the construction

of FEDDS takes timeO ((1/ϵ3)n2), and then FEDDS can answer each
query in time Õ (1).

We use k-bounded forest data structure, denoted by FEDDSk , as
an intermediate data structure. However, in Section 5, we directly

use FEDDSk . Using FEDDSk constructed for two ordered forests

s and s , we can query an estimate of the fed between any two

proper subforests of s and s , if the distance is less than or equal to

k−2δk , or find out that the solution is more than k . For an arbitrary

δ > 0, FEDDSk may have an additive error of up to 2δk . The time

complexity of constructing FEDDSk isO ((1/δ )2n2), and it answers
each query in time O (logk ).

FEDDS reduces to FEDDSk by losing a small error. For an ar-

bitrary ϵ > 0, we can construct FEDDS using a set of FEDDSk ’s,
where k = (1 + ϵ )i and 0 ≤ i ≤ log

1+ϵ n. By using a suitable δ ,
we can adjust the approximation factor of FEDDS to be 1 + ϵ . The
construction of FEDDSk is as follows.

Let 1 ≤ k ≤ n be a given integer and δ be a given error threshold.

To construct FEDDSk for s and s , we create a set of marked points

for each of s and s consisting of indices divisible by ⌊δk⌋. Therefore,
we have O (n/δk ) marked points in total. Afterward, for every two

marked points i and j in s and s , respectively, we use the solution
of Theorem 4.1 to compute the fed between s[i, |s |] and s[j, |s |].
Recall that by using the solution of Theorem 4.1, we compute a

two-dimensional O (k ) × O (k ) array which compactly stores all

the fed’s between forests s[i, i ′]’s and s[j, j ′]’s, for any i ′ > i and
any j ′ > j, in cases where the distance is at most k . To answer a

query to approximate fed(s[i, i ′], s[j, j ′]), we decrease each of i and
j to match one of the marked points. Then, we use the array we

computed for shifted i and j, which are now marked indices, and

output fed(s[i, i ′], s[j, j ′]). The number of shifts of each of i and j to
reach a marked point is at most δk , which results in a total additive

error of at most 2δk . In Lemma 4.2, we show that Algorithms 1 and

2 correctly construct and answer queries from FEDDSk within the

desired time complexity and additive error.

Lemma 4.2. Let δ > 0 be an arbitrarily small constant. For two
ordered forests of total size n and an integer k > 0, Algorithm 1
constructs FEDDSk in time O ((1/δ2)n2). Henceforth, Algorithm 2
approximates the forest edit distance between any two proper sub-
forests in time O (logk ) within an additive error of 2δk if the answer
is at most k − 2δk , or reports that the distance is more than k .

As we discussed earlier, we use FEDDSk ’s with k = (1 + ϵ )i for
0 ≤ i ≤ log

1+ϵ n to construct FEDDS. We set δ = ϵ/2(1+ϵ ) to make

Algorithm 1: construct FEDDSk(s, s,k,δ )
Data: two ordered forests s and s , an upper bound k on the

distance, and δ > 0.

Result: FEDDSk(s, s).
1 for i = 1 to |s |, in steps of i ← i + ⌊δk⌋ do
2 for j = 1 to |s |, in steps of j ← j + ⌊δk⌋ do
3 compute fed(s[i, |s |], s[j, |s |]) for distances up to k ,

store the O (k ) ×O (k ) array, and call it fedi, j

Algorithm 2: query FEDDSk([il , ir ], [jl , jr ])

Data: two intervals associated with two proper subforests

t = s[il , ir ] and t = s[jl , jr ].
Result: fed(t , t ) with an additive error of at most 2δk if

fed(t , t ) ≤ k − 2δk or reports that fed(t , t ) > k .
1 find i , the index of the largest marked point in s less than or

equal to il ;
2 find j, the index of the largest marked point in s less than or

equal to jl ;
3 find the answer in the array of fedi, j if exists and return it;

4 otherwise, report fed(t , t ) > k .

the additive error be at most ϵ . We describe the construction and

queries of FEDDS in Algorithms 3 and 4 and show their correctness

in Theorem 4.3.

Algorithm 3: construct FEDDS(s, s, ϵ)
Data: two ordered forests s and s , and ϵ > 0.

Result: FEDDS(s, s).
1 δ ← ϵ/2(1 + ϵ );

2 for k ∈ {1, 1 + ϵ, . . . , (1 + ϵ )log1+ϵ n } do
3 construct FEDDSk (s, s,k,δ )

Algorithm 4: query FEDDS([il , ir ], [jl , jr ])

Data: two intervals associated with two proper subforests

t = s[il , ir ] and t = s[jl , jr ].
Result: fed(t , t ) with an approximation factor of 1 + ϵ .

1 use the suffix tree to check whether fed(t , t ) = 0, and return 0

in this case;

2 for k ∈ {1, 1 + ϵ, . . . , (1 + ϵ )log1+ϵ n } do
3 query FEDDSk ([il , ir ], [jl , jr ]) and return the answer if it

does not report fed(t , t )> k .

Theorem 4.3. Let ϵ > 0 be an arbitrarily small constant. For two
ordered forests s and s of total size n, knowing the ted’s between all
pairs of parentheses of s and s , Algorithm 3 constructs FEDDS in time
Õ (n2). Afterward, Algorithm 4 approximates the fed between any
two subforests of s and s in time Õ (1) within an approximation factor
of 1 + ϵ .
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5 A 1 + ϵ APPROXIMATION ALGORITHM FOR
TED

One challenge that we face here is the depth of the computation

and its effect on the approximation factor. More precisely, if the

approximation factor of each level is 1 + ϵ ′, the overall approxima-

tion factor that accumulates in each level would be 1 + ϵ , where
ϵ = Ω(hϵ ′). Here, h is the depth of the computation. Note that in a

naïve approach, h can be as large as n.
In order to avoid this issue, we should have limited levels of

computation in our algorithm. Besides this issue, computing ted
for all node pairs one by one takes a total time of Õ (n4) since we
have O (n2) node pairs and computing the ted for each pair takes

time Õ (n2). There is a huge gap between Õ (n4) and the desired

Õ (n2) time. In what follows, we show how applying the heavy-light

decomposition of Sleator and Tarjan [34] enables us to overcome

these two difficulties. This technique has been used in many pre-

vious works such as [6, 17, 19, 20, 27, 35] to design algorithms for

trees of arbitrary height.

The heavy-light decomposition partitions the nodes of an or-

dered tree into a set of paths called spines. These spines may be

long paths; however, the decomposition ensures that in a path from

the root to any node (including leaves), we cross at most O (logn)
spines. We compute the ted’s between the nodes of two spines all

at once instead of computing the ted’s between every two nodes

individually. Consequently, we keep the approximation factor small

since the recursive depth of the computation is at most O (logn)
independent of the heights of the input trees. We also improve the

running time by constructing FEDDS once for the two spines and

querying it several times to approximate the ted’s between all pairs

of nodes of two spines. This approach along with other techniques

explained below helps us to keep the running time quadratic.

As mentioned, the main part of our algorithm is computing the

ted’s between the nodes of two spines, which we call spine edit
distance. For two spines S = (u1,u2, . . . ) and S = (u1,u2, . . . ), we
assume the ted’s between all pairs of nodes are given, except pairs

of nodes between spines S and S . In addition, using a bottom-up

approach ensures that when we want to compute the ted(ui ,u j ),
we already know the ted’s between all of the deeper nodes in the

spines.

In the following, we briefly describe how our algorithm com-

putes ted(ui ,u j ). Let opt be an optimal solution of transforming

the subtree of ui to the subtree of u j . Note that by the definition

of ted, ui is transformed into u j in opt. Suppose the next node in
spine S after ui which is not deleted in opt is ui′ , and it is mapped

to a node w in the subtree of u j . Also, notice that w can be any

node in the subtree of u j and does not necessarily belong to spine

S . The cost of mapping ui and its subtree into u j and its subtree

consists of six parts:

(1) mapping node ui into node u j (their opening and closing

parentheses, excluding their inner parentheses),

(2) mapping the subforest of nodes before the opening paren-

thesis of ui′ to the subforest of nodes before the opening

parenthesis ofw ,

(3) mapping the subtree of node ui′ to the subtree of nodew ,

(4) mapping the subforest of nodes after the closing parenthesis

of ui′ to the subforest of nodes after the closing parenthesis

ofw ,

(5) deleting the path between ui and ui′ , and finally

(6) inserting the path between u j andw .

Recall that previously in Section 3, we formulate these six parts

as ted(ui ,u j ) := ted(ui′ ,w )+R+C+L. Here, ted(ui′ ,w ) is denoted
by part (iii),R consists of parts (v) and (vi),C consists of parts (ii) and

(iv), and L consists of part (i). Moreover, in the example of Figure 6,

the cost of these six parts are 0, 1, 0, 1, 1, and 0, respectively.

In Section 5.2, we show how to compute the costs of all of these

six parts in Õ (1) time for fixed ui′ andw . Moreover, we show how

to reduce the number of tuples (ui ,u j ,ui′ ,w )’s fromO (n4) toO (n2)

in order to reduce the time complexity to Õ (n2).
Finally, in Section 5.3, we use the spine edit distance algorithm

to design our algorithm to approximate the tree edit distance of the

two input trees in time Õ (n2) within an approximation factor of

1 + ϵ .

5.1 Tree Decomposition
In this section, we define the heavy-light decomposition which we

use in Sections 5.2 and 5.3. The content of this section can be skipped

by the reader who is familiar with the heavy-light decomposition.

However, some of our notations may be different from previous

work. Let T be a tree, where u and v are two nodes of T , and v is

a child of u. We call an edge e = (u,v ) heavy, if size(v ) has the
maximum value among the children of u. In case of a tie, we choose

v to be the right-most child ofu with this property. We call all other

edges light. We also define light and heavy nodes as follows. If a

node v is a child of a node u and they are connected via a heavy

edge, we call v heavy; otherwise, we call v light. Every node has

exactly one heavy child, except leaves which have no children. For

example, in Figure 9, edge (u1,u2) is heavy since size(u2) = 6 is

larger than size(u3) = 3 and size(u4) = 1. Moreover, edge (u2,u5)
is light since size(u5) = 1 is less than size(u6) = 4. Similarly, node

u2 is heavy, and node u3 is light. Now we define a spine as follows.

For any light node u, it has a unique heavy child unless u is a leaf.

We choose this heavy child and repeat the process until we end up

in a leaf. This process defines a path in the tree from u to a leaf. We

call this path (including u and the leaf) the spine of the light node
u.

u1

u2 u3 u4

u7

u9

u11u10

u8

u6u5

Figure 9: The heavy-light decomposition of a tree.
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We iterate over all light nodes and find their spines. For example,

in Figure 9, the spines are (u1,u2,u6,u8,u11), (u5), (u10), (u3,u7,u9),
and (u4). These spines partition the nodes of the tree into a number

of paths. The most important property of this decomposition is that

in any path from the root to any node, we pass through at most

O (logn) spines.

Lemma 5.1 (Proved in [34]). In a tree with a heavy-light decom-
position, every path from the root to any other node pass through at
most ⌊log

2
n⌋ + 1 spines.

In other words, along any path from the root to a leaf, there are

at most ⌊log
2
n⌋ light edges since we change the spine only when

we pass through a light edge. The number of nodes in the subtrees

is divided by at least a factor of two each time we traverse a light

edge. Therefore, we have at most ⌊log
2
n⌋ light edges in a path

from the root to any node. In Section 5.2, we show how heavy-light

decomposition helps us to solve the spine edit distance problem.

5.2 Spine Edit Distance
In this section, we solve spine edit distance for two spines S =

(u1,u2, . . . ,uh ) and S = (u1,u2, . . . ,uh ) in s and s , respectively.

We assume the tree edit distances between all node pairs of s and

s are given, except node pairs of S and S . Moreover, w.l.o.g. we

assume u1 and u1 are the roots of s and s .
The first step in our algorithm is to use FEDDS to approximate

the fed’s between subforests of s and s . However, constructing a

FEDDS for s and s is not possible since not all ted’s are known.

To resolve this issue, we construct two FEDDS’s instead of one

as follows. Suppose the opening and closing parentheses of uh ,
which is the last node of S are s[i] and s[i + 1]. Note that since uh
is a leaf node of the first tree, its opening and closing parentheses

are consecutive in s . We construct one FEDDS between s[1, i] and
s , and another FEDDS between rev(s[i + 1, |s |]) and rev(s ). Here,
rev reverses its input string. The reason for reversing strings is to

ensure that our queries for part (iv) consist of proper subforests.

In the following, we assume that the goal is to approximate

ted(ui ,u j ) for a node ui of S and a node u j of S . Let opt be an

optimal transformation with ted(ui ,u j ) operations. Moreover, since

we compute ted(ui ,u j )’s in a bottom-up approach when we are

computing ted(ui ,u j ), we already know ted(ui′ ,u j′ )’s for i < i ′ ≤ h

and j < j ′ ≤ h. Therefore, we know all the ted’s between the nodes

of the subtree of ui and the nodes of the subtree of u j , expect the
ted’s between ui and u j itself.

Note that in ted(ui ,u j ), ui is mapped to u j by definition. To

compute ted(ui ,u j ), we search for a ui′ , which is the first node

after ui in S which is not removed in opt. Node ui′ is mapped to

some node in the subtree of u j , namely w . Recall that for a fixed

ui′ andw , ted(ui ,u j ) is equal to the sum of these six parts:

(1) the cost of changing the label of ui to the label of u j , if
necessary,

(2) the cost of mapping the subforest of nodes before the open-

ing parenthesis of ui′ to the subforest of nodes before the

opening parenthesis ofw ,

(3) the cost of mapping the subtree of node ui′ to the subtree of

nodew ,

(4) the cost of mapping the subforest of nodes after the closing

parenthesis of ui′ to the subforest of nodes after the closing

parenthesis ofw ,

(5) the number of nodes between ui and ui′ which are deleted,

and

(6) the number of nodes between u j andw which are inserted.

The time complexity of an algorithm implementing this method

without any additional ideas is Õϵ (n
4), and its approximation factor

is 1 + ϵ . To improve the time complexity, we apply two ideas. Our

first idea is based on Observation 5.1.

Observation 5.1. Let π be a transformation with at most dmax
operations from s into s . If π transforms s[i] into s[j], then |i − j | ≤
2dmax.

Let d ′ be the sum of the costs of all parts except part (iii) in

the optimal solution corresponding to ted(ui ,u j ). The first idea to
improve the time complexity is that for a fixed ui and u j , we have
at most O (d ′) possibilities for either ui′ andw . To prove this upper

bound for ui′ , note that we have a cost of i
′ − i − 1 in part (v) for

removing all nodes in the path between ui and ui′ on spine S . Since
we have at most d ′ operations in part (v), i+1 ≤ i ′ ≤ i+d ′+1 holds.
Therefore, d ′ + 1 is an upper bound on the number of possibilities

of ui′ . In addition, we claim that for a fixed ui′ , we have at most

O (d ′) possibilities forw . Based on Observation 5.1, and since the

cost of part (ii) is at most d ′, we conclude that the last closing

parenthesis before the opening parentheses ofw in s has at most

4d ′ + 1 possibilities. Therefore, the opening parenthesis ofw also

has at most O (d ′) possibilities. This idea reduces our running time

from Õ (n4) to Õ (n2d ′2) by reducing the number of possibilities of

i ′ andw . The following idea reduces the number of possibilities of

i and j to improve the running time to Õ (n2).
Moreover, in our algorithm, we directly use FEDDSk ’s instead

of just using FEDDS. We want to use a FEDDSk where k is near

d ′ in the optimal transformation of the subtree of the subtree of

ui into the subtree of u j . Since we do not know the correct value

of d ′, we try all values of {1, 1 + ϵ, . . . , (1 + ϵ )log1+ϵ n } as k . Then,
for a value of k where k/(1 + ϵ ) < d ′ ≤ k , we use FEDDSk to

estimate the cost of parts (ii) and (iv). Recall that, in FEDDSk we

mark a number of points, and for each query of two subforests, we

shift the starting indices to the left to match marked points. We

use the observation that these shifts do not change the outcome

of the query too much. Therefore, for two queries whose starting

points in both s and s are near the same marked points, FEDDSk
outputs an identical value. To improve the running time of our

algorithm, we use the same observation for computing ted’s. More

precisely, for a fixed k , when the opening and closing parentheses

of ui and u j differ slightly such that immediate marked points on

their right are the same, we claim that the corresponding ted values

are relatively close. Due to the nested nature of opening and closing

parentheses of nodes of spines, there are at mostO (n/δk ) ·O (n/δk )
relatively different ted values for a specific k . For this reason, we
store ted(ui ,u j )’s in a lookup table. Before computing a ted(ui ,u j ),
we check whether a close TED is already computed. If so, we get it

from the lookup table; otherwise, we compute it.

Lemma 5.2 (spine edit distance). Let ϵ > 0 be an arbitrary
constant, and s and s be two trees of total size n. Moreover, let S and

719



STOC ’19, June 23–26, 2019, Phoenix, AZ, USA M. Boroujeni, M. Ghodsi, M.T. Hajiaghayi, and S. Seddighin

S two spines of s and s , respectively. If we have all the ted’s between
all pairs of nodes of s and s except between nodes of S and S , we can
compute ted’s between nodes of S and S in time Õ (n2), within an
approximation factor of 1 + ϵ .

5.3 Our Algorithm
In this section, we use the spine edit distance algorithm of Sec-

tion 5.2 to find the desired approximation algorithm of TED be-

tween two trees. We can perform the algorithm of two spines for

all pairs of spines in a bottom-up approach. This way, we already

computed the ted’s between nodes that we need as prerequisites in

each step.

Note that ted(r , r ) where r and r are roots of s and s , is not
necessarily equal to ted(s, s ). The first one has an additional con-

dition that the root of the first tree should be mapped to the root

on the second tree. To compute ted(s, s ), we add a dummy root to

each of two input trees, which is enclosing each of s and s with
an additional pair of parentheses. Adding these dummy roots does

not change the tree edit distance, and there is an optimal solution

which maps the root of the first tree to the root of the second tree.

Our algorithm is shown in Algorithm 5.

Algorithm 5: our-ted(s, s, ϵ)
Data: two trees s and s , and ϵ > 0.

Result: ted(s, s ) with an approximation factor of 1 + ϵ .
1 add two dummy roots ur and ur on top of s and s , respectively;

2 heavy-light decompose s and s into spines;

3 for S in spines of s in a bottom-up order do
4 for S in spines of s in a bottom-up order do
5 run spine − edit − distance(s, s, S, S, ϵ) using the

already stored distances and store new distances;

6 return ted(ur ,ur );

Theorem 5.3. For two ordered trees s and s of total size n, we can
compute their tree edit distance in time Õ (n2) with an approximation
factor of 1 + ϵ .
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