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a b s t r a c t

In this paper, we consider the restricted version of the well-known 2D line simplification
problem under area measures and for restricted version. We first propose a unified defini-
tion for both of sum-area and difference-area measures that can be used on a general path
of n vertices. The optimal simplification runs in O(n3) under both of these measures. Under
sum-area measure and for a realistic input path, we propose an approximation algorithm of
O n2

�

� �
time complexity to find a simplification of the input path, where � is the absolute

error of this algorithm compared to the optimal solution. Furthermore, for difference-area
measure, we present an algorithm that finds the optimal simplification in O(n2) time. The
best previous results work only on x-monotone paths while both of our algorithms work on
general paths. To the best of our knowledge, the results presented here are the first sub-
cubic simplification algorithms on these measures for general paths.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Line simplification, also referred to as line generaliza-
tion or curve simplification in some literatures, is a basic
problem in imaging, cartographic, computational geome-
try, and geographic information systems (GISs). In this
problem, there is a sequence of n input points defining a
simple (non-intersecting) path P = hp1, p2, . . . , pni and we
are asked to approximate this by another path Q = hq1 =
p1, q2, . . . , qk = pni of smaller number of vertices. This prob-
lem has many applications wherever data reduction is
needed for space and complexity purposes. Examples are
map representation, path tracking and geometric shape
modeling.

There are two main versions of this problem. In the re-
stricted version, the vertices qi of Q must be a subsequence
of the vertices of P, while in the unrestricted version, the
vertices qi can be anywhere in the plane. Some results on
the unrestricted version can be found in [12,13,17].

In this paper, we consider the restricted version. For this
problem, two optimization goals have been proposed: (1)
min-k, in which the goal is to find a simplification with
minimum number of vertices and error of at most d, and
(2) min-d, in which the goal is to find a simplification of
at most k vertices with the minimum simplification error.
Here, we focus on the min-k problem.

The error of a simplification Q using an error measure
m, denoted by Em(Q), is either defined to be maxk�1

i¼1 Em

ðqiqiþ1Þ or
Pk�1

i¼1 Emðqiqiþ1Þ, where qiqi+1 is the simplification
of the sub-path P(s, t) = hps = qi, ps+1, . . . , pt = qi+1i and Em(qi-

qi+1) is the associated error of approximating P(s, t) by qiqi+1

under the error measure m. The main simplification error
measures are Hausdorff distance, Fréchet distance, and
areal displacement. A survey and comparison of these error
measures can be found in [6]. In this paper, we only con-
sider the area error measure and use maxk�1

i¼1 Emðqiqiþ1Þ as
the simplification error.

1.1. Related work

The oldest and most popular approach for line simplifica-
tion was proposed by Douglas and Peucker which is known
as Douglas–Peucker algorithm [11]. A basic implementation
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of this algorithm for orthogonal distance error measure runs
in O(n2) time. Other implementations improved the running
time to O(nlogn) [15] and O(nlog⁄n) [16]. However, this algo-
rithm is a heuristic without any guarantees about the qual-
ity of the resulting approximation.

The first general algorithm was proposed by Imai and Iri
[18] which produces the optimal simplification. They mod-
eled the problem by a directed acyclic graph and showed
that solving the shortest path on this graph is equivalent
to the optimal simplification. Moreover, they showed
how this graph can be constructed for orthogonal distance
measure in O(n2logn) time. This running time was im-
proved to quadratic or near quadratic [7,20], and O(n4/3)
[2] for L1 and uniform metrics. Finally, a near linear time
approximation algorithm was proposed in [1] for L2

orthogonal distance.
The line simplification under the Fréchet distance was

first studied in [14]. For this error measure, the optimal
solution can be obtained using the results from [18,3].

1.2. The Area measure

Assume that a sub-path P(i, j) has been simplified by the
link pipj which connects the endpoints of this sub-path. For
such a simplification, as shown in Fig. 1, there are regions
enclosed by P(i, j) and pipj on both sides of pipj. For link pipj

in Fig. 1 these regions are {A1, A2, A3}. Using the area of un-
ion of these regions is a natural parameter to be used as the
error of simplification of pipj. This error measure is called
sum-area and has been considered before [5,23,24]. In
some applications, like simplification of borders between
two neighboring countries, the difference between the
areas of the regions defined by pipj and P(i, j) on both sides
of pipj are important. This error measure is called diff-area
and has been considered in [5]. Diff-area for link pipj in
Fig. 1 is (A1 + A2) � A3.

The sum-area and diff-area error measures are natural
measures in graphic applications. In such applications,
the area of a simplified region should be as close as possi-
ble to the area of the original shape. This is natural while
the area is an important factor from which the similarity
or difference between two regions can be conceived.

The first optimal simplification algorithm under the
sum-area measure was proposed by Veregin [24] which
computes the error of all simplifications built on all possi-
ble combinations of the vertices of the path. However, this
algorithm is exponential and is not useful in practice. There
are several approximation or heuristic algorithms, like the
method presented by Visvalingam and Whyatt [23]. The

main drawback of these methods is that there is no guar-
antee on the deviation of their results from the optimal
solution.

Recently, Bose et al. [5] revisited the line simplification
problem under area error measures and proposed simplifi-
cation algorithms for x-monotone paths. For sum-area er-
ror measure, they bounded the input path by two vertical
lines at p1 and pn and a horizontal segment lying above P
according to Fig. 2. Then, they recursively partition this
bounded area R and compute the area above and below P
for every sub-path P(i, j) using Langerman’s algorithm
[19]. For a given simple polygon Z with n vertices and m
line queries, Langerman’s algorithm computes the area of
Z on both sides of each line in time O(m2/3n2/3+� +
(n + m)polylog n) for any � > 0. Using this approach, they
compute and build the directed acyclic graph G of the Imai
and Iri’s method [17] in O(n2+�) time and space. For diff-
area error measure, they again bounded the input path as
Fig. 2. Let Ti,j be the trapezoid described by pi, pj, qj, qi.
Clearly, Ed(pipj) = Ar(Ri,j) � Ar(Ti,j) and Ar(Ri,j) =
Ar(R1,j) � Ar(R1,i), where Ar(S) is the area of a closed region
S. Using these facts, and computing values of R1,j,Ed(pipj) for
all possible links pipj can be obtained in O(n2) time. Obvi-
ously, these methods work only for x-monotone paths
and cannot be used for general paths. In many applications
like map rendering, paths are not x-monotone. Therefore, it
is interesting and important to study this problem in gen-
eral cases.

1.3. Our results

Trying to use the sum-area and diff-area error measures
for line simplification, we faced different definitions for
these measures none of which was well applicable on a
general path. Therefore, we first describe a unified defini-
tion for the sum-area and diff-area error measures that
can be applied on general paths. Further, for this unified
area measure, we employ Imai and Iri’s general approach
and propose an O(n3) simplification algorithm to obtain
the optimal min-k simplifications under both sum-area
and diff-area error measures.

Running time complexity of this algorithm is too high to
be used in practical applications. We resolve this problem
by proposing quadratic or near quadratic algorithms for
the unified definition of sum-area and diff-area error mea-
sures. For sum-area, we propose a near quadratic algo-
rithm that approximately solves the min-k simplification.
Precisely, the running time of our algorithm is O n2

�

� �
and

the error of the resulting simplification is at most �L2

Fig. 1. The sub-path P(i, j) has been simplified by pipj. The gray and
hatched areas show the above and below areas enclosed by the sub-path
and its shortcut, respectively. Fig. 2. Computation of the diff-area error measure for x-monotone paths.
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farther than the error of the optimal min-k simplification,
where L is the length of the longest shortcut of the simpli-
fication. We assume that in a realistic application the path
lies entirely inside a region of bounded edge length. Then,
the length of the longest link of any simplification is con-
stant which means that L is bounded by some constant va-
lue. Therefore, this near quadratic time algorithm can be
used to obtain arbitrarily close approximations to the opti-
mal simplification. For diff-area error measure we propose
an algorithm that computes the diff-area error of all possi-
ble shortcuts in O(n2) time. Consequently, we have an opti-
mal simplification algorithm that runs in O(n2) time and
minimizes maxk�1

i¼1 Edðqiqiþ1Þ. To the best of our knowledge,
these algorithms are the best ones that can be used to sim-
plify general paths under the sum-area and diff-area error
measures.

In the rest of this paper, in Section 2, we first describe a
unified method for computing the area shaped between a
chain and a line segment, to be used for computing the
sum-area and diff-area error measures. Then, we propose
optimal simplification algorithms for these error measures.
In Section 3, we propose the near quadratic approximation
algorithm that simplifies general paths under the sum-area
error measure. In Section 4, we present the optimal simpli-
fication algorithm under the diff-area error measure. We
offer the conclusion in Section 5.

2. Optimal simplification under area measures

In this section, we first revisit the definition of the area
enclosed by a path and a line segment and propose a uni-
form definition which covers any path. We show that cur-
rent line simplification algorithms can be used under this
definition of sum-area and diff-area error measures.

2.1. The area measure: revisited

Assume that we have a sub-path P(i, j) = hpi, pi+1, . . . , pji
simplified by the link pipj. The error of this simplification
under the area measure, depends on the area of the region
enclosed by P(i, j) and pipj. In general, the sub-path P(i, j)
may intersect pipj. The enclosed region may be too complex
to identify and compute its area. An example of such com-
plex paths is shown in Fig. 3. Therefore, we need a defini-
tion that covers all paths.

We first distinguish the areas lying to the left and to the
right of a link. If we are at point pi and look toward point pj,
some parts of the sub-path lie on our left and the other
parts lie on our right. Hence, we have two values defining

the area of the region enclosed by pipj and P(i, j): the left
area and the right area which are respectively denoted by
Arl(pipj) and Arr(pipj). Then, the error of link pipj in terms
of sum-area and diff-area Es(pipj) = Arl(pipj) + Arr(pipj) and
Ed(pipj) = jArl(pipj) � Arr(pipj)j where j�j denotes the abso-
lute value.

Now, we describe how to compute Arl(pipj) and Arr(pipj).
Assume that P(i, j) intersects link pipj in points hpI1,
pI2, . . . , pIki. Then, pipj is divided into U = hpipI1, pI1pI2, . . . ,
pIk�1pIk, pIk, pji segments. Note that we distinguish be-
tween the intersection points of P(i, j) and pipj and the
intersection points of P(i, j) and the supporting line of pipj

(the line that passes through pi and pj). Each segment
pIxpIy 2 U and its related sub-path P(Ix, Iy) define a polygon.
This polygon is simple because P(Ix, Iy)) does not intersect
itself and pIx and pIy are two consecutive points in U. We
denote this polygon by D(Ix, Iy). We say that D(Ix, Iy) lies
on the left (right) side of pipj, if each edge of D(Ix, Iy) can
be connected to the left (right) side of pIxpIy by a path inside
the polygon D(Ix, Iy). To calculate the values of Arl(pipj) and
Arr(pipj), we calculate the area of each D(Ix, Iy) for all
pIxpIy 2 U and based on their sides, we add these values
to Arl(pipj) or Arr(pipj).

The area of each D(Ix, Iy), for each pIxpIy 2 U is defined as
follows:X
pspt2PðIx;IyÞ

Signed-Area p0spsptp
0
t

� �

where pspt is an edge of P(Ix, Iy), x 6 s < t 6 y and p0s and p0t
are respectively the orthogonal projection of points ps and
pt on the supporting line of pIxpIy. If pspt intersects the sup-
porting line of pIxpIy, each part of this edge is treated sepa-
rately. The absolute value of Signed-Area p0spsptp

0
t

� �
is the

area of the trapezoid p0spsptp
0
t and its sign is defined as

follows:

sign Signed-Area p0spsptp
0
t

� �� �

¼

if pIxpIy
���! and p0sp

0
t

��!
have the same directions

and pspt and DðIx; IyÞ lie on the same
side of pIxpIy

þ or

if pIxpIy
���! and p0sp

0
t

��!
do not have the

same directions and pspt and DðIx; IyÞÞ
lie on the opposite sides of pIxpIy:

� otherwise

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Fig. 3. A complex sub-path simplified by pipj.

Fig. 4. The area enclosed by sub-path P(1, 11) and the link p1p11.
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It is easy to prove by induction on the length of the sub-
path P(Ix, Iy) that the above method is equal to the area
of the simple polygon D(Ix, Iy). Note that, the sign of the
computed area is negative if the direction of the edges in
P(Ix, Iy) are not the same as the direction of those edges
in P(i, j).

As an example, assume that p1p11 is the simplification
of sub-path P(1, 11) in Fig. 4. The area of a polygon pi-

pi+1 . . . pj is denoted by Ar(pipi+1 � � � pj). According to our
definition,

Arlðp1p11Þ ¼ ArðDð1; I1ÞÞ þ ArðDðI2;11ÞÞ
¼ �Ar p1p2p02

� �
þ Ar p02p2p3p03

� �
þ Ar p03p3pI1

� �� �
þ Ar pI2p7p07

� �
þ Ar p07p7pO1

� �
� Ar pO1p08p8

� ��
þAr p8p08p09p9

� �
þ Ar p09p9pO2

� �
� Ar pO2p10p010

� �
�Ar p010p10p11

� ��
;

and

Arrðp1p11Þ ¼ ArðDðI1; I2ÞÞ
¼ Ar u1p4p04

� �
þ Ar p04p4p5p05

� �
� Ar p05p5p6p06

� �
þ Ar p6p06pI2

� �

It is simple to verify that this computation is equal to
the area of the gray regions in Fig. 4.

2.2. Optimal simplification algorithm

The definition of the area measures presented in Section
2.1 can be used as a unified and general definition and can
be applied on any paths. We plug our error functions into
the general algorithm of Imai and Iri [18] and solve the
min-k version of the problem optimally. First, we compute
Es(pipj) or Ed(pipj) by a linear trace on the sub-path P(i, j) in
O(j � i) time. There are O(n2) possible links for which the
error must be computed. Consequently, we can do this
computation for all pipj links in O(n3) time. We build a
directed acyclic graph G over the vertices of path P =
p0, p1, . . . , pn�1 and solve the min-k problem as follows:

All edges whose weights (the error of the corresponding
link which is Es(pipj) or Ed(pipj)) are greater than the given d
are removed from the DAG. Weights of the remaining
edges are set to 1. Running a shortest path algorithm from
p1 to pn returns the optimal min-k simplification.
Therefore,

Theorem 1. The optimal min-k simplification under the sum-
area and diff-area error measures can be computed in O(n3)
time and O(n2) space.

3. An approximation algorithm for simplification under
sum-area error measure

The time complexity of the optimal O(n3) algorithm is
too high to be used in practical applications. In this section
we propose a near quadratic time algorithm to compute
the simplification under sum-area error measure. How-
ever, the resulting simplification is not optimal.

The idea of this approximation algorithm is to use the
information resulted in computing Es(pipj) to efficiently
compute Es(pipj+1). This is done by computing and main-

taining the error of the current sub-path for a set of canon-
ical lines C drawn from the start vertex of the path (here
pi). For the next point, pj+1, we determine the two canonical
lines where pj+1 lies between them (from now on, we call
these two lines c and c0). We approximate the error of pipj+1

by the errors of these two lines.
Assume that for a sub-path P(i, j) we have the exact val-

ues of Arl pip
0
j

� �
, Arr pip

0
j

� �
, Arl pip

00
j

� �
and Arr pip

00
j

� �
where

p0j and p00j are respectively the orthogonal projections of pj

on lines c and c0 drawn from pi (See Fig. 5).
For the next point pj+1, we use Arl pip

0
j

� �
þ Arr pip

00
j

� �
þ

���
Signed-Area� pjp

000
j pjþ1

� �
j as an approximation for Es(pipj+1)

where c lies on the left of pipj+1, c0 lies on the right of
pipjþ1; p000j is the orthogonal projection of pj on the support-

ing line of pipj+1 and Signed-Area� pjp
000
j pjþ1

� �
is signed area

of the triangle pjp
000
j pjþ1 with a sign that is positive if and

only if pipjþ1
���! and p000j pjþ1

����!
have the same directions.

We incrementally compute the area above and below of
each canonical line c 2 C. Precisely, for each c 2 C and each
pjpj+1, we compute a signed area for trapezoid pjpjþ1p0jþ1p0j
denoted by r(c, i, j) where p0j and p0jþ1 are orthogonal pro-
jections of pj and pj+1 on c, respectively. The sign of this

area is positive if and only if pjpjþ1
���! and p0jp

0
jþ1

���!
have the same

directions. It is easy to see that
P

pspt2Pði;jÞrðc; s; tÞ is equal
to the area computed using our uniform methodP

pspt2Pði;jÞSigned-Area p0spsptp
0
t

� �
.

We denote this approximated value by E�sðpipjþ1Þ.

Lemma 2. We have the following relation between the
approximation and exact values of sum-area error of a link
pipi+1.

Esðpipjþ1Þ �
�jpipkj

2

2
6 E�sðpipjþ1Þ

and

E�sðpipjþ1Þ 6 Esðpipjþ1Þ þ
�jpipkj

2

2

where � is the angle between c and c0 containing point pj+1 and
pk is the farthest point of P(i, j) from pi.

Proof. Assuming that � is small enough, we can conclude

that Arl pip
0
j

� �
� �jpipk j2

2 6 Arlðpipjþ1Þ and Arr pip
00
j

� �
� �jpipk j2

2 6

Arrðpipjþ1Þ.

Fig. 5. Approximating the sum-area error of a link.
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This difference is related to the area that lies between c
and c0. According to the definition of pk; this area is at most
�jpipk j

2

2 when � is arbitrarily small. Fig. 6 shows a tight
example. h

Therefore, if we have these canonical lines for an arbi-
trarily small value of �, we can approximate the sum-area
error of the next point in constant time, using the left and
right errors of the path P(i, j) on these canonical lines. How-
ever, we need to update the left and right areas of these
canonical lines against the newly received vertex to be able
to approximate the error of the next point.

Lemma 3. There is an O 2p
� n
� �

time algorithm that approx-
imately computes the sum-area error of all links p1pi for
1 < i 6 n.

Proof. We have 2p
� canonical lines from p1 and on receiving

a new point, values of Arl and Arr are updated for these
lines. Then, the approximated error of the new link is com-
puted in constant time. h

For any vertex pi we can apply the above method. Then,
we can find the approximated error of all links pipj in
O 2p

� n2
� �

time. As mentioned before, in a realistic scene
we are working in a bounded region. Then the distance be-
tween any two points is smaller than a constant value.
Therefore, we can omit the jpipkjterm in Lemma 2. Combin-
ing these results, we have:

Theorem 4. There is an O n2

�

� �
time algorithm that finds a

near optimal simplification under the sum-area error mea-
sure. The error of the resulting simplification differs from the
error of the optimal simplification by O(�) in a realistic scene.

4. Efficient simplification algorithm for diff-area error
measure

In this section, we present an algorithm for efficient
computation of error of all shortcuts under diff-area mea-
sure. In this method, we compute the Ed(pipj) for all links
pipj in O(n2) time. Then, we can use the general simplifica-
tion algorithm described in Section 2.2 to find optimal sim-
plification under the diff-area error measure in O(n2) time.

There are different methods for computing the area of a
simple polygon [9]. Our algorithm is based on a method
called Polar formula. Let pipj

��! be a directed edge from pi to

pj. For each edge pipj
��!

;Arðpipj
��!Þ is defined as x(pi)y(pj) � x(p-

j)y(pi) in which x(p) is x coordinate of p and y(p) is its y
coordinate. It is proved that jArðpipj

��!Þj is twice the area of
the triangle formed by vertices pi, pj and (0, 0) [9].

Using this fact, the area of a simple polygon Y =
hy1, . . . , yni with ei = yiyi+1:0 6 i < n and en = yny1 can be
computed using the following formula [9]:

ArðYÞ ¼ 1
2

Xn

i¼0

ArðeiÞ
�����

����� ð1Þ

An example of this computation is shown in Fig. 7. We use
this result to compute Ed(pipj). Precisely, we show that if
the input path P is simple, then Ar(Y = P(i,j)) = Ed(pipj)
which means that the Eq. (1) is compatible with our diff-
area error measure defined in Section 2.1. In the first step,
we connect the origin o to pi using some extra points in
such a way that they do not intersect path P(i, j). Let
S = hs0, s1, . . . , pki be the set of these extra points. We do
the same to connect pj to o using a sequence of points
T = ht0, t1, . . . , tli (See Fig. 8b) and build a simple polygon
P0 = ho, s0, s1, . . . , sk, pi, pi+1, . . . , pj, t0, t1, . . . , tli which has a
vertex at origin. Let U be the area of the polygon described
by P0. From Eq. (1) we have:

U ¼ ArðP0Þ ¼ 1
2

Xj�iþkþlþ2

i¼0

Ar e0i
� �

ð2Þ

Now, consider the polygon P00 = htl, tl�1, . . . , t0, pj, pi, sk,
sk�1, . . . , s0i formed by the shortcut pjpi

��! and the points in
T and S (see Fig. 8c). Let C be the area of the polygon de-
scribed by P00. Applying Eq. (1) we have:

C ¼ ArðP00Þ ¼ 1
2

Xlþkþ4

i¼0

Ar e00i
� �

ð3Þ

It is simple to see that,

C ¼ U� ArlðpipjÞ þ ArrðpipjÞ ð4Þ

Therefore, we have:

jC�Uj ¼ jArrðpipjÞ � ArlðpipjÞj ¼ EdðpipjÞ

Using this result, we propose a simple method to com-
pute all O(n2) values of Ed(pipj) in O(n2) time which is an
O(n) improvement over the naı̈ve O(n3) method. Assume
that for 0 6 i < j 6 n, we have all values of:

Si;j ¼
1
2

Xj�1

k¼i

Arðpkpkþ1Þ ð5Þ

We fix the starting point i and compute the values for all
Si,j, for all possible j,j > i, in linear time. Consequently, the
total running time of computing the O(n2) different Si,j val-
ues is O(n2). Knowing Si,j values, we can compute Ed(pipj) in
O(n2) time for all pipj shortcuts:

EdðpipjÞ ¼ jSi;j þ ArðpjpiÞj ð6Þ

Consequently, we obtain the following lemma:

Lemma 5. The computation of Ed(pipj) for all O(n2) possible
shortcuts of a general path P can be done in O(n2) time.

Therefore, we have the following theorem:

Fig. 6. A tight example for the approximation of Es(pipj+1).
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Theorem 6. There is an O(n2) time algorithm that can be
used to find an optimal simplification under diff-area error
measure.

Remark 1. For simplification under
Pk�1

i¼1 Emðqiqiþ1Þ error
measure and min-d, we can combine our presented algo-
rithms for sum-area and diff-area with the dynamic
programming technique used in [5] and achieve approxi-
mation simplification. It will take O(n2k2/c + n2/�) and
O(n2k2/c) time for sum-area and diff-area problems where

k is the size of the simplification and c and � are the given
approximation factors. Note that it has been proved that

the min-d simplification under
Pk�1

i¼1 Esðqiqiþ1Þ andPk�1
i¼1 Edðqiqiþ1Þ are NP-Hard problems [5]. h

5. Conclusion

In this paper, we considered the well-known line sim-
plification problem under the sum-area and diff-area error
measures. Previous optimal algorithms are either too

Fig. 7. Ar(A) = jAr(A1)j + jAr(A2)j + jAr(A3)j � jAr(A4)j � jAr(A5)j.

(a) (b)

(c) (d)
Fig. 8. Computation of Ed(pipj).
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costly to be used in real applications or work only on the
special case of x-monotone paths. Therefore, heuristic
and non-optimal solutions are always used in real
applications.

Because of the non-uniform definitions of the area error
measures, we first proposed a unified definition for sum-
area and diff-area error measures that can be used on gen-
eral paths. For this definition, we described an O(n3) time
algorithm that obtains an optimal solution for the min-k
simplification under both sum-area and diff-area error
measures. Furthermore, we proposed a near quadratic
approximation algorithm that can be used for simplifying
a general 2D path under the sum-area error measure.
Moreover, we presented an efficient simplification algo-
rithm for the problem under diff-area error measure.

The current algorithms are still super linear and propos-
ing sub-quadratic or near linear approximation algorithms
is an open direction for extending this work.
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