
JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.1 (1-12)

Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

Q114 14

Q315 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

Q228 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

C

M
a

b

c

a

A
R
R
A
A
C

K
C
S
H
P
L
C
C

1

M
a
p
b
a
t
s

P
s
(

h
0

Contents lists available at ScienceDirect

Computational Geometry: Theory and
Applications

www.elsevier.com/locate/comgeo

omputing homotopic line simplification

.A. Abam a, S. Daneshpajouh a, L. Deleuran c, S. Ehsani a, M. Ghodsi a,b

Computer Engineering Department, Sharif University of Technology, Iran
School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Iran
Center for MAssive Data ALGOrithmics and Computer Science Department of Aarhus University, Denmark

r t i c l e i n f o a b s t r a c t

rticle history:
eceived 3 December 2011
eceived in revised form 29 October 2012
ccepted 7 February 2014
vailable online xxxx
ommunicated by P. Agarwal

eywords:
omputational geometry
implification
omotopy
ath
ine
urve
hain

In this paper, we study a variant of the well-known line-simplification problem. For this
problem, we are given a polygonal path P = p1, p2, . . . , pn and a set S of m point obstacles
in the plane, with the goal being to determine an optimal homotopic simplification of P .
This means finding a minimum subsequence Q = q1,q2, . . . ,qk (q1 = p1 and qk = pn)
of P that approximates P within a given error ε that is also homotopic to P . In this
context, the error is defined under a distance function that can be a Hausdorff or Fréchet
distance function, sometimes referred to as the error measure. In this paper, we present
the first polynomial-time algorithm that computes an optimal homotopic simplification
of P in O (n6m2) + T F (n) time, where T F (n) is the time to compute all shortcuts pi p j

with errors of at most ε under the error measure F . Moreover, we define a new concept
of strongly homotopic simplification where every link qlql+1 of Q corresponding to the
shortcut pi p j of P is homotopic to the sub-path pi, . . . , p j . We present a method that in
O (n(m + n) log(n + m)) time identifies all such shortcuts. If P is x-monotone, we show
that this problem can be solved in O (m log(n + m) + n log n log(n + m) + k) time, where k
is the number of such shortcuts. We can use Imai and Iri’s framework [24] to obtain the
simplification at the additional cost of T F (n).

© 2014 Published by Elsevier B.V.

. Introduction

otivation. Visualization of a large geographical map may require different levels of simplifications. A map may consist of
collection of non-intersecting chains representing features, such as rivers or country borders, and of points representing

laces, such as cities, etc. A simplified map of interest resembles the original map in the following aspects: (i) the distance
etween each point on the original chain and its corresponding simplified chain should be within a given error tolerance
nd (ii) the original chain and its simplified version must be in the same homotopy class.1 Roughly speaking, this means
hat if a point (a city, for instance) lies below the original chain (a river, for example), it must also remain below the
implified chain. We, however, consider a simpler variant of the above simplification criteria, which will be described below.

roblem. We are given a polygonal path P = p1, p2, . . . , pn , a set S = {s1, . . . , sm} of m point obstacles in the plane not inter-
ecting P , and an error ε defined under a distance function F . The problem is to simplify the path P by Q = q1,q2, . . . ,qk
q1 = p1 and qk = pn) within the given error ε so that Q is homotopic (to be exactly defined later) to P .

E-mail address: daneshpajouh@ce.sharif.edu (S. Daneshpajouh).
1 A homotopy class is the class of all paths that are homotopic to each other in a plane.

ttp://dx.doi.org/10.1016/j.comgeo.2014.02.002
925-7721/© 2014 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.comgeo.2014.02.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

mailto:daneshpajouh@ce.sharif.edu
http://dx.doi.org/10.1016/j.comgeo.2014.02.002

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.2 (1-12)

2 M.A. Abam et al. / Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 1. (i) Two simplifications Q and Q′ of P . Only Q is homotopic to P . (ii) While the simplified path Q and the original path P are homotopic, some
shortcuts such as p1 pi and p j pk are not homotopic to P(1, i) and P(j,k), respectively. Therefore, P and Q are not strongly homotopic.

Background. The above problem is a variant of the well-known line-simplification problem, also known in the literature as
path, curve, or chain simplification, in which, for a given P , the goal is to find the simplified path Q with fewer vertices
approximating P within ε. This problem arises in many applications, such as GIS [5,6,15], image processing, and/or com-
puter graphics [9,14], where reduction of the volume of data or lowering the complexity of the costly processing operations
is important. In some of the applications, preserving the homotopy of the shape is also desirable. This ensures that the
aboveness relation2 of points and chains in the original and simplified maps remains unchanged.

Many variants of the line-simplification problems have been considered in the past, which can be classified into two
main versions—unrestricted and restricted. In the former, the vertices of Q are allowed to be any arbitrary points, not just
the vertices of P (see [20,21,23] for some results). In the restricted version, the vertices of Q are a subsequence of P , and
each segment qlql+1 is called a link. In this paper, we focus on the restricted version.

Each segment pi p j is called a shortcut, and each link qlql+1 of Q corresponds to a shortcut pi p j (with j > i). The error
of such a link is defined as the distance between pi p j and the sub-path pi, . . . , p j (denoted by P(i, j)) under a desired
distance function F , which is often Hausdorff or Fréchet. The total error of Q denoted by error(Q,P) is also defined as
the maximum error among all of its links. For each distance function, there exist two constrained optimization problems:
(i) min-#: considering that P and ε are given, compute Q with the minimum number of vertices in such a way that
error(Q,P) � ε , and (ii) min-ε: considering that P and a maximum number of vertices k are given, compute Q of P with
the smallest possible error in a way that it uses at most k vertices. The min-ε version is usually computed by performing a
binary search over the pre-computed errors and by applying a min-# algorithm at each step. In this paper, we focus on the
min-# version in the restricted model. For brevity, we use “simplification” for “min-# line simplification in the restricted
model” to avoid confusion.

The simplified path Q is homotopic to the original path P (or Q and P are in the same homotopy class) if it (the
simplified path Q) is continuously deformable to P without passing over any points of S while keeping its end-vertices
fixed. Precisely, the two paths α and β : [0,1] → R

2, sharing the start and end points, are homotopically equivalent with
respect to S if there exists a continuous function Γ : [0,1] × [0,1] →R

2 with the following properties:

(i) Γ (0, t) = α(t) and Γ (1, t) = β(t) for 0 � t � 1,
(ii) Γ (s,0) = α(0) = β(0), and Γ (s,1) = α(1) = β(1), and

(iii) Γ (s, t) /∈ S for 0 � s � 1 and 0 < t < 1.

Fig. 1(i) illustrates two simplifications of P where Q is homotopic to P , but Q′ is not. We define the concept of strongly
homotopic as follows: Q is strongly homotopic to P if for any link qlql+1 of Q corresponding to the shortcut pi p j , the
sub-path P(i, j) and pi p j are also homotopic. Such a shortcut is also called a homotopic shortcut. Obviously, if Q is strongly
homotopic to P , then they are homotopic to each other, but the reverse is not necessarily true, as shown in Fig. 1(ii).
However, it is easy to conclude that any x-monotone chain is strongly homotopic to any of its homotopic simplifications.
We can obviously think of applications for this concept, even though its theoretical impact is of more interest to us. For
example, imagine a robot and a utility wagon inside a building that includes some pillars. The robots should move along
a predefined polygonal path and fix some issues in the building using the utilities in the wagon. As the wagon move-
ment is costly, we want to minimize this cost. Furthermore, the robot cannot access the wagon if it is not within the
distance ε from it. To solve this problem, we find the strongly homotopic minimum path simplification under Fréchet
distance. Note that the robot cannot rotate its hand to pick up a utility from the wagon if there is a pillar between
them.

Related works. There are few results on line simplification in the presence of other objects that observe the concept of
homotopy type. algorithm [15,22], which is a heuristic method and does not guarantee an optimal solution. Imai and
Iri [24] solved the min-ε and the min-# versions by modeling each version as a shortest-path problem in the directed

2 Object p (point, segment or x-monotone path) is above object q if there exists a vertical line intersecting both p and q, satisfying that p is above q
with respect to this vertical line.

Original text:
Inserted Text:
the

Original text:
Inserted Text:
are

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.3 (1-12)

M.A. Abam et al. / Computational Geometry ••• (••••) •••–••• 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

F
i

a
b
a

c
c
m
O
e
s
t

O
O
a
a
a
t
n

o
a

2

I
f
V

H
e
p

C
w
p
f
d
s
w
T
b
d

P

ig. 2. (i) The path α with the sequence ABC D DCCC B A. (ii) The deformation of α that deletes D D . (iii) The deformed α with the sequence AB B A , which
s called CS(α).

cyclic graphs. The running time of their method was proved to be quadratic or near quadratic by Chin and Chan [11] and
y Melkman and O’Rourke [26] for the Hausdorff distance under the Euclidean metric. We refer the readers to [1,2,13,16]
nd to references therein for more results.

Recently, some geometers have shown interest in problems such as determining whether two paths are homotopic [10],
omputing the shortest homotopic path of a given path, [8] and deforming one path to another at minimal cost [7,18]. In the
ontext of line simplification, de Berg et al. [5,6] were the first to study the homotopic line simplification in the restricted
odel using the Hausdorff distance measure under the Euclidean metric. Their algorithm finds the optimal simplification in
(n(n+m) log n) time, provided that P is x-monotone; otherwise, the simplification is not guaranteed to be optimal. Guibas

t al. [21] showed that the optimal homotopic line-simplification problem in the unrestricted model is NP-hard when the
implification is forced to be simple (non-self-intersecting). A general version, a subdivision simplification, was later proved
o be MIN PB-complete [19].3 Estkowski and Mitchell [19] proposed some heuristic algorithms for this problem.

ur results. For any x-monotone path P , we present an algorithm that computes all homotopic shortcuts of P in
(m log(n + m) + n log n log(n + m) + k) time where k is the number of such shortcuts. For simple paths, we propose

n O (n(m + n) log(n + m)) time algorithm to compute all homotopic shortcuts. Both algorithms can be combined with Imai
nd Iri’s general framework to compute the optimal strongly-homotopic simplification. For the simple path case, computing
ll homotopic shortcuts is not sufficient to find the optimal homotopic simplification as Fig. 1(ii) illustrates. We present
he first polynomial-time algorithm that computes the optimal homotopic simplification. This algorithm can be applied to
on-simple paths as well.

This study is organized as follows. In Section 2, we recall some existing approaches and definitions. Section 3 presents
ur algorithm to compute the optimal strongly homotopic simplification. In Section 4, we present the polynomial time
lgorithm that computes the optimal homotopic simplification. We conclude the paper with a few remarks in Section 5.

. Preliminaries

mai and Iri’s framework. Most simplification algorithms given in the restricted model are based on this framework where
or a given ε, an unweighted directed graph Gε(P) (or simply Gε) is constructed as follows: Gε = (V , Eε) where

= {p1, . . . , pn} and

Eε = {
(pi, p j)

∣∣ dF
(

pi p j,P(i, j)
)
� ε

}
.

ere, dF (pi p j,P(i, j)) is the F distance of the shortcut pi p j and P(i, j) for a desired distance function F . Each Q with the
rror of, at the most, ε corresponds to a path in Gε from p1 to pn . Therefore, the optimal simplification is the shortest-link
ath in Gε from p1 to pn , which can be computed by a breadth-first search in time O (|Gε|).

anonical sequence of a path α, denoted by C S(α) [10]. Let α be a path with some non-intersecting point obstacles, each of
hich is represented by a character. One way to represent α is to write it as a sequence of obstacle characters that α

asses through either from above or below (shown by overbar or underbar). Precisely, imagine that a vertical line is drawn
rom each obstacle. We walk along α from its source s to its destination t . Whenever we reach a vertical obstacle line
rawn from an obstacle, say A, if we are above A, we write A in the sequence, otherwise we write A. For example, such a
equence for the path α illustrated in Fig. 2(i) is ABC D DCCC B A. We can use the following rule and shorten this sequence
ithout changing its homotopy class. This means that the corresponding path of shortened sequence is homotopic to α.

he shortening process is as follows. If two adjacent symbols in the sequence of α are identical (i.e., for an obstacle A,
oth adjacent symbols are A or A), then both symbols can be deleted by deforming (or shortening) α in a way that α
oes not intersect with the related vertical obstacle line. Fig. 2(ii) illustrates a deformation process that deletes D D in the

3 It is known that any MIN PB-complete problem cannot be approximated within n1−ε for some ε > 0. See [25] for the precise definition of MIN
B-complete problems.

Original text:
Inserted Text:
homopotic

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.4 (1-12)

4 M.A. Abam et al. / Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 3. A simple polygon Ψ (P,S) enclosing P .

sequence of α. This symbol deletion and path deformation is continued until no two adjacent symbols are identical. The
resulting sequence is called the canonical sequence of α (denoted by CS(α)). Fig. 2(iii) illustrates α after several deformations,
thus leading to CS(α). It is shown in [10] that two paths α and β , sharing their endpoints, are homotopic if and only if
CS(α) = CS(β). Clearly, the CS of a path is unique. From this point on, when we say “shortening a path”, we mean to
repeatedly deform the path until we end up with its canonical sequence.

3. Optimal strongly homotopic simplification

Algorithm. Our general algorithm is as follows. First, we compute Gε in the absence of the obstacles under the given distance
function F ,4 and we then test whether each edge pi p j in Gε is homotopic to P(i, j) in the presence of the obstacles.
We remove non-homotopic shortcuts from Gε and finally compute the shortest path in Gε from p1 to pn by a breadth-first
search algorithm to obtain the optimal strongly homotopic simplification.

Computing homotopic shortcuts. A challenging step of our algorithms is how to efficiently compute the homotopic shortcuts.
This step can be computed by applying the homotopy-testing algorithm [10] to each shortcut and its corresponding sub-path
in O ((n3 + n2m) log(n + m)) time, which is far from being efficient. Here, we present two algorithms to compute the
homotopic shortcuts, one for x-monotone paths and the other for the simple paths. The running time of our algorithms are
O (m log(n + m) + n logn log(n + m) + k) and O (n(m + n) log(n + m)), respectively, where k is the number of such shortcuts.
The above algorithm combined with Lemmas 3 and 7 yields the following theorem.

Theorem 1. Let P be a simple polygonal path with size n in a plane containing a set S of m point obstacles. Suppose that T F (n) is
the time needed to compute Gε under the distance function F in the absence of the obstacles, where distance function F can be a
Haussdorf, Fréchet, or any other desired distance function. If P is x-monotone, the optimal strongly homotopic simplification of P can
be computed in T F (n)+ O (m log(n +m)+n log n log(n +m)+k) time, where k is the number of homotopic shortcuts. If P is a simple
path, this can be computed in T F (n) + O (n(m + n) log(n + m)) time.

3.1. Computing homotopic shortcuts for x-monotone paths

The main idea behind our algorithm is to enclose P inside a simple polygon Ψ (P,S) such that pi p j is a homotopic
shortcut if and only if p j is visible by pi inside Ψ (P,S).

For brevity, we use Ψ for Ψ (P,S). We construct Ψ as follows. First, we determine the aboveness relation between
the obstacles and P in O (m log n) time by locating each obstacle with respect to P in O (log n) time. We then compute,
in O (n + m) time, an axis-parallel rectangle enclosing the path vertices and the obstacles. Let λ be a sufficiently small
number less than half of the x-coordinate difference of any two points of the path vertices and obstacles. Note that λ can
be computed in O ((n + m) log(n + m)) time. For each obstacle si ∈ S above P , we define two points s+

i and s−
i on the

upper boundary of the rectangle with x-coordinates x(si) + λ and x(si) − λ, respectively, where x(si) is the x-coordinate of
si . We connect si to s+

i and s−
i and remove the part of the rectangle joining s+

i to s−
i . Similarly, we define s+

i and s−
i and

the associated edges for obstacles si below P . Together, this gives us the simple polygon Ψ (see Fig. 3).

Lemma 2. A shortcut pi p j is a homotopic shortcut if and only if p j is visible by pi inside Ψ (P,S).

Proof. pi is inside Ψ by the choice of λ. If p j is visible by pi inside Ψ , then pi p j and P(i, j) make a cycle inside the
simple Ψ , which can be deformed into a single point, thereby implying that pi p j and P(i, j) are homotopic. Assume pi p j
is a homotopic shortcut. To the contrary, assume that pi and p j are not visible to each other inside Ψ . This means that

4 For simple paths, T F (n) (the time needed to compute Gε) is O (n2) [11] and O (n3) [2], where F is a Hausdorff or Fréchet, respectively.

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.5 (1-12)

M.A. Abam et al. / Computational Geometry ••• (••••) •••–••• 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

F
A

p
t

3
O

L
c

3

t

s
a
m
a
o
i
p
(

t
i
a
i
t
o

3

t
O

s
s
b
p
t
x
a
w
t
N
a
p
o
a

ig. 4. (i) The original path with the sequence ABC D E E D D DC B B B A, (ii) the rectified path, and (iii) the shortened path with the canonical sequence
BC D DC B A.

i p j must intersect both sks−
k and sks+

k for some k (note that pi and p j are both inside Ψ). This implies that sk is between
he shortcut pi p j and P(i, j), thus contradicting the assumption. �

The above lemma reduces our problem to computing the visibility graph of n points inside a simple polygon of size
m + 4. Ben-Moshe et al. [3] presented an O (m + n log n log(m + n) + k)-time algorithm to compute all visible pairs in
(n + m + k) space, where k is the number of visible pairs. Accordingly, we obtain the following result:

emma 3. Let P be an x-monotone polygonal path and S be a set of m point obstacles in a plane. All homotopic shortcuts of P can be
omputed in O (m log(n + m) + n log n log(n + m) + k) time and O (n + m + k) space where k is the number of such shortcuts.

.2. Computing all homotopic shortcuts for simple paths

In this section, we present our algorithm for computing all homotopic shortcuts for simple paths. We first briefly describe
he algorithm given in [10] and then show how to exploit it for our problem.

The algorithm by Cabello et al. [10] tests whether two simple paths α and β with common fixed endpoints and a total
ize of n in the presence of m point obstacles are homotopic. Their algorithm first computes CS(α) (and CS(β)) efficiently
s follows. The path α is first decomposed into maximal x-monotone sub-paths. Let Υ be the set of obstacles and the
aximal x-monotone sub-paths. Some members of set Υ induce an aboveness relation. Clearly, this aboveness relation is

cyclic and thus defines a partial order on Υ . This partial order relation can be extended to a total order relation. The rank
f x-monotone sub-paths in the total order can be used to rectify the paths. Precisely, each maximal x-monotone sub-path

s treated as a horizontal segment where its y-coordinate is its rank in the total order. This new path is called the rectified
ath. The rectified path is then shortened to obtain the canonical rectified path (denoted by CRP(α)), which represents CS(α)

Fig. 4 illustrates the initial steps of this algorithm).
To test whether paths α and β are homotopic, the algorithm first tests whether the turn obstacles of α and β define

he same set where a turn obstacle O of α is an obstacle at which CRP(α) makes a U -turn, i.e., either O O or O O exists
n CS(α). If not, α and β are not homotopic. Otherwise, both CRP(α) and CRP(β) are broken at the turn obstacles and
re, consequently, decomposed into x-monotone sub-paths. Then, each sub-path of CRP(α) and its corresponding sub-path
n CRP(β) (i.e., the one ending at the same turn obstacles) are tested to see whether or not they are homotopic. These
ests are performed together by simultaneously sweeping the x-monotone sub-paths of CRP(α) and CRP(β) and the set of
bstacles from the left to the right—see [10] for more details.

.2.1. Our algorithm
We now show how to exploit the algorithm in [10] and compute all homotopic shortcuts ph pi in O (n(m +n) log(n +m))

ime. Let Ch = {ph pi | 1 � h < i � n}. We show how to compute all homotopic shortcuts in Ch for a fixed h in
((m + n) log(n + m)) time. This process can be repeated for every 1 � h � n, thus yielding our main result.

From now on, due to the ease of presentation, we fix h = 1 and compute all homotopic shortcuts in C1. Our global
trategy is as follows. We compute CRP(P(1, i))’s (CRP(i)’s, for short) and maintain them in a plane H1. We begin this
tep by rectifying P (Fig. 5(ii)). We then inductively compute CRP(i) for all i’s. If CRP(i) has a turn obstacle, it cannot
e homotopic to the shortcut p1 pi as the CRP of p1 pi does not have any turn obstacle. Therefore, we maintain CRP(i),
rovided that it is x-monotone. However, a separate maintenance of all x-monotone CRP(i)’s may require O (n2) space and
ime, which results in an inefficient O (n3)-time algorithm to compute all homotopic shortcuts pi p j . Hence, we encode all
-monotone CRP(i)’s into a geometric tree T of size O (n) in the plane H1 where each x-monotone CRP(i) corresponds to
path from the root to a node or leaf in T (Fig. 5(iii)). In a different plane H2, we rectify all shortcuts p1 pi (2 � i � n)
hose CRP(i) is x-monotone in the presence of the point obstacles (Fig. 5(iv)). We finally follow the main step, which is

esting whether CRP(i)’s encoded in T in plane H1 and the corresponding rectified shortcuts in plane H2 are homotopic.
ote that, in Fig. 5, CRP(5) and CRP(11) are not maintained in T as they are not x-monotone, and thus the shortcuts p1 p5
nd p1 p11 are not rectified, while the others are rectified and shown in Fig. 5(iv). As the rectifying operations change the
osition of points, in Fig. 5, for any point p, we use p̂ and p̃ instead of p in the rectified forms—note that a rectifying
peration just changes the y-coordinate of a point and the x-coordinate remains unchanged. The following sketches our
lgorithm.

Original text:
Inserted Text:
| ,

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.6 (1-12)

6 M.A. Abam et al. / Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 5. (i) The original path P = p1, . . . , p11. (ii) The rectified path. (iii) The tree T in plane H1. The nodes of T are denoted by empty circles. (iv) The
rectified shortcuts in plane H2.

Algorithm Computing Homotopic Shortcuts

1. Rectify P .
2. Construct a segment-dragging queries structure over point obstacles.
3. for h = 1 to n
4. do Let H1,H2,T be empty.
5. Compute CRP(P(h, i)),h < i � n and encode all in a geometric tree T in plane H1.
6. Rectify all shortcuts ph pi,h < i � n whose CRP(P(h, i)) is x-monotone in plane H2.
7. Test whether each CRP(P(h, i)),h < i � n in H1 and the corresponding rectified shortcuts in H2 are homotopic

and output them.

Next, we explain the details of each step of our algorithm for h = 1.

Rectifying P . Because P is simple, the edges of P and the obstacles of S induce the aboveness relation, which is acyclic
and computable in time O ((n + m) log(n + m)) [27]. In fact, the aboveness relation defines a partial order that can be
easily extended to a total order. Let rankp(O) be the rank of an object O (obstacle or edge) in the total order. By letting
the y-coordinate of any point of object O be rankp(O), the path P becomes rectified, i.e., each edge is represented as a
horizontal segment. We join two horizontal segments corresponding to two consecutive edges in P by a vertical segment
to maintain the original connectivity. Note that for each segment pi pi+1, there is a horizontal segment in the rectified P .
We denote the endpoint of this horizontal segment corresponding to pi+1 by p̂i+1, see Fig. 5(ii).

Segment-dragging queries. Our algorithm relies on a segment-dragging data structure defined over m point obstacles to com-
pute CRP(i). This data structure is used to find the first obstacle hit when the given vertical segment is translated vertically.
From this point forward, we call such an obstacle the closest obstacle to a given vertical segment. We use Chazelle’s data
structure [12] that preprocesses the obstacles in time O (m logm) while using O (m) space to answer segment-dragging
queries in O (log m) time.

Canonical rectified paths. We maintain two stacks Sc and Su . Upon processing p̂i+1, stack Sc maintains CRP(i) as a sequence
of horizontal and vertical segments, and stack Su maintains U -turns as a sequence of vertical segments at which CRP(i)
makes U -turns. Moreover, T contains all CRP(j), 1 < j < i + 1. In the beginning, Su is set to be empty, and Sc is set to be
the first edge of the rectified P . We also initialize the tree T by adding new nodes η(p1) and η(p2), as well as the directed
edge (η(p1), η(p2)) to the empty tree T and set η(p1) to be the root of T , where η(p) denotes the node with label p
placed at the position of point p. Now, CRP(i + 1) is computed as follows. Consider the horizontal segment of the rectified
P ending at p̂i+1. Let the other endpoint of this segment be q. We pop Sc , which is a segment ending at p̂i and starting at
another point, say r. If r p̂i is vertical, we should pop one more segment from Sc . Without loss of generality, assume that

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.7 (1-12)

M.A. Abam et al. / Computational Geometry ••• (••••) •••–••• 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

r
a
a
s
d

(

(

i
u
s

L
C

R
c
i
b
b
t
f
F

T
o
x
a
a
a
a
a

C

Fig. 6. Different cases depending on the positions of r p̂i and qp̂i+1 and the obstacles when p̂i is to the right of r.

p̂i is horizontal and p̂i is to the right of r—the cases, where p̂i is to the left of r, can be handled similarly. Note that p̂i
nd q are connected in the rectified P by a vertical segment. We distinguish four cases based on being either true or false
ccording to the following three propositions: (Q 1) p̂i+1 is to the right of p̂i ; (Q 2) there is at least one obstacle above
egment r p̂i and below segment qp̂i+1; and (Q 3) the length of qp̂i+1 is greater than the length of r p̂i —see Fig. 6, which
epicts all four cases. It is easy to verify whether Q 2 is true or false using the segment-dragging structure

(i) Q 1: the segments r p̂i , p̂iq, and qp̂i+1 are simply pushed into Sc . Moreover, if Su is empty, we update T by adding
new nodes η(pi+1) and η(q), as well as new edges (η(pi), η(q)), and (η(q), η(pi+1)) to T .

(ii) Not (Q 1) but Q 2: p̂i+1 is to the right of p̂i and let r′q′ be the vertical segment touching sk from right where sk is the
right-most obstacle on the left side of p̂iq. We push rr′ , r′q′ , and q′ p̂i+1 into Sc (we indeed erase r′ p̂i , p̂iq, and qq′).
We also push r′q′ into Su as a new U -turn. Because Su is not empty, we do not update T .

iii) Not (Q 1), not (Q 2), but Q 3: let rr′ be the vertical segment hanging from r, which can be obtained by popping Sc one
more time. We glue r′r and rq′ and push r′q′ into Sc as well as q′ p̂i+1. Moreover, if the top of Su is r′r, we pop r′r
from Su . If Su is empty, we update tree T by inserting new nodes η(r′) (if it does not exist), η(q′) and η(pi+1) as
well as the new directed edges (η(r′), η(q′)), and (η(q′), η(pi+1)) to tree T . If η(r′) does not exist, we split the edge
(η(z), η(w)) of T , whose embedding in the plane (i.e., segment zw) contains point r′ , into the new directed edges
(η(z), η(r′)) and (η(r′), η(w)). We can test in constant time whether r′q′ can still be moved to the left, by considering
the last three segments of Sc . If it can, we pop q′ p̂i+1 and consider it as a new horizontal segment to be inserted, and
then repeat step (iii).

iv) Not (Q 1), not (Q 2), and not (Q 3): we push rr′ and r′ p̂i+1 into Sc . Moreover, if Su is empty, we update T by adding
new nodes η(r′) and η(pi+1), removing the edge (η(pi), η(r)) and adding new directed edges (η(r), η(r′)), (η(r′), η(pi))

and (η(r′), η(pi+1)).

Because in each of the n iterations, a constant number of edges are added to T , the size of T is O (n). Note that, in some
terations, step (iii) may be processed recursively several times, but it is only for the last recurrence that we may have to
pdate T . Furthermore, the number of such recurrences in total is O (n), as each recurrence can be charged to a horizontal
egment of the path and each horizontal segment can be charged at most twice. Therefore, we have the following lemma:

emma 4. All x-monotone CRP(i) can be encoded in O (n log m) time into a geometric tree T of size O (n), where each x-monotone
RP(i) corresponds to a path from the root to a node or leaf in tree T .

ectifying shortcuts. Let I be the set of indices i such that CRP(i) is x-monotone. In fact, I presents all remaining shortcut
andidates to be homotopic shortcuts after computing all CRP(i)’s. Consider all shortcuts p1 pi and m obstacles in S , where
∈ I . They induce an aboveness relation defining a partial order, which can be simply extended to a total order. Let ranks(O)

e the rank of an object O (obstacle or shortcut) in this total order. We set the y-coordinate of any point of object O to
e ranks(O). This rectifies all shortcuts. We denote the rectified shortcut p1 pi by p̃1 p̃i , see Fig. 5(iv). Note that, to reduce
he confusion, p̃1 is not illustrated in this figure. Also, in this figure, there is no relation between rankp(si) and ranks(si)

or obstacle si , as they come from two different total orders. For instance, the y-coordinates of obstacle B in Fig. 5(iii) and
ig. 5(iv) are different.

esting homotopy for tree T and the rectified shortcuts. For a horizontal edge e of T , let above(e) be the set of the point
bstacles above edge e. Precisely, above(e) is the set of obstacles s j , thus satisfying (i) rankp(s j) > rankp(e), and (ii) the
-coordinate of s j lies between the x-coordinates of the endpoints of e. In a similar way, we define below(e) to denote
ll obstacles below edge e. As every obstacle above (or below) CRP(i) is above (or below) exactly one edge of all edges
ppearing in CRP(i), the homotopy test of p1 pi and CRP(i) can be divided into some homotopy tests in which edges
ppearing on CRP(i) are involved. For any edge e appearing on CRP(i), every obstacle in above(e) must be above p̃1 p̃i , and
ny obstacle in below(e) must be below p̃1 p̃i ; otherwise, p1 pi and CRP(i) cannot be homotopic. Therefore, for each edge e
nd any obstacle s j , we have the following condition:

ondition 1. (s j ∈ above(e) ∧ ranks(p1 pi) < ranks(s j)) ∨ (s j ∈ below(e) ∧ ranks(p1 pi) > ranks(s j)).

Original text:
Inserted Text:
not

Original text:
Inserted Text:
not

Original text:
Inserted Text:
not

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.8 (1-12)

8 M.A. Abam et al. / Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
The following simple lemma states the case where the rectified shortcut p̃1 p̃i and CRP(i) are homotopic:

Lemma 5. For any i ∈ I , the rectified shortcut p1 pi and CRP(i) are homotopic if and only if, for any horizontal edge e of T appearing
on CRP(i) and any obstacle s j ∈ above(e) ∪ below(e), Condition 1 holds.

This lemma implies that any edge e and any object s j ∈ above(e)∪ below(e) violating Condition 1 removes p1 pi of being
a homotopic shortcut, and if there is no such pair e and s j , the shortcut p1 pi is definitely a homotopic shortcut. However,
testing Condition 1 for each edge e and any s j ∈ above(e) ∪ below(e) is costly in total. We can reduce the total cost using
the following lemma.

For an edge e, let s j ∈ above(e) (s j ∈ below(e)) be the obstacle with the minimum (maximum) ranks . We define
min(above(e)) = ranks(s j) (max(below(e)) = ranks(s j)). The following lemma states that from among all obstacles, either
above or below e, at most two obstacles together with e must be tested to determine whether they satisfy Condition 1.

Lemma 6. It suffices to verify Condition 1 for each horizontal edge e of T and the obstacles with ranks min(above(e)) and
max(below(e)) in plane H2 , if they exist.

Proof. We claim if there is an obstacle violating Condition 1 for an edge e, then the obstacle with the rank of either
min(above(e)) or max(below(e)) also violates Condition 1 for the edge e. The lemma follows immediately from the claim.
Next, we prove the claim.

Let O be an obstacle violating Condition 1 for edge e. Assume O is in above(e) (if O is in below(e), the proof can be
done similarly). Since O is in above(e), ranks(O) � min(above(e)). On the other hand, since O violates Condition 1, we know
ranks(O) < ranks(p1 pi) for some i. All this together implies min(above(e)) < ranks(p1 pi) which implies the object with the
rank of min(above(e)) also violates Condition 1. �

Knowing Lemma 6, the main question is how quickly we can perform the verification of Condition 1 for any horizontal
edge e of T to remove non-homotopic shortcuts. Note that above(e) or below(e) may contain many obstacles and that
I(e) may contain several indices, where I(e) is the set of all indices i ∈ I for which e appears in CRP(i). Therefore, the size
of I(e) can be O (n) in the worst case, which requires O (n2) homotopy tests where each one takes O (1) time. We show that
this process can be performed in O (n log n) time. From this point forward, we direct our attention to above(e), as below(e)
can be handled similarly.

Computing min(above(e)). One easy way to compute min(above(e)) for any horizontal edge e of T is to build a range-
search [4] query data structure Tobs over the obstacles in H1, which is a two-level tree. For each node ν in the second
level of Tobs, we maintain extra information, that is, the minimum ranks of the obstacles lying at the subtree rooted at ν .
Hence, min(above(e)) can be computed in O (log2 m) time. However, this can be performed more quickly as we know all
edges in advance. We sweep the horizontal edges and the obstacles from top to bottom and maintain a binary tree over the
swept obstacles based on their x-coordinates. When the sweep line reaches an edge e, above(e) is considered as the union
of O (log m) subtrees in the binary tree, and consequently, min(above(e)) can be computed in O (log m) time.

Verification of Condition 1. To collectively verify Condition 1 in which an edge e is involved, we define a new ordering of
elements in I such that elements in I(e) become consecutive. This ordering is obtained by an in-order traversal of T —note
that for any i ∈ I , there is a node in T labeled η(pi). Let σ(i) be the rank of i ∈ I in this ordering. As an example,
〈3,2,4,8,9,10,6,7〉 is the new ordering of the indices in T of Fig. 5(iii). For the edge e specified in this figure, I(e) is
{8,9,10} in which indices in I(e) are consecutive in the new ordering, i.e., they are not fragmented into chunks. This
property reduces the verification time of Condition 1 in which an edge e is involved in a 3-sided range query over new
points. With each i ∈ I , we associate point p̌i = (σ (i), ranks(p1 pi)) in a new plane H—see Fig. 7. Each edge e defines a
segment on the x-coordinate, precisely, σ -coordinate of plane H, which includes all indices in I(e). Note that the segment
corresponding to e can be computed in the in-order traversal of T . Also, min(above(e)) defines a half-segment in the
y-coordinate. Both the segment corresponding to e and the half segment corresponding to min(above(e)) define a 3-sided
range that identifies all indices that violate Condition 1. Fig. 7 illustrates the 3-sided range for edge e specified in Fig. 5(iii).
Therefore, every i ∈ I whose corresponding point lies in this range violates Condition 1 and, consequently, must be removed
from I . As these range-searches are available in advance, we can sweep points and ranges in H from top to bottom and
maintain a binary tree Tbin over the points based on their x-coordinates, i.e., their σ -coordinate, such as the one described in
the previous paragraph. Upon processing a three-sided range, we simply remove O (log n) subtrees from the binary tree Tbin.
Therefore, the sweeping takes O (n log n) time in total. After handling below(e) for horizontal edges e of T in a similar
manner, any remaining shortcut is a homotopic shortcut. Putting this together, we obtain the following result:

Lemma 7. Let P = p1, . . . , pn be a non-self-intersecting polygonal path, and let S be a set of m point obstacles in a plane. All homotopic
shortcuts pi p j can be computed in O (n(m+n) log(n+m)) time and O (n+m+k) space where k is the number of homotopic shortcuts.

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.9 (1-12)

M.A. Abam et al. / Computational Geometry ••• (••••) •••–••• 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

F
{
o

R
s
o
i
a
o

4

b
a
q
s
b

C
I
r
C
b
t

w
t

b
a
C
a
o

w

i
t
l
s

ig. 7. The new points (σ (i), ranks(p1 pi)) in plane H for the indices appear in Fig. 5(iii). The gray area is the 3-sided range corresponding to I(e) =
8,9,10}. As points p̌9 and p̌10 lie in the gray area, they violate Condition 1. Thus, p1 p9 and p1 p10 cannot be homotopic shortcuts. Note that, in the new
rdering, the segment corresponding to e in H is [4,6]. Also, the min(above(e)) is 4, which is ranks (̃C).

emark 1. The running time can be improved to O (m log m +nm +n2 log(n +m)), if we are allowed to use extra O (m log m)

pace. To obtain this improvement, at the beginning, we compute the aboveness relation between the obstacles and edges
f P as well as the aboveness relation between the obstacles and all shortcuts, and we exploit these relations in each

teration, where we fix i to be 1, . . . ,n. Moreover, we maintain a persistent binary tree [17] over the obstacles to compute
ll min(above(e)) in total time O (n log m) rather than O (m log m + n logm) in each iteration. This persistent binary tree
ccupies O (m log m) space.

. Optimal homotopic simplification

In this section, we present the first algorithm that computes the optimal simplification for general paths (the path can
e self-intersecting). Our method exploits the observation that the path P and every simplification of P can be thought of
s strings, namely, their canonical sequence. Therefore, the goal is to find a simplification Q = q1,q2, . . . ,qk (q1 = p1 and
k = pn) with the minimum number of links satisfying CS(Q) = CS(P). We use the dynamic-programming paradigm to find
uch a simplification. The sub-problem is defined as finding Qi j to be the optimal simplification for P(i, j), the path that
egins at pi and ends at p j . Obviously, Q1n is the final answer, and each sub-problem should also be solved optimally.

We first compute Gε under a given distance function F in time T F (n) (see Section 2). We then compute CS(P) and
S(pi p j) for every edge pi p j in Gε ilon. Because pi p j is just a segment, CS(pi p j) can be easily computed in O (m) time.

n fact, for each obstacle, we only need to determine whether it is above or below the shortcut pi p j , and then sort the
esulted sequence based on the x-coordinates of the obstacles. For ease of presentation, we denote the first b symbols of
S(pi p j) by CS(b, pi p j) and the last b symbols of CS(pi p j) by CS(pi p j,b). Moreover, we denote the kth symbol of CS(α)

y CS(α)[k]. When all CS(pi p j)s are available, the CS(Q) can be computed by concatenating the CSs of all links of Q and
hen removing the adjacent repeated symbols. Accordingly, we have:

CS(Qk) =
{

RM(CS(Qk−1) ⊕ CS(qk−1qk)) if k > 2,

CS(q1q2) if k = 2,

here Qi = q1,q2, . . . ,qi (the first i − 1 links of Q), RM is the operator that removes repeated adjacent symbols and ⊕ is
he concatenation operator.

Our dynamic programming is based on the observation that if CS(Q) = CS(P), any prefix of CS(P) must be produced
y concatenating the CS of the first i links of Q and the first j symbols of the CS of (i + 1)th link of Q for some i and j
nd then removing the repeated adjacent symbols. Indeed, the last symbol of the prefix of CS(P) must match a symbol in
S(Q), as we know CS(Q) = CS(P). Therefore, this symbol must exist in the CS of a link ((i + 1)th link for some i) of Q,
s CS(Q) is initially obtained by concatenating the CSs of its links. If the position of this symbol in the CS of (i + 1)th link
f Q is j, then the prefix of CS(P) is equal to RM(CS(Qi+1) ⊕ CS(j,qi+1qi+2)).

The above prefix property guides us to define seq(Q1i,b) as follows:

seq(Q1i,b) = RM
(
CS(q1q2) ⊕ CS(q2q3) ⊕ · · · ⊕ CS(qr−2qr−1) ⊕ CS(b,qr−1qr)

)
,

here q1 = p1 and qr = pi .
We define the main table of our dynamic programming, namely, OptHS[i, j,b, l]. Roughly speaking, OptHS[i, j,b, l] spec-

fies the minimum number of links needed to construct the first l symbols of CS(P) such that the last link is pi p j and
he first b symbols of CS(pi p j) are used to construct the first l symbols of CS(P). More precisely, for numbers l and b,
et pi p j be the last link of Q1 j and let Q1, j be a simplification of P(1, j) with the minimum number of links such that
eq(Q1 j,b) is equal to exactly the first l symbols of CS(P). We then store the size of Q1 j (i.e., the number of its links)

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.10 (1-12)

10 M.A. Abam et al. / Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 8. Let Φ = CS(P) and Q specify OptHS[i, j,b, l]. There must be a link pi′ p j′ in Q such that CS(pi′ p j′)[b′] = CS(P)[l] for some b′ and
seq(i′, j′, i, j, |CS(pi′ p j′)| − b′,b) is empty.

in OptHS[i, j,b, l]. It can easily be shown that minn
i=1 OptHS[i,n, |CS(pi pn)|, |CS(P)|] is equal to the number of links of the

optimal homotopic simplification where |.| denotes the size of the sequence.
To complete the OptHS matrix, we often need to know whether the CS(Qi j) is empty for some i and j. Therefore,

we define a new table OptNHS[i1, j1, i2, j2,a, c] as follows. Consider Qi1 j2 , which is a simplification of P(pi1 , p j2). Let
pi1 p j1 and pi2 p j2 be the first and the last links of Qi1 j2 , respectively, and let �1, . . . , �r be the middle links of Qi1 j2 .
We define

seq(i1, j1, i2, j2,a, c) = RM
(
CS(pi1 p j1 ,a) ⊕ CS(�1) ⊕ · · · ⊕ CS(�r) ⊕ CS(c, pi2 p j2)

)
.

If seq(i1, j1, i2, j2,a, c) of Qi1 j2 is empty and the number of its links is minimum, we store the number of its links in
OptNHS[i1, j1, i2, j2,a, c].

Now, we describe how to fill in the matrices OptHS and OptNHS. The process for computing OptHS[i, j,b, l] and
OptNHS[i1, j1, i2, j2,a, c] is as follows. Let Q1 j specify OptHS[i, j,b, l]. There must be a link pi′ p j′ in Q1i such that
CS(pi′ p j′)[b′] = CS(P)[l] for some b′ and seq(i′, j′, i, j, |CS(pi′ p j′)| − b′,b)) is empty—see Fig. 8. Thus,

OptHS[i, j,b, l] = min
i′< j′�i

(
OptHS

[
i′, j′,b′ − 1, l − 1

]
+ OptNHS

[
i′, j′, i, j,

∣∣CS(pi′ p j′)
∣∣ − b′,b

] − 1
)
,

where the minimum is taken over all links pi′ p j′ where CS(pi′ p j′)[b′] = CS(P)[l] for some b′ . In a similar way, if Qi1 j2

specifies OptNHS[i1, j1, i2, j2,a, c], there is a link pi′ p j′ in Qi1 j2 such that CS(pi′ p j′)[a′] = CS(pi1 p j1)[|CS(pi1 p j1)| − a + 1]
for some a′ . Indeed, CS(pi′ p j′)[a′] and CS(pi1 p j1)[|CS(pi1 p j1)| − a + 1] can eliminate each other if OptNHS[i1, j1, i′, j′,a −
1,a′ − 1] is empty—see Fig. 9. Thus,

OptNHS[i1, j1, i2, j2,a, c] = min
j1�i′< j′�i2

(
OptNHS

[
i1, j1, i′, j′,a,a′ − 1

]
+ OptNHS

[
i′, j′, i2, j2,

∣∣CS(pi′ p j′)
∣∣ − a′, c

] − 1
)
.

We refer readers to Appendix A for the precise computations of OptHS[i, j,b, l] and OptNHS[i1, j1, i2, j2,a, c].
Reporting. OptHS stores the size of the optimal homotopic simplification. Therefore, to report the optimal homotopic sim-
plification, we may need to spend more space and time. As we only need to report the optimal homotopic simplification
specifying minn

i=1 OptHS[i,n, |CS(pi pn)|, |CS(P)|], we find it by passing over the matrices once more, without asymptotically
increasing the time and space complexities.

Time and space complexity. In matrix OptNHS[i1, j1, i2, j2,a, c], we have 1 � i1, i2, j1, j2 � n and 0 � a, c � m. Furthermore,
in matrix OptHS[i, j,b, l], we have 1 � i, j � n, and 0 � b � m, and 0 � l � nm. Therefore, OptNHS and OptHS occupy
O (n3m2) and O (n4m2) space, respectively. Note that the size of CS(pi p j) is, at most m, and |CS(P)| can be, at most, mn as
the number of the edges of P is, at most, n − 1. To fill one entry of OptNHS, we take min operation over, at most, O (n2)

links pi′ p j′ . As OptNHS has O (n4m2) entries, it takes O (n6m2) time to fill the whole matrix. Similarly, it takes O (n5m2)

time to fill the OptHS matrix. Note that finding the symbol of CS(pi′ p j′) that matches the lth symbol of P takes O (m) time,
but we can perform it in O (1) time by constructing an auxiliary 2-dimensional array of size O (n2m) to store the position
of each symbol in CS of each link. After computing the matrices, minn

i=1 OptHS[i,n, |CS(pi pn)|, |CS(P)|] can be computed in
O (n) time, which does not asymptotically increase the time complexity of our algorithm. Accordingly, we have the following
theorem.

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.11 (1-12)

M.A. Abam et al. / Computational Geometry ••• (••••) •••–••• 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56

57

58

59

60

61

F
w

T
n
c

5

h
o
n
p

w

A

m

O

O
w

ig. 9. If Qi1 j2 specifies OptNHS[i1, j1, i2, j2,a, c], there exists a link pi′ p j′ in Qi1 j2 such that CS(pi′ p j′)[a′] = CS(pi1 p j1)[|pi1 p j1 | − a + 1] for some a′—
here a′ is the index of A in CS(pi′ p j′). Hence, the CS of both gray areas should be empty.

heorem 8. Suppose that P is a polygonal path with size n in a plane containing the m point obstacles and that T F (n) is the time
eeded to compute Gε under the distance function F in the absence of the obstacles. The optimal homotopic simplification can be
omputed in O (n6m2) + T F (n) time and O (n4m2) space.

. Conclusions

We have proposed the first polynomial-time algorithm to compute the optimal simplification Q of a polygonal path P
omotopic to P with respect to some point obstacles in a plane. We have also presented algorithms to compute the
ptimal strongly homotopic simplification of an x-monotone and a simple polygonal path P in T F (n) + O (m log(n + m) +
log n log(n + m) + k) and T F (n) + O (n(m + n) log(n + m)) time, respectively, where n is the size of P , m is the number of
oint obstacles and T F (n) is the time needed to compute Gε under the distance function F .

Our algorithms, except for the one proposed for x-monotone paths, are not guaranteed to produce a simple simplification,
hich can be an important requirement in many areas. We leave this problem for future research.

ppendix A. Computing OptHS and OptNHS

We describe the precise method of computing matrices OptHS and OptNHS. Note that the matrices OptHS and OptNHS
aintain the number of links of the minimum subsequence.

ptHS. To compute OptHS[i, j,b, l], where 1 � i < j � n, 0 � b � |CS(pi p j)|, and 0 � l � |CS(P)|, we distinguish three cases:

• b = 0:

OptHS[i, j,0, l] = min
i′

OptHS
[
i′, i,

∣∣CS(pi′ pi)
∣∣, l

] + 1 where
(
i′ < i

)
.

• l = 0:

OptHS[i, j,b,0] = min
i′

OptNHS
[
1, i′, i, j,

∣∣CS(p1 pi′)
∣∣,b

]
where

(
i′ � i

)
.

• b, l > 0:

OptHS[i, j,b, l] = min
i′, j′,b′ OptHS

[
i′, j′,b′ − 1, l − 1

]
+ OptNHS

[
i′, j′, i, j,

∣∣CS(pi′ p j′)
∣∣ − b′ + 1,b

] − 1
56

57

58

59

60

61

where
((

i′ = i, j′ = j,b′ = b − 1
)

or
(
i′ < j′ � i

))
and CS(P)[l] = CS(pi′ p j′)

[
b′].

ptNHS. To fill OptNHS[i1, j1, i2, j2,a, c], where 1 � i1 < j1 � i2 < j2 � n, 0 � a � |CS(pi1 p j1)|, and 0 � c � |CS(pi2 p j2)|,
e distinguish the following four cases:

JID:COMGEO AID:1321 /FLA [m3G; v 1.129; Prn:24/02/2014; 9:24] P.12 (1-12)

12 M.A. Abam et al. / Computational Geometry ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

• c > 0:

OptNHS[i1, j1, i2, j2,a, c] = min
i′, j′,a′ OptNHS

[
i1, j1, i′, j′,a,a′ − 1

]
+ OptNHS

[
i′, j′, i2, j2,

∣∣CS(pi′ p j′)
∣∣ − a′, c − 1

] − 1

where
(

j1 � i′ < j′ � i2
)

and
(
0 < a′ �

∣∣CS(pi′ p j′)
∣∣)

and CS(pi′ p j′)
[
a′] = CS(pi2 p j2)[c].

• a > 0 and c = 0:

OptNHS[i1, j1, i2, j2,a,0] = min
i′, j′,a′ OptNHS

[
i1, j1, i′, j′,a − 1,a′ − 1

]
+ OptNHS

[
i′, j′, i2, j2,

∣∣CS(pi′ p j′)
∣∣ − a′,0

] − 1

where
(

j1 � i′ < j′ � i2
)

and
(
0 < l′ �

∣∣CS(pi′ p j′)
∣∣)

and CS(pi′ p j′)
[
a′] = CS(pi1 p j1)

[∣∣CS(pi1 p j1)
∣∣ − a + 1

]
.

• a, c = 0 and j1 �= i2: OptNHS[i1, j1, i2, j2,0,0] = 3 if CS(p j1 pi2) = NULL and otherwise + ∞.
• a, c = 0 and j1 = i2: OptNHS[i1, j1, i2, j2,0,0] = 2 if CS(p j1 pi2) = NULL and otherwise + ∞.

References

[1] M.A. Abam, M. de Berg, P. Hachenberger, A. Zarei, Streaming algorithms for line simplification, Discrete Comput. Geom. 43 (3) (2010) 497–515.
[2] P.K. Agarwal, S. Har-Peled, N.H. Mustafa, Y. Wang, Near-linear time approximation algorithms for curve simplification, Algorithmica 42 (3–4) (2005)

203–219.
[3] B. Ben-Moshe, O. Hall-Holt, M.J. Katz, J.S.B. Mitchell, Computing the visibility graph of points within a polygon, in: Proc. Annual Symposium on

Computational Geometry, 2004, pp. 27–35.
[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, third edition, Springer-Verlag, 2008.
[5] M. de Berg, M. van Kreveld, S. Schirra, A new approach to subdivision simplification, in: Proc. ACSM/ASPRS Annual Convention, Auto-Carto 12 4 (1995)

79–88.
[6] M. de Berg, M. van Kreveld, S. Schirra, Topologically correct subdivision simplification using the bandwidth criterion, Cartogr. Geogr. Inf. Sci. 25 (4)

(1998) 243–257.
[7] S. Bespamyatnikh, An optimal morphing between polylines, Int. J. Comput. Geom. Appl. 12 (3) (2002) 217–228.
[8] S. Bespamyatnikh, Computing homotopic shortest paths in the plane, J. Algorithms 49 (2) (2003) 284–303.
[9] L. Buzer, Optimal simplification of polygonal chains for subpixel-accurate rendering, Comput. Geom. 42 (1) (2009) 45–59.

[10] S. Cabello, Y. Liu, A. Mantler, J. Snoeyink, Testing homotopy for paths in the plane, Discrete Comput. Geom. 31 (1) (2004) 61–68.
[11] W.S. Chan, F. Chin, Approximation of polygonal curves with minimum number of line segments, in: Proc. International Symposium on Algorithms and

Computation, 650, 1992, pp. 378–387.
[12] B. Chazelle, An algorithm for segment-dragging and its implementation, Algorithmica 3 (1–4) (1988) 205–221.
[13] S. Daneshpajouh, M. Ghodsi, A. Zarei, Computing polygonal path simplification under area measures, Graph. Models 74 (5) (2012) 283–289.
[14] D. Eu, G.T. Toussaint, On approximating polygonal curves in two and three dimensions, CVGIP, Graph. Models Image Process. 56 (3) (1994) 231–246.
[15] D.H. Douglas, T.K. Peucker, Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Cartogr. Int. J.

Geogr. Inf. Geovis. 10 (2) (1973) 112–122.
[16] A. Driemel, S. Har-Peled, C. Wenk, Approximating the Fréchet distance for realistic curves in near linear time, Discrete Comput. Geom. 48 (1) (2012)

94–127.
[17] J.R. Driscoll, N. Sarnak, D.D. Sleator, R.E. Tarjan, Making data structures persistent, J. Comput. Syst. Sci. 38 (1) (1989) 86–124.
[18] A. Efrat, L.J. Guibas, S. Har-Peled, J.S.B. Mitchell, T.M. Murali, New similarity measures between polylines with applications to morphing and polygon

sweeping, Discrete Comput. Geom. 28 (4) (2002) 535–569.
[19] R. Estkowski, J.S.B. Mitchell, Simplifying a polygonal subdivision while keeping it simple, in: Proc. Annual Symposium on Computational Geometry,

2001, pp. 40–49.
[20] M.T. Goodrich, Efficient piecewise-linear function approximation using the uniform metric, Discrete Comput. Geom. 14 (4) (1995) 445–462.
[21] L.J. Guibas, J. Hershberger, J.S.B. Mitchell, J. Snoeyink, Approximating polygons and subdivisions with minimum-link paths, Int. J. Comput. Geom. Appl.

3 (4) (1993) 383–415.
[22] J. Hershberger, J. Snoeyink, An O (n log n) implementation of the Douglas–Peucker algorithm for line simplification, in: Proc. Annual Symposium on

Computational Geometry, 1994, pp. 383–384.
[23] H. Imai, M. Iri, An optimal algorithm for approximating a piecewise linear function, J. Inf. Process. 9 (3) (1986) 159–162.
[24] H. Imai, M. Iri, Polygonal approximations of a curve – formulations and algorithms, in: G.T. Toussaint (Ed.), Computational Morphology, North-Holland,

Amsterdam, Netherlands, 1988, pp. 71–86.
[25] M.W. Krentel, The complexity of optimization problem, J. Comput. Syst. Sci. 36 (3) (1988) 490–509.
[26] A. Melkman, J. O’Rourke, On polygonal chain approximation, in: G.T. Toussaint (Ed.), Computational Morphology, North-Holland, Amsterdam, Nether-

lands, 1988, pp. 87–95.
[27] L. Palazzi, J. Snoeyink, Counting and reporting red/blue segment intersections, CVGIP, Graph. Models Image Process. 56 (4) (1994) 304–310.

	Computing homotopic line simpliﬁcation
	1 Introduction
	2 Preliminaries
	3 Optimal strongly homotopic simpliﬁcation
	3.1 Computing homotopic shortcuts for x-monotone paths
	3.2 Computing all homotopic shortcuts for simple paths
	3.2.1 Our algorithm

	4 Optimal homotopic simpliﬁcation
	5 Conclusions
	Appendix A Computing OptHS and OptNHS
	References

