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Abstract Given a set of n segments and a query shape Q, the windowing
length query asks for finding the length of the segments that lie inside Q. For
square queries, a O(n2) time algorithm and a matching lower bound exist. We
solve this problem on convex polygons and disks as query shapes, with O(log n)
query time and polynomial preprocessing time. Using our data structure, we
solve the problem of finding popular places in a set of trajectories.

Other than reporting queries, we use computing the sum of lengths of
segments inside the query shape, called the length query, and define a varia-
tion of the problem of finding the popular places based on the length of the
trajectories inside the query shape.

We also give algorithms for computing the length query for c-packed curves,
and use it to approximate the minimum value c for which a curve is c-packed,
if such a c exists.
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Our results extend to MRC and MPC models for MapReduce, where we
address these problems on a set of x-monotone curves. The round complexities
of our MapReduce algorithms are constant.

In addition, we also implemented our popular places algorithms on trajec-
tories on inputs as big as 15K points to evaluate the efficiency of our algorithms
in practice.

Keywords Windowing Queries · Trajectories · Finding Popular Places ·
c-Packed Curves · Approximation Algorithms · MapReduce

1 Introduction

In this paper, we introduce a new notion of querying on a set of line segments
called the “length query problem”: Suppose we are given a set of line segments,
which we call S, and suppose we are also given a query object Q. The goal is
to compute the total lengths of parts of the segments in S that are contained
in Q.

A closely related class of well-known problems is the windowing range
queries, in which S is a set of n segments, and the aim is to preprocess the
points into a data structure so that for a query range Q, the segments in-
tersecting Q can be reported or counted efficiently. The length query can be
computed in O(k) time, on the output of the reporting version, if the number
of intersected segments is k.

The rectangular windowing query can be answered in O(log2 n+k) time, on
n interior-disjoint segments and a rectangular query using a segment tree and
a binary search tree [9]. The preprocessing time is O(n log n) and the total
space is also O(n log n). For arbitrary segments, one has to eliminate their
intersections at points other than their endpoints before building the data
structure. This can be done by computing the arrangement of those segments.
We improve the query time to O(log n+ k) for arbitrary curves, while keeping
the preprocessing time polynomial in n and k (See Section 2).

Our idea is to use Minkowski sum, a concept mostly known for its use in
motion planning, to solve the windowing queries. Assume a fixed point of the
shape is chosen as the representative point, which can be used to uniquely
identify a translation of the shape. By summing the set of input shapes with
the query shape, we get the regions containing the representative points of the
shapes that intersect with the input shapes. While Minkowski sum has been
used for computing the arrangement of shapes [12], to the best of our knowl-
edge, it has not been used in range queries before. Arrangement of congruent
disks and their applications has also been studied [8]. We refer the reader
to [32] for more information about constructing the arrangements of shapes.

Our methods introduce a theoretical framework for a new class of query-
based problems, where the aim is to preprocess the input into a data structure
based on the arrangement of shapes to compute a function of a set of objects
intersected by a query shape, also known as a window, using point location
queries. Polygonal point location queries can be answered in O(log n) time on
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an arrangement of n line segments [32]. Experimental methods exist for point
location in the arrangement of arbitrary arcs [19, 13]. We solve the point
location queries on the arrangement of a set of n congruent disks in O(log n)
time, with O(n3 log n) preprocessing time.

A family of curves, called c-packed curves [10], have the property that for
any disk, the length of the curve inside the disk is at most c times the radius
of the disk. We also give an algorithm for approximating the minimum value
c for which a polygonal curve is c-packed and an O(n log n) approximation
algorithm for computing length queries on such curves.

For a given set of points, we define r-restricted near neighbors as the prob-
lem that asks for the set of points within distance r of a query point q. Locality-
sensitive hashing is a method for solving near neighbors problem in high di-
mensions [30], where a hash function is used that takes r as input and finds all
points within distance cr. Then, the approximate nearest neighbor problem
can be solved by hashing the query point and checking all the points with the
same hash value. Our algorithm for point location in a set of congruent disks
solves the r-restricted near neighbors problem.

Barequet et al. [3] introduced a problem in which the input S is a set of n
points, and the aim is to find a translation of Q that maximizes the number of
points contained by the translation of Q. For a convex polygon with m vertices,
the problem can be solved in O(nk log(mf) +m) time and linear space, where
f is the maximum number of points in a translation of Q, i.e. the output size
[3]. In the case where the convex polygon is an axis-parallel rectangle, finding
an optimal translation to cover the maximum sized subset takes O(n log n)
time [27]. By computing the Minkowski sum of Q with the input points, the
problem converts to an instance of counting intersections problem discussed
in the current paper.

Finding popular places was introduced by Benkert et al. in 2007 [5], inspired
by applications in a previously known empirical class of problems called the
convergence patterns [23, 24]. In particular, they defined two variations of
the problem, namely the discrete and the continuous popular places problem.
The discrete version of the problem asks for finding squares of a fixed size
such that at least f vertices, each from a distinct trajectory, lie inside those
squares. In the continuous popular places problem, they look for a square that
intersects with at least f distinct trajectories. With n as the total complexity
of the trajectories, they proposed a line-sweeping algorithm with O(n log n)
time complexity for the discrete version of this problem, and quadratic time
complexity for the continuous version. In both cases, the space complexity is
linear in n.

Fort et al. [14] experimentally studied the problem of the popular places on
trajectories for the disks of a given radius, and a given value of f as a threshold
of the popularity. Their idea was sweeping the edges of the trajectory by a disk
of radius r that is centered at the trajectory, and computing the intersections
between the result of the sweeping that they call popularity map. Then they
round the popularity map to a grid with fix resolution. Also, they have shown
that since the problem can be modeled on a grid, if they use a CUDA 2D
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grid for the problem, they can achieve a good parallelism for the problem of
popular places on a Graphics Processing Unit (GPU). However, the grid idea
cannot be applied to all trajectories since it is based on the assumption that
knowing whether each cell of the grid is a popular place or not is enough,
which imposes a rounding error on the reported solution. On the other hand,
CUDA grids have a bounded size. Furthermore, the authors did not analyze
the time complexity of any of the algorithms, which is critical in determining
the applicability of the algorithm to huge datasets.

Our findings imply that on a data-set of dense trajectories, the grid-based
method [14] can have a good solution in practice. It is because in a dense set of
trajectories many cells are popular, and each point that belongs to a popular
region lies in such a cell with a good probability. If the data-set is not dense,
with a query of any arbitrary shape, our algorithms give the exact solutions
in a reasonable time.

Definition 1 (Finding Popular Places [5]) A set S of n line segments, an
integer f , and a query shape Q are given. The goal is to find a translation of
Q so that at least f segments from different trajectories are intersected by Q.

Using Minkowski sum of the square and the input trajectories, this problem
converts to an instance of counting intersections problem.

With the same application in mind as the popular places problem, the pop-
ularity of a place can be seen as the amount of time spent in that area, which
can be formulated as the length of the curve inside a specific region. Note that
one cannot simply adjust the sweeping technique of [5] to this problem since
unlike the popular places problem, discretizing the problem on the vertices
does not give the events.

In case of practical applications, as the aim is to retrieve relevant data from
a given data set, the length query problem has a wide range of applications,
e.g., in animals flock patterns to determine the duration in which animals stay
in a specific region, where they seek out places that have warmth, food and
are safe for breeding; see, e.g., [33] and the references therein.

Contributions

Inspired by the popular places problem, we define the maximum-length popular
place problem where the input is a set of line segments and the aim is to
preprocess the line segments such that the total lengths of the segments inside
the query can be computed faster than checking every line segment to see if it
intersects with the query. More formally, we study the following problems:

Definition 2 (Length Query Problem) A set S = {s1, . . . , sn} of n line
segments and a query shape Q of complexity m are given. The goal is to
compute the sum of lengths of parts of the segments of S that are inside Q.

Figure 1 illustrates a length query where the shape of the query is a disk.
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Fig. 1 The input is S = {s1, . . . , s6}, and the query Q (here, a disk) is shown in red.
The total sum of the lengths of thick segments determines the solution to the length query
problem.

Definition 3 (Maximum-Length Popular Place) A set P of K trajecto-
ries of total complexity n and a query shape Q are given. The goal is to find
a translation of Q so that at least f distinct trajectories are intersected by
Q, and for each of the intersecting trajectories, the length of the part of the
intersecting segment inside Q is at least t.

We also discuss connections among the length query problem and some of
the existing problems and introduce the query versions of those problems. In
this paper, we achieve the following results:

– Our method can speed up the query time of the windowing problem.
We first compute the Minkowski sum of the input and the rectangular
query, then we build the arrangement of the resulting shapes, and as-
sign to each cell, the set of segments intersecting the boundary of that
cell. Then, the windowing problem reduces to a point location problem,
and with O(n3 log n) preprocessing time and O(n2) space, we are able
to answer the query in O(log n + k) time. Note that we can apply this
method to any convex polygonal query of complexity m, achieving query
time O(log n+ logm+ k), with O(n3m2 log(mn)) preprocessing time and
O(n2m2) space.

– Similar as above, in the popular places problem, if we compute the Minkowski
sum of the trajectories and the shape Q of complexity m, and then during
the construction of the arrangement we keep a cell c with the maximum
number of distinct vertices and intersected segments. The popular places
problem in both the continuous and the discrete models is then reduced
to finding such a cell c. Such a point location query can be answered in
O(n3m2 log(mn)) time for problems with convex polygons as query shapes
(Section 2.4). It is a significant improvement since to date, to the popular
places problem which has not been studied for shapes other than a square
of fixed size.

– We design an exact algorithm that preprocesses a set of n segments into
a data structure with O(n3m2) space and O(n3m2 log(mn)) preprocessing
time, such that the exact solution to the length query problem can be
computed in O(log n+logm+k) time, where k is the number of intersecting
segments (Section 2).
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– We design an approximation algorithm for the maximum-length popular
places problem that runs in O(m2n3 log(mn) +m3n2) time (Section 2.2).

– For a polygonal curve of complexity n, we give an approximation algorithm
for the minimum c for which the curve is c-packed, if such a constant c exists
(Section 4.1).

– For c-packed curves, we give a 2c-approximation algorithm for the length
query problem in Section 4.

– We give a MapReduce algorithm based on our sequential algorithm for
popular places, which takes O(logm n) rounds and O(nk) space, on k x-
monotone polygonal curves (Section 5).

– We also evaluate the efficiency of our algorithms in practice by implement-
ing the sequential and the MapReduce algorithms of the popular places
problem and analyzing the results on a big data-set (Section 6).

A summary of the theoretic results is presented in Table 1.

Windowing
Problem

Query
Shape

Preprocess Space Query
Time

App Refs

interior-
disjoint
segments

axis-
parallel
rectangle

O(n logn) O(n logn) O(log2 n+
k)

1 segment
tree [9]

(reporting) convex
polygon

Õ(n3m2) O(n2m2) O(log(nm)+
k)

1 Lemmas 2
and 3

(counting) “ Õ(n3m2) O(n2m2) O(log(nm)) 1 Lemmas 2
and 3

- “ Õ(n3m2+
n2m3)

O(n2m2) O(log(nm)+
k)

1 Theorems 3
and 4

Popular
Places

squares Õ(n2) O(n2) - 1 [5]

Popular
Places

convex
polygon

Õ(n3m2) O(n2m2) - 1 Theorem 5

Max-Len
Popular
Places

convex
polygon

Õ(n3m2+
n2m3)

O(n2m2) O(log(nm)+
k)

1 Theorem 3

c-packed
curves

disk O(n logn) O(n) O(logn) 2c Section 4

Table 1 A summary of the results for length query and related problems. L is the length
of the input curve dividing by the length of the shortest edge of the curve, k is the number
of intersecting segments of the input curve with the query shape, m is the complexity of the
query shape, and n is the number of vertices in the input curves. Õ hides polylog factors.

The summary of results in MapReduce is shown in Table 2. These results
are under MRC model and assume the number of intersections is at most
O(nk), if any vertical line intersects with at most k segments.

Preliminaries

In the following, we review several necessary definitions.
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Windowing
Problem

Type Query Shape Rounds Space Reference

K
x-monotone
curves

reporting convex polygon O(logM n) O(nK) Theorem 12

“ popular
places

convex polygon O(logM (nm)) O(nmK) Theorem 13

Table 2 A summary of the results for length query and related problems in MRC. Here,
m is the complexity of the query shape, M is the memory of each machine, ` is the number
of machines, and n is the number of vertices in the input curve.

Minkowski Sum Let A and B be two polygonal regions in the plane. The
Minkowski sum of them is defined as [6]

A⊕B = {a+ b|a ∈ A, b ∈ B}

in which a+b is just a vector sum. The Minkowski is the most commonly used
tool in the analysis of translational motion planning; it is frequently convenient
to compute the Minkowski sum of the robot and the obstacles in a workspace,
and then consider the robot as a single point (See, e.g., [22, 31]). We also use
a similar interpretation in our analysis.

Suppose A and B has m and n vertices, respectively. The combinatorial
explosion of A⊕B depends on both A and B, i.e., if both A and B are convex,
then A ⊕ B has m + n edges, but if one is convex and the other is a simple
polygon, the complexity of A ⊕ B is O(mn), and in the case where both A
and B are simple, the complexity grows to O(m2n2) [21, 28] (See also [26]).
However, in the general case, where we have no assumptions on A and B, the
complexity of a single face of A⊕B can be Θ(mnα(min{m,n})), where α(.)
is the functional inverse of Ackermann’s function.

Point Location Given is a partition of the plane into n polygonal faces with
disjoint interiors, the point location problem asks for the face containing a
query point that is specified by its coordinates. In the case where the faces are
convex [29], or concave but monotone [11], in a specific direction, the solution
to the point location problem can be found in O(log n) time, after spending
O(n log n) preprocessing time, and using O(n) space. Since preprocessing takes
O(n) time on a monotone subdivision; an arbitrary planar subdivision can be
made monotone by a plane sweep in O(n log n) time, and then the algorithm
of [29] can be adjusted to work with arbitrary subdivisions. We refer the reader
to [2] for further references.

c-Packed Curves The notion of c-packed curves was introduced by Driemel et
al. [10] in 2010 with the aim of computing a (1+ε)-approximation algorithm for
the Fréchet distance in Rd between two polygonal curves, where the algorithm
runs in O(cn/ε+ cn log n) time, and a curve is c-packed if the total length of
the curve inside any ball of radius r is at most cr. Due to the realistic input
assumptions of c-packedness, several researchers used this notion to design
efficient algorithms for the problems with curves as input, see, e.g., [7].
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Arrangement For a given set X of geometric objects in the plane, the inter-
sections between the elements of X make a subdivision consisting of vertices,
edges and faces. Let A(X) denote such subdivision that is called the arrange-
ment of X. It is already studied that for a set Z of n pseudo-lines, i.e. two
curves that can intersect at most once, the maximum number of the vertices,
edges or faces of A(X) is bounded by O(n2). See [32] for more details.

The arrangement of a set of Jordan arcs in the plane can be computed
by an output-sensitive algorithm with running time O((n+ k) log n) time and
O(n+ k) space, in which k denote the number of intersection points in the ar-
rangement [32]. The idea is a sweep-line technique that incrementally produces
the output. The arrangement of a set of Jordan arcs can also be computed in
parallel, taking O(log n) time and O(n2) processors [17]. There also exists an
output-sensitive parallel algorithm for computing the arrangement that runs
in O(log2 n) time with taking O(n+ k

logn) processors [16].

Core-sets and ε-kernel A core-set for a function f on a point-set Z is a set
C ⊂ Z, such that f(C) approximates f(Z). ε-kernel [1] is a core-set for the
extent measure of a point-set, where given a set of points, the farthest point
in a set of equidistant directions is computed. They require O( 1√

ε
) directions

to compute a (1 + ε)-approximation of the distance.

MapReduce MapReduce is a parallel and distributed computing framework,
in which a set of independent machines work in parallel rounds and can com-
municate after each round. Theoretical models for MapReduce have been pro-
posed [20, 4] to define the efficiency of a MapReduce algorithm. In the MRC
(MapReduce Class) model [20], the number of machines ` and the memory of
each machine M should both be sublinear in the input size, and the number
of rounds should be polylogarithmic. In the MPC (Massively Parallel Compu-
tation) model [4] the number of machines ` and the memory of each machine
M is restricted to be sublinear in the input size, and the total memory to be
linear, and the number of rounds to be constant. We use both models in our
paper, depending on the output size of the problem. If the output does not fit
inside the total available memory M`, the problem cannot be solved in these
models. Sorting and parallel prefix computations take O(logM n) rounds in
MapReduce [18]. CRCW PRAM can be simulated in MapReduce with slow-
down 2 for the round complexity [18]. Data distribution can be solved using
parallel prefix [25]. Current frameworks for MapReduce implement partition-
ing via hashing, which achieves the same bound but is randomized.

2 An Exact Algorithm for The Length Query Problem

In this section, we show that we can preprocess a set of n segments S into a
data structure with O(n3m2) space and O(n3m2 log(mn)) preprocessing time,
such that for any convex polygonal query of complexity m, the solution to the
length query problem can be computed in O(log n+ logm+ k) time, where k
is the number of intersecting segments.
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2.1 Intersection Query: The Minkowski Sums of The Segments with The
Query Shape

By computing the Minkowski sum of the query shape Q and each segment
in the input, we get a set of polygons. If the representative point q of the
query shape Q falls inside one of these polygons, it means Q intersected the
segment that corresponds to that polygon. To precompute the set of segments
intersecting the same query shape, we define a partitioning of the plane, which
we call an AQD:

Definition 4 (Aggregated Query Diagram of a set of segments (AQD))
For a set S of n line segments and a query shape Q, we call a partitioning
c1, . . . , ck of the plane with a set Oi ⊂ S at each ci, an aggregated query
diagram if for any point q ∈ ci, the query shape with representative point q
intersects the subset Oi of segments, and k is minimized.

Note that each AQD is for a unique query shape, and it can only be trans-
lated (See Figure 2). A fixed point q of the query shape Q(q) is used as the
representative point for each translated copy. This point can be used to map
the solution from the AQD to the Euclidean plane.

2.1.1 The Mapping Between AQD and The Euclidean Plane

We restrict the Minkowski sum to use the representative point and not all
points of the query shape. The inverse of such a sum that maps a point p in
the AQD to a point in the Euclidean plane is the set of representative points q
of all query shapes Q(q) containing p. To make such a sum uniquely reversible,
choose the leftmost point of the shape, or for symmetric shapes their center
as the representative point.

In the first case, a point p in AQD can be mapped to a point q in the
Euclidean plane by placing the rightmost point of the shape Q on p and
report the leftmost point of Q as q. Since the query shapes are convex, the
leftmost/rightmost points are either a vertical line segment or a single point,
both of which can be mapped back uniquely by mapping back the endpoints
of the segment or the single point.

Q(q)

q

p

Q(p)
p′

Q(p′)

p′′

Q(p′′)

Fig. 2 A query Q and several of its trans-
lations.

∅

{s1}

{s2}

{s1, s2}
Q

Fig. 3 An AQD for two segments s1, s2 and
a square query shape. The AQD has four
different cells, where one of them -the outer
face- corresponds to the empty set.
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The second case, where the center of a symmetric shape with respect to
that center is chosen as its representative point, the AQD maps to itself. An
example of an AQD for a unit square is shown in Figure 3.

Algorithm 1 builds an AQD using an algorithm for computing the ar-
rangement of a set of segments, which is then used in Algorithm 4 as a planar
subdivision in which we do point-location. Algorithms with O(n log n) pre-

Algorithm 1 Building An AQD
Input: A set of segments S, a convex polygon Q
Output: A data structure for point location
1: for each segment si ∈ S do
2: Pi = compute the Minkowski sum of Q and si
3: {cj}kj=1 = compute the arrangement of Pi, i = 1, . . . , n
4: using a line sweeping algorithm, compute and store sets Oi, for i = 1, . . . , k in each cell
ci.

5: build a point-location data-structure on {cj}kj=1.

processing time, O(log n) query time, and O(n) space for point location in a
planar subdivision exist (See [32]).

Theorem 1 Algorithm 1 computes an AQD of S.

Proof Any point q that lies inside the polygon Pi is the representative point of
a query shape Q that intersects with si, based on the properties of Minkowski
sum. The opposite also holds: for each segment si that intersects with a query
Q′ with representative point q′, its corresponding polygon Pi contains q′. So, by
constructing a diagram for points that are inside the same set of polygons Pi,
for i = 1, . . . , n, we also get an AQD for S. Such a diagram is an arrangement
of polygons Pi, for i = 1, . . . , n.

Note that different cells of an AQD can have the same set of intersecting
segments, i.e. it is possible that for i, j ∈ {1, . . . , k}, i 6= j : Oi = Oj .

In Lemma 1, we give a bound on the complexity of AQD.

Lemma 1 The number of cells in an AQD created by a query shape of com-
plexity m is O(n2m2), and its total size is O(n3m2).

Proof The total number of segments in the arrangement is nm, since there are
n polygons, each with m vertices. So, they intersect in at most

(
nm
2

)
points,

and their arrangement has a size at most
(
nm
2

)
= O(n2m2). Each cell of the

diagram stores the set of intersecting segments from S, so the total size is

k∑
i=1

|Oi| ≤ k max
i=1,...,k

|Oi| ≤ kn ≤
(
nm

2

)
n = O(n3m2).

Remark. The output-sensitive complexity of AQD is O(n2m log(nm)+nk)
based on the output-sensitive complexity of the line-arrangements [32] which
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can be less than the bound of Lemma 1. CREW PRAM algorithms with
polylogarithmic complexity also exist, even for the output-sensitive case [17,
16], which can be simulated in MapReduce with slowdown 2.

Lemma 2 The time complexity of Algorithm 1 is O(n3m2 log(mn)).

Proof Computing the Minkowski sum of the segments and the query shape
can be done in O(nm) time. Building the arrangement of mn segments takes
O(n2m2 log(mn)) time. Sweeping the arrangement and assigning sets Oi to
their corresponding cell ci takes O(n3m2 log(m2n2)) time, since the size of each
element in the queue can be O(n), so each update takes O(n log(n2m2)) time.
The time complexity of the sweeping step dominates the other time complex-
ities of the algorithm, so, the overall time complexity is O(n3m2 log(m2n2)).

Algorithm 2 Reporting Query
Input: AQD = The output of Algorithm 1, a query Q
Output: The set of segments that are intersecting with Q
1: cj = Do a point location on AQD for the representative point of Q.
2: return Oj

Lemma 3 Algorithm 2 solves the counting problem in O(log n + logm) and
the reporting problem in O(log n+ logm+ k) time, where k is the output size.

Proof Algorithm 2 does a point location on a polygonal subdivision of size
O(m2n2), so it takes O(log(m2n2)) = O(logm+log n) time for finding the cell
cj which has a pointer to the solution set Oj . Reporting the set of intersecting
segments (Oj) takes |Oj | time, which is the size of the output.

2.2 Precomputing The Sum of The Lengths

Computing the exact length of the segments intersecting a given query can
be done by summing up the lengths of the segments inside the query shape.
Using AQD and point-location, only the intersecting segments need to be
checked. However, finding the points with query length at least f requires
pre-computing the lengths and bounding them.

In this section, we give an algorithm for computing the formula for the
length of the curve inside each cell, in terms of the representative point q of
the query Q(q) and the edges of the input curve.

The length of a query after taking the Minkowski sum remains the same,
since the query shape and all the input curves have been translated in the
same direction by the same amount. Therefore, it is enough to compute the
length queries on the AQD. Mapping back the vertices of AQD, as explained
in Section 2.1.1, is also possible.
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Before computing the maximum length inside the query, we need to deter-
mine the position of the query shape with respect to each segment. There are
four possible placements that can affect the formula for length computation,
assuming without loss of generality, that the segment is horizontal:

– d1: the query shape intersects with the segment, but none of the endpoints
are inside the query.

– d2: only the right endpoint lies inside the query shape.
– d3: the segment lies completely inside the query shape.
– d4: only the left endpoint lies inside the query shape.

Note that only one of d1 and d3 can happen at the same time for a segment,
depending on whether the length of the segment is less or more than the length
of the shape. An example of this finer partitioning of an AQD cell is given in
Figures 4 and 5.

Q

d2
d4

d3

Fig. 4 The case with d1 = ∅ in
Algorithm 3.

Q

d2
d1

d4

Fig. 5 The case with d3 = ∅ in Algorithm 3.

Lines 8-15 of Algorithm 3 compute the length of the segment based on
these placements. Let φ(cj) be the finer partitioning into sub-divisions of cell
cj with regions corresponding to each of the 4 above placements (Line 16 of
Algorithm 3).

Let i be the perpendicular direction from point p to line si and j be per-
pendicular to i. The length of si inside Q starts from 0 where the closest point
of the shape touches si and ends again with 0 when the farthest point of the
shape touches si. At any point in between, the length of si inside Q can be
parameterized by its distance from a fixed point, for which we use the farthest
endpoint of si in perpendicular direction.

Theorem 2 Algorithm 3 solves the finding length-f popular places problem.

Proof Assume Q(O) is a translation of Q whose representative point lies on
the origin. Each point on the boundary of a translation of Q can be defined
by the following formula:

Q(q) = q +Q(O).

Functions Fj,d(.) are the sum of a set of Euclidean distances between the
points. In Line 19 of Algorithm 3, we compute the solutions of this sum,
which are of the following form:

∪kj=1{q|
∑
si∈Oj

√
(x(q)− αi)2 + (y(q)− βi)2 ≥ f},
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Algorithm 3 Preprocessing Sum of Lengths
Input: A set of input curves P , a constant f > 0
Output: The geometric locus of the representative of the popular places
1: C = the AQD of the segments of the curves in P .
2: for each cell c′ ∈ C do
3: for si ∈ Oj do
4: Q′ = the rotation of Q with the same clock-wise rotation that makes si parallel

to the x-axis.
5: QR = the point of Q′ with maximum x-value at each y-value.
6: QL = the point of Q′ with minimum x-value at each y-value.
7: pi = (xi, yi) : the left endpoint of si, and p′i = (x′i, y

′
i) the right endpoint of si.

8: if pi, p
′
i /∈ Q′ then

9: disti,1 = d(QR(yi), QL(yi))
10: else if pi /∈ Q′, p′i ∈ Q′ then
11: disti,2 = d(QL(yi), p

′
i)

12: else if pi, p
′
i ∈ Q′ then

13: disti,3 = d(pi, p
′
i)

14: else if pi ∈ Q′, p′i /∈ Q′ then
15: disti,4 = d(QR(yi), pi)

16: φ(cj) = divide cj into regions each corresponding to one of the 4 if-statements
of lines 8-15.

17: fi,d(.) = sum of disti,d for (pi, p
′
i) ∈ Oj , d ∈ φ(cj) on q ∈ cj .

18: Fj,d(.) =
∑
si∈Oj

fi,d(.), for d ∈ φ(cj) on q ∈ cj .
19: mj,d = the solution of Fj,d(.) = f on points q that lie on the boundary of φ(cj).

20: return ∪mj,d, for cj = 1, . . . , |C|, d ∈ φ(cj).

where (αi, βi) can be any of the points pi, p
′
i, QR(yi) or QL(yi), and (x(q), y(q))

can be QR(yi) or QL(yi). If both endpoints lie inside the region, or none of
them do, we only have a constant independent of the coordinates of q and
dependant only on the cell containing q; the rest of the segment lengths are
the distances between the projection of the query point and the vertices of the
cell.

Since we want to compute the boundary of the solution region, we need the
maximum of the function. The maximum of a sum of square roots of quadratic
polynomials, like this formula, are at their boundaries. Draw the length formula
by elevating each point q on the plane by the length query of Q(q). Since q
is defined over cj , which is a polygon, the boundary is a prism with cj as

its base. First, compute the intersection of f =
√

(x(q)− αi)2 + (y(q)− βi)2
with the plane through an edge e of the boundary and parallel to the z-
axis. An intersection of this type gives a parabola (See Figure 6). Note that
fi,d, the distance from each segment, is a parabola based on the equation√

(x(q)− αi)2 + (y(q)− βi)2 = f . Since all such parabolas are upward and
their centers are inside the cell, the maximum of their sum happens on the
boundary.

The intersections of two parabolas can be computed in constant time. Add
a new vertex on each of these intersections to the domain of the definition. So,
it is enough to compute the value of Fj,d at the vertices of the boundary, after
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fi,d = f, ∀si ∈ Oj

s on φ(cj)
extremum points q

Fig. 6 The projection of the length function Fj,d on the plane through each edge and
parallel to the z-axis is a set of parabolas (Theorem 2).

dividing the domain of the function based on the conditions on the placement
of q with respect to the segments.

Theorem 3 The time complexity of Algorithm 3 is O(m2n3(logm+ log n) +
m3n2).

Proof Breaking the boundary based on the if statements requires O(|Q|) time,
since computing QR and QL take O(|Q|) time and computing the intersection
of two translations ofQ also takes linear time since they are convex. Computing
the maximum value by checking the boundary points takes linear time in
terms of the number of vertices. Using Lemma 1, the complexity of the AQD
is O(m2n2), so the time complexity of the algorithm, except for computing
AQD, is:∑
cj∈C

∑
si∈Oj

|Q| =
∑
cj∈C

|Oj ||Q| = |Q|
∑
cj∈C

|Oj | = O(m)O(m2n2) = O(m3n2).

Using this bound and the one in Lemma 2, the total time complexity is proved
to be O(m2n3(log n+ logm) +m3n2).

2.3 Length Query Using AQD

At query-time, we do a point location to find the cell of the AQD diagram
that contains the representative point of B. Then, we compute the sum of
lengths of parts of the intersecting segments that lies inside that cell, using

the formula Fj(q, {pi}
|Oj |
i=1 , {p′i}

|Oj |
i=1 , (d1, . . . , d4)) stored in that cell.

Theorem 4 Given the output of Algorithm 3, computing a length query takes
O(log(nm) + km) time, where k is the number of the edges of the curve that
the query shape intersects.
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Algorithm 4 Length Query
Input: The AQD, the query Q
Output: The total sum of the lengths of the segments intersecting by Q
1: AQD = The output of Algorithm 3.
2: cj = Do a point location on AQD for finding q, the representative point of Q.

3: return Fj(q, {pi}
|Oj |
i=1 , {p

′
i}
|Oj |
i=1 , (d1, . . . , d4))

Proof Computing the cell containing the representative point of the query
shape requires solving a point-location to find the representative point of the
query in the cells of AQD. Since the number of cells is O(n2m2) as proved
in Lemma 1, the point-location query takes O(log(n2m2)) = O(log n+ logm)
time. Given the AQD cell containing the representative point, we have the
set of intersecting segments, and the exact length query can be computed
by substituting the representative point of the query shape in the formula
inside the cell. For each cell cj , the complexity of formula Fj stored in cj is
O(|Oj |m). When cj is the cell containing the representative point of the query
shape, k = |Oj |. So, the overall time complexity is O(log n+ km).

2.4 Finding Popular Places Using AQD

One of the applications of AQD for convex polygons is computing popular
places for such queries. We slightly modify Algorithm 1 (counting) for comput-
ing the AQD of a single polygonal curve to multiple polygonal curves by storing
for each segment, the index of the curve that has it as one of its edges. Using
the aforementioned diagram, Algorithm 5 solves the popular places problem.

Algorithm 5 Finding Popular Places Using AQD
Input: An integer f , a set of polygonal curves P1, . . . , PK , a query shape Q
Output: The geometric locus of the representative points of shapes intersecting at least f

input curves.
1: R = ∅
2: S = the segments of each Pi, i = 1, . . . ,K, along with index i of their corresponding Pi.
3: AQD = The output of Algorithm 1 on S and Q.
4: for each cell cj of AQD do
5: if the number of distinct curves with segments in cj is at least f then
6: R = R ∪ {j}
7: return the union of polygons that are the boundaries of cells cj , for j ∈ R.

Lemma 4 The boundaries of the polygons in the solution space of the popular
places problem are a subset of the boundaries of the cells in the AQD of the
curves.

Proof Each cell of AQD has the same set of intersecting segments, so if one
of the points in a cell is a popular place, then all of the points in that cell are
popular places.
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q

Dj

Fig. 7 The relation between the query size
and the ply of the disks.

Q
P

Q′

Fig. 8 Shapes Q and Q′ have radii r and
r(1+ε), respectively, but their corresponding
length queries have an unbounded ratio.

Theorem 5 Algorithm 5 solves the popular places problem in O(m2n3(log n+
logm)) time.

Proof Using Lemma 4, we know the solution is the union of a set of cells of
AQD. Checking whether a cell intersects segments from at least f different
curves can be done by checking the set of segments in each cell cj , which takes
linear time in |Oj |. Taking the union of two polygons takes time linear in the
sum of the number of their vertices. So, it takesO(n2m2) time. Using Lemma 2,
we know the time complexity of computing an AQD is O(m2n3(log n+logm)),
which dominates the time complexity of the rest of the steps in the algorithm.

3 An Algorithm for Length Query with Disk Queries

In Algorithm 1, we computed an AQD for a polygonal query. Here, we give an
algorithm for disk queries. The Minkowski sum of a segment and a disk can be
covered by a rectangle of the same length as the segment and the width equal
to the diameter of the disk, and two copies of the disk, where each of which is
centered at an endpoint of the segment, as depicted in Figure 9. This shape is
called a hippodrome. For computing the arrangement of the Minkowski sum of
the segments and the disks, since each cell can be identified by both circular
arcs and straight line segments, we treat each case separately. Then we do
a point location in both cases, and find the solution of each cell, and then
provide a solution for the intersection of the cells. For computing the AQD of
the arrangement of a set of rectangles we can use Algorithm 1.

3.1 A Lower Bound for Length Queries with Disks

We prove the length-query problem cannot be solved via discretization by
points or approximation with another shape.

In Figure 8, an example of a curve is presented in which for a disk that
is small enough, the length of the curve inside the query is zero, while a
disk of slightly more radius has an unboundedly longer length. So, even the
slightest modifications to the curve can change the output value drastically.
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si

Ri

C2i−1 C2i

Fig. 9 The Minkowski sum of a segment si and a disk can be covered by a rectangle Ri
and two disks C2i−1, C2i (Algorithm 6) that is a hippodrome.

Also, Figure 8 shows it can be the case that the maximum length happens for
a disk whose representative point does not lie on the curve.

In Figure 7, we see an example of a query point and the set of disks
containing that point. The output size k of a reporting windowing query is
at most the maximum number of disks that cover a point, also known as the
ply [15] of the disks. So, the time complexity of answering such a query is at
least k.

3.2 Algorithm

In Figure 9, the Minkowski sum of a segment and a disk is presented. Such a
shape can be converted into a rectangle Ri and two half-disks.

To simplify the problem, we solve the reporting problem on the disks and
on the rectangles separately, and then take their union. Since the sets returned

Algorithm 6 Length Query for Disk Queries: Preprocessing
Input: A set of segments S, a constant r > 0
Output: Two data structures for point location
1: for each segment si ∈ S do
2: Pi = compute the Minkowski sum of a disk of radius r and si
3: divide Pi into a rectangle Ri and two disks C2i−1, C2i.

4: Compute a data structure for point location for Ri, i = 1, . . . , |S| using Algorithm 1.
5: Compute a data structure for point location for Ci, i = 1, . . . , 2|S| using Algorithm 8.

by each of these queries are part of the solution, the total space requirement
of the query remains unchanged.

Algorithm 7 Length Query for Disk Queries: Query
Input: A set of segments S, a disk Q of radius r > 0
Output: The sum the lengths of the segments inside Q
1: O1 = the set of indices from the reporting query for Ri, i = 1, . . . , |S| using Algorithm 2.
2: O2 = the set of indices from the reporting query for Ci, i = 1, . . . , 2|S| using Algo-

rithm 10.
3: return the sum the lengths of the segments from set O1 ∪O2 inside Q.
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3.2.1 A Data Structure for Point Location in a Set of Congruent Disks

In this section we propose a data structure for point location in congruent
disks which is described in Algorithms 8 and 9. Let points Vi be the centers
of the disks Di, for i = 1, . . . , n.

Algorithm 8 Point-Location in Congruent Disks: Preprocess
Input: A set of disks D1, . . . , Dn of radius r
Output: A point-location data structure for congruent disks
1: Build the intersection graph G of Di, for i = 1, . . . , n.
2: Li = the list of intervals of intersections between Di and Dj , for disks Dj adjacent to
Di in G, sorted on the first met point in the clockwise order starting from the x-axis
along with the index j.

3: Ii = the intersection of Di with the tangents from Vi to Dj , for disks Dj adjacent to

Di in G, if r < d(Vi, Vj) ≤
√

2r, sorted on the first met point in the clockwise order
starting from the x-axis.

4: L′i = break the intervals of Li on the points of Ii.
5: Ti = build a segment tree on each set Li, for i = 1, · · · , n.
6: Yi,v = store the order of the disks in each leaf v of Ti based on their distances from Vi

on both sides of the cone at Vi facing arc v, along with their disk indices.
7: return Ti augmented by Yi,v , ∀i = 1, · · · , n, ∀v ∈ Li

In the data structure of Algorithm 8, each set Yi,v consists of a set of arcs,
whose circles may or may not contain Vi (See Figure 12 for an example). We
define a comparison function ψ(q, Vi, Dj) as the comparison function to check
whether a point q lies before the arc of the disk Dj inside the cone with apex
Vi:

ψ(q, Vi, Dj) =

{
Is q inside Dj? if Vi ∈ Dj

Is q outside Dj? otherwise
.

Algorithm 9 uses ψ(q, Vi, Dj) to do a binary search at Line 5.

Algorithm 9 Point-Location in Congruent Disks: Query
Input: A point-location data structure (output of Algorithm 8), q: a query point
Output: The face of the AQD that contains q
1: Vi = the nearest neighbor of q among V1, · · · , Vn.
2: if d(Vi, q) > r then return the external face

3: q′ = the intersection of the ray from Vi to q with the boundary of Di.
4: v = query Ti for q′.
5: y = binary search on Yv to find the face containing q using ψ(q, Vi, Dj) for Dj ∈ Yv .
6: return y′

Here, we give an example of our algorithms (Algorithms 8 and 9) for point-
location on a set of congruent disks.

Preprocessing (Figure 10)
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1. The nearest neighbor of q is b, so Ci is the disk centered at b. Based on the
neighbors of Ci in the intersection graph of the disks, the set of intersecting
circles is {a, c, d}.

2. Compute the part of the arc of the current circle Ci that falls inside an
intersecting circle Cj , and intersection points for all intersecting disks and
sort them from an arbitrary point on the boundary. The lists of intervals of
these disks are Lb = 〈(1, 3), (3, 5), (4, 8), (7, 1)〉. Each point on the boundary
of a circle can be inside the intersection of several other circles, therefore,
the intervals are not disjoint.

3. The tangents from Vi to the disk have touching points inside Ci only for
the disk centered at a. So, Ib = 〈2, 6〉.

4. Using Lb and Ib, we can compute L′b = 〈(1, 2), (2, 3), (3, 5), (4, 6), (6, 8), (7, 1)〉.
5. The leaves of Ti are (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 1). Each

of them stores a set of arcs, sorted on the distances of their intersections
with the sides of the smallest cone containing them to Vi.

a

b

c

d
4

5 7

8

1

3

2

6

v

Fig. 10 Preprocessing (Algorithm 8)
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3

3
2
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4

q̄

Fig. 11 Query (Algorithm 9)

Query (Figure 11) Assume a, b, c, d are the centers of circles Ca, Cb, Cc, Cd
and q is the query point.

1. The nearest neighbor of q is b.
2. Connect q to the boundary of Cb.
3. Query the segment tree of the disjoint arcs on the boundary of Cb to find

the dashed lines (interval v).
4. Yi,v = 〈a, d〉.
5. Binary search on the intersection of circles assigned to interval v, on each of

the dashed lines. Using the results of the comparison function ψ(q, b, Ca) =
true, ψ(q, b, Cd) = false, the face containing q is determined.

Theorem 6 Algorithm 9, with Algorithm 8 as preprocessing, solves the point
location problem in a set of congruent disks.

Proof If the output-size is non-zero, the nearest neighbor of q in set of centers
of Di, for i = 1, . . . , n, is a part of the solution. Assume this disk is Dj . In
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that case, by definition, the distance between q and the center of Dj is less
than the radius, so all the disks containing q also intersect with Dj . Since Lj
is the list of the maximal arcs of Dj that are inside an intersecting disk Di,
the line through Vi and q intersects with all the disks that can contain q.

The radii of the disks are equal, so given two points, namely the endpoints
of an interval in Lj , there are at most two disks that pass through those points.
One of them contains the point Vj , which in this case can only be Dj , and the
other one does not, which is Di.

The leaves of segment trees contain disjoint intervals, called elementary
intervals. This property guarantees the intersections between no two disks
intersecting Dj is inside an elementary interval, when mapped to the closest
point on the boundary of Dj . So, for each point q, the set of intersecting disks
can be uniquely determined using Lj : the subset that lies inside the leaf of Ti
containing q(See Figure 12). However, there is a case when a disk intersects
only one side of the cone twice (See Figure 13). We handle this case by adding
the points Ii to the set Li in the algorithm, which gives the set L′j . Consider
the ordering of arcs in the cone at Vi facing an interval in a set Li of Line 2 on
both sides of a cone. These orderings are inconsistent if the tangent from Vi to
the arc of the intersecting disk falls inside that interval (See Figure 13). The
tangent line from the center of the disk Ci to any other disk Cj falls inside Ci
if

2r2 = d(Vi, Vj)
2 ⇒ d(Vi, Vj) = r

√
2,

where Vi, Vj are the centers of Ci and Cj , and r is the radii of the disks. If
we draw a tangent from Vi to Dj , since the disks have the same radius, the
tangent point lies inside Di. We handle this case by adding the points Ii to
the set Yi,v in the algorithm, where information about other cones made by
tangents to such disks is also stored.

Vi q

Fig. 12 The set of interior-disjoint arcs
Yv,i in Algorithm 8, equivalently, Y in Al-
gorithm 9.

Vi q

∈ Ii

Fig. 13 Two cones through a point of Ii
in Yv,i in Algorithm 8, equivalently, Y in
Algorithm 9.

As a result, there is a monotone order among the set of arcs from the disks
corresponding to L′j in the leaf containing the projection of q onto Dj . Storing
the order can be done by sorting the intersections with the cone constructed
by connecting the center of Dj to the endpoints of the first and last endpoint
of L′j in clockwise order, starting from the x-axis. In the binary search on the
set of disks, the checks for q being on the same side of the arc as Vi are done via
circle inclusions/exclusions. This gives an arc adjacent to the face containing
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q, depending on the end condition of the binary search, which can be used to
find the face containing q.

Theorem 7 The time complexity of Algorithm 8 is O(n3 log n).

Proof The time complexity of computing the intersection graph of n disks
is O(n2). Finding the nearest neighbor requires building a Voronoi diagram,
which takes O(n log n) preprocessing time. Building a segment tree on each
disk requires O(n log n) time, so the total time required for building segments
trees for all disks is O(n2 log n). Each elementary set of each segment tree
can have a size at most n. Sorting each list takes O(n log n) time. The total
number of leaves of a tree is also O(n), so the total time is O(n3 log n).

Theorem 8 The time complexity of Algorithm 9 is O(log n).

Proof The nearest neighbor query using a Voronoi diagram takes O(log n)
time. A query in the segment tree takes O(log n) time. Finding the face in the
sorted list of arcs corresponding to an elementary interval of the segment tree
takes O(log n) time, using binary search.

3.2.2 Reporting Intersected Disks

The point location algorithms of Section 3.2.1 can be extended to intersec-
tion reporting queries by keeping the set of intersected disks in each face at
preprocessing time.

Algorithm 10 Point-Location in Congruent Disks: Reporting Query
Input: G: a point-location data structure for disks, q: a query point
Output: The set of disks that contain q
1: Yv,i = run Algorithm 9 on q,G.
2: q̄ = the reflection of q with respect to Vi
3: Yv′,i= run Algorithm 9 on q′, G
4: y = the members of Yv,i that are between q and Vi, except repeated items (two arcs

from the same disk).
5: y′ = Yv′,i \ Yv,i.
6: return {Vi} ∪ y ∪ y′

Theorem 9 The time complexity of Algorithm 10 is O(log n + k), with Al-
gorithm 8 as preprocessing, where k is the number of segments intersecting
Q.

Proof Based on Theorem 8, the time complexity of finding the nodes that con-
tain q is O(log n). Reporting the list of intersecting segments takes O(k) time,
since reporting the values before q in the sorted list takes time proportional
to the number of such values.
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4 Disk Queries And c-Packed Curves

We can solve the length query problem on a class of curves called c-packed
curves for disk queries with arbitrary radii. Interestingly, our method gives a
constant factor approximation for computing the value c for which a curve is
c-packed, if such a constant c exists.

4.1 Application: Approximating The c-Packedness of A Curve

The notion of c-packed curves has been extensively used in the literature,
however, there are no algorithms for computing the values of c for a given
curve. Using AQD algorithm, it is possible to find an approximation of the
minimum value for c so that the input curve is c-packed.

Since any curve is L-packed for L equal to the length of the curve, then we
focus on the interval [0, L]. The closest points among the points of P is denoted
by e∗, and it can be computed by taking the minimum distances between non-
intersecting edges of the curve. For a given r, we binary search on [e∗, L] to
find a (1 + ε) approximation of r, for which the curve P has length at most cr
inside each disk of radius r. The algorithm builds an AQD for a disk of radius
r as the input shape and computes the maximum query value among all cells,
based on the formula in each cell.

Algorithm 11 Approximating c-Packedness
Input: A curve P , a constant ε > 0
Output: The minimum c for which P is c-packed
1: c = 0, ε← ε/2
2: L = compute the length of the curve P .
3: e∗ = minp,q∈P ‖p− q‖
4: for i = e∗, . . . , log1+ε L do

5: r = (1 + ε)i

6: Q=a regular polygon with d π√
ε
e vertices

7: cost=Algorithm 3 for Q
8: c = max{c, cost

r
(1 + ε)}

9: return c

Lemma 5 If a curve has length at most cr inside disk queries of radius r
centered at a point on the curve, for all r > 0, then it is (2c)-packed.

Proof Disks whose centers have distance more than r from the curve do not
intersect with it, so, their length query is zero. Based on the statement of the
lemma, the disks of radius r with their centers on the curve have length at
most cr, for any r > 0. Any disk of radius r that intersects the curve can be
covered by a disk of radius 2r with its center at a point inside the intersection
of the disks. The length of the curve inside the disk of radius 2r is at most
2cr. This is an upper-bound on the length of the curve inside the smaller disk.
So, the curve is at most 2c-packed. ut
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Theorem 10 Algorithm 11 computes a (2+ε)-approximation of the minimum

c for which the curve P is c-packed, in O( logL/e∗

ε ) time, where L is the length
of P and e∗ is the distance between the closest points on P , if c = O(1).

Proof We prove the theorem for disks whose centers lie on the input curve,
and use Lemma 5 to extend it to any disk, at the cost of a factor 2 in the
approximation factor.

For r ≥ L, the translation of the query disk whose center lies on the first
vertex of the polygonal curve P , contains the whole curve. Any point other
than the endpoints covers at least as much length, so in this case the optimal
solution is achieved.

For r ≤ e∗, the set of intersecting segments for any disk of radius r is the
same as a disk of radius e∗.

Now we discuss e∗ < r < L. The length of the curve inside a disk Q can be
bounded by the length of the curve inside the largest inscribed regular k-gon
in Q and the length of the curve inside the smallest circumscribed regular
k-gon about Q. We set k such that the radius of the circumscribing circle of
the regular k-gon be at most 1 + ε times the radius of its circumscribed circle.
The proof is similar to the proof of ε-kernel. Let θ = 2π

k . The ratio between
the radius of the circumscribing circle and the circumscribed circle is:

r

r cos(θ/2)
≈ 1

1− θ2

4

= 1 +
θ2

4

1− θ2

4

≈ 1 +
θ2

4
= 1 + ε,

for θ → 0. So,

θ2

4
= ε⇒ θ =

2π

k
= 2
√
ε⇒ k =

π

ε
.

As shown in Figure 8, these bounds are not within a bounded ratio of each
other. We bound the cost by the cost of the inscribed k-gon in the disk. So,
for a length query of cost `X , where X is the query shape,

`k-gon ≤ `disk ≤ `k-gon(1 + ε).

This ratio holds for the length query as well, since the length of the curve
inside the query shape is at least r and after adding rε to its length, it still
gives a (1 + ε)-approximation, so:

`disk(r) ≤ `disk(r(1+ε)) ≤ (1 + ε)`disk(r),

where disk(r) denotes the disk query of radius r.

The approximation of c is given by
`k-gon
r , the length query inside the k-

gon divided by the radius of the query disk circumscribing about the k-gon.
The optimal c is the maximum of the length query to r, for all r > 0, so
testing values r = (1 + ε)i instead of all values r gives a (1 + ε)-approximation.
The overall approximation factor is the product of the approximation factors,
which is (1 + ε)2 ≈ 1 + 2ε. ut
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4.2 An Algorithm for c-Packed Curves

We give a 2c-approximation algorithm for computing length queries with a
disk of radius r as the query on c-packed curves. It is enough to compute the
distance between the center of the query disk and the nearest segment of the
curve. This reduces the problem to an instance of the nearest segment problem
for a point query, which can be solved in O(log n) time using a Voronoi diagram
of line segments [9].

Algorithm 12 Preprocessing
Input: A curve P with edges {e1, · · · , en−1}
Output: A constant c, a segments’ Voronoi diagram D
1: Build a Voronoi diagram D on the set of segments {e1, . . . , en−1}.
2: Compute the c-packedness of P using Algorithm 11.
3: return D,c

If the constant c for which the curve is c-packed is unknown, we use Algo-
rithm 12 to approximate c before running Algorithm 13. Algorithm 13 tests
two segments if the nearest point of the curve is a vertex, and one if it is an
edge.

Algorithm 13 Query
Input: A segments’ Voronoi diagram D of a c-packed curve, a constant c, a disk query Q

with representative point q and radius r
Output: The length of the curve inside Q
1: S = the set of cells of D returned by the point-location on point q.
2: for s ∈ S do
3: d = the distance between the segment s corresponding to m and q.
4: sum=0
5: β = the angle between the line containing s and the line through q and the closest

point of s to q
6: if d < r then

7: if β ∈ [0, cos−1(
√

r2

r2−2rd+2d2
)] then

8: sum = sum+ |r − d|
9: else if β ∈ (cos−1(

√
r2

r2−2rd+2d2
, π
2

] then

10: sum = sum+
√
r2 − d2 cos2(β)

11: else
12: sum = sum+ r

13: return sum

Theorem 11 Algorithm 13 gives a 2c-approximation for the length queries of
disks of radius r ≤ mins∈D‖s‖.

Proof Based on the definition of c-packed curves, for queries whose centers lie
on the curve, r is a c-approximation, since the length of the curve inside the
query shape is at least r and at most cr.
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We compute a lower bound on the length query of disks whose centers (q)
is not on the curve. Since for c-packed curves, there is an upper bound cr on
the length of the query inside the ball of radius r, for any r > 0, we only need
to give a lower bound for the length of the curve inside the ball to prove an
approximation factor.

Let d be the distance between q, the center of the query disk Q, and its
closest point on the curve. Assume the angle between the line passing through
the centers of the disks and the segment of the curve is β, and the angle of
the arc inside the intersection of the disks is α. For all d > r, the intersection
is 0. So, we discuss d ∈ [0, r).

d

r
= cos(

α

2
)

So, the perpendicular chord length is:

r sin(
α

2
) = r

√
1− d2

r2
.

To add the effect of β, it is enough to replace d with d′ = d cos(β).

α
2d

Fig. 14 The figure of Theorem 11.

Now we compute the length of the perpendicular from the center of the
disk to the chord. For β ∈ [π2 , π], the length of the perpendicular is at least
r. So, we compute the length of the perpendicular for β ∈ [0, π2 ], which is
(r − d) cos(β).

The maximum of these lower bounds gives a stronger lower bound on the
length of the curve inside the disk:

max
β

(r

√
1− d2

r2
cos2(β), (r − d) cos(β)).
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Since the functions are monotone, the maximum happens at an endpoint of
the intervals:

r

√
1− d2

r2
cos2(β) = (r − d) cos(β)⇔

r2 − d2 cos2(β) = (r2 − 2rd+ d2) cos2(β)⇔

cos2(β) =
r2

r2 − 2rd+ 2d2
⇔

cos(β) =
r√

r2 − 2rd+ 2d2
.

So the maximum of the lower bounds on the length are:|r − d| β ∈ [0, cos−1(
√

r2

r2−2rd+2d2 )]√
r2 − d2 cos2(β) β ∈ (cos−1(

√
r2

r2−2rd+2d2 ), π2 ]
.

The bound r ≤ mins∈D‖s‖ guarantees each part of the curve inside the
query shape has at most two segments. Since we are bounding the adjacent
segments separately, and the closest point is within distance d of the center,
the remaining length is r − d. A disk of diameter r − d contains this segment
entirely, so the upper bound is c(r−d). We use the upper-bound cr for c-packed
curves which yields the following ratios:

cr
|r−d| β ∈ [0, cos−1(

√
r2

r2−2rd+2d2 )]

cr√
r2−d2 cos2(β)

β ∈ (cos−1(
√

r2

r2−2rd+2d2 ), π2 ]
.

For d ∈ [r − δ, r], for a constant δ > 0 to be determined later, we have
1− δ

r ≤ d/r ≤ 1, so assuming δ ≤ r/2:

r2

r2 − 2rd+ 2d2
=

1

(1− d/r)2 + (d/r)2
≤ 1

(δ/r)2 + (1− δ/r)2
⇒

√
r2

r2 − 2rd+ 2d2
≤ cos(β)⇒ β ≤ cos−1(

√
r2

r2 − 2rd+ 2d2
).

So, the first case of the approximation factor is used, which for δ = rε gives
the bound:

cr

|r − d|
=
cr

δ
=
cr

rε
=
c

ε
.

For d ∈ (0, rε), we use a relaxed bound:

≤


cr
|r−d| β ∈ [0, cos−1(

√
r2

r2−2rd+2d2 )]

cr√
r2−d2 β ∈ (cos−1(

√
r2

r2−2rd+2d2 ), π2 ]

Using the assumption 0 ≤ d ≤ rε:

0 ≤ d2 ≤ r2ε2 ⇒ r2 − r2ε2 ≤ r2 − d2 ≤ r2 ⇒ r
√

1− ε2 ≤
√
r2 − d2 ≤ r.



Windowing Queries Using Minkowski Sum and Their Extension to MapReduce 27

Substituting these values in the previous ratios gives the bound on the ap-
proximation factor:

≤


cr

r(1−ε) β ∈ [0, cos−1(
√

r2

r2−2rd+2d2 )]

cr
r
√
1−ε2 β ∈ (cos−1(

√
r2

r2−2rd+2d2 ), π2 ]

The approximation factor in this case is c
1−ε , since

c

1− ε
≥ c√

1− ε2
⇔
√

1− ε2 ≥ 1− ε

⇔ 1− ε2 ≥ (1− ε)2 = 1− 2ε+ ε2

⇔ 0 ≥ 2ε2 − 2ε = 2ε(1− ε).

The maximum of these values gives the approximation factor of the prob-
lem, which is minimum for ε = 1/2:

min
ε∈[0,0.5]

max(
c

ε
,

c

1− ε
) = 2c.

5 MapReduce Algorithms

Computing a length query for a single input curve can be done in O(1) rounds
in MapReduce by simply distributing the line segments of the curve among
machines and sending the query shape to all machines, and taking their union.
Note that in the MapReduce model, the local time complexity of each machine
just needs to be polynomial. Consequently, we also do not consider the time
complexity of the local computations in each machine.

However, for finding popular places using length queries, one needs to solve
an infinite number of instances of length query problem: one per point of the
plane. Instead, we use the preprocessing algorithm for length query (Algo-
rithm 3 for polygonal queries and Algorithm 8 for disk queries) to find a
subset of points that maximize Fj for j = 1, . . . , k. Then, we use these points
as vertices of the boundary of the solution space of the popular places problem.
The edges can be then computed using these vertices.

5.1 A MapReduce Algorithm for Finding The Intersections Among
x-Monotone Polygonal Curves

In this section, we introduce a MapReduce algorithm for computing the set
of intersection points in an arrangement of a set of K x-monotone curves. We
will use this result to compute the solution to the problem of finding popular
places in Section 5.2. Observe that the number of segments intersecting a
vertical segment is K, if the segments are the edges of a set of K x-monotone
curves.
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Lemma 6 On a given set of K x-monotone curves of total complexity n, the
total number of intersections is at most O(nK).

Proof First project all the curves on the x-axis. The number of the intersecting
intervals is O(nK), since n intervals each repeated at most K times. Since the
x-values are fixed, assuming no axis-aligned segments exist in the input, the
y-values are also distinct. This concludes the proof.

Note that because of space limitations of MapReduce models, the maxi-
mum number of segment intersections can be O(n) in MPC and O(M`) =
o(n2) in MRC.

Algorithm 14 Segments Intersections of x-Monotone Curves in MapReduce
Input: A set of segments S = {s1, . . . , sn} from K x-monotone curves
Output: The intersection points between the segments of S
1: Sort and distribute the endpoints of segments in S based on their x values, such that

each machine has n
`

values.
2: X = the smallest x-value in each machine.
3: Send X to all machines using a parallel prefix algorithm.
4: Break each segment at points of X to get the set S′ = {s′1, . . . , s′n`}.
5: Partition S′ based on X to sets S′i for i = 1, . . . , n`
6: Distribute the elements of S′ to the machines
7: Locally compute the intersections in each machine.

Theorem 12 Algorithm 14 takes O(logM n) rounds and O(nk) total space,
using ` machines of memory M,M ≥ nK

` in MRC, if K = o(M).

Proof Sorting n items in MRC takes O(logM n) rounds, so sorting the end-
points in the first step takes O(logM n) rounds. Sending X to all machines
using parallel prefix takes O(logM |X|) rounds. Since |X| = `, the round com-
plexity is O(logM `) = O(logM n) rounds. The total amount of memory re-
quired should be at least as much as the size of S′. By the construction of S′,
we know that |S′| = |X|K + n = `K + n. Also, the set of segments from S′ in
each machine can be at most n

`K, so the memory of each machine should be

at least nK
` .

5.2 A MapReduce Algorithm for Finding Popular Places

In Section 2.4, we proved the edges and vertices of the solution space of the
popular places are a subset of the edges of AQD. Algorithm 15 finds the set of
vertices of the solution space of the popular places problem. The max-length
popular places can be solved similarly by replacing the local algorithm with
one of our sequential algorithms, attaching the solutions on the boundary
vertices of the partitions and summing up the values at boundary vertices of
the partitions.
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Algorithm 15 Popular Places in MapReduce
Input: A set of segments S = {s1, . . . , sn} from K x-monotone curves, a query Q, an

integer f
Output: The popular places region as a graph
1: Compute the Minkowski sum of each si and Q, and add its edges to W
2: Run Algorithm 14 on W to find the set of intersections I
3: Compute the edges between the vertices in set I locally.
4: Compute the complexity of each face locally by a sweep-line algorithm.
5: return the faces with list sizes greater than or equal to f

Theorem 13 Algorithm 15 solves the popular places problem for K x-monotone
curves in O(logM nm) rounds and O(nmK) space in MRC, if K = O(M).

Proof Computing the Minkowski sum is done locally, so it does not require an
extra round. Using Theorem 12, computing the intersections takesO(logM |W |) =
O(logM (nm)) rounds and O(|W |K) = O(nmK) space. Locally computing the
edges between the members of I does not require a separate round, however,
sending the vertices events in the sweep-line algorithm at the x-values that sep-
arate data in different machines requires a round. Consequently, each machine
can compute the complexity of its involved faces locally, even if only some
edges of a cell are distributed to this machine. The overall round complexity
is therefore O(logM nm) and the overall space complexity is O(nmk).

6 Experimental Results

To evaluate the performance of our algorithm in practice, we do our compu-
tational tests on a real trajectory data-set. The sequential experimental test
is performed on a Core (TM) i2CPU and 2GB RAM computer with Windows
7 operating system.

We have implemented our algorithms in C++ with Visual Studio 2013.
Figures 16 and 17 were drawn with RapidMiner Studio Professional 7.3.001.
The other figures of the current section were drawn by LibreOffice 2019.

Our data-set includes real trajectories tracked with a GPS and collected in
the Geolife project (Microsoft Research Asia), which contains the movements
data of 178 users over 30 cities of China in a period of over four years. In a
broader view, this data-set contains 17,621 trajectories with a total duration of
48,203 hours and a total distance of 1,251,654 kilometers. Almost 91 percent
of the data is collected every 1 to 5 seconds or every 5 to 10 meters per
point [34, 35, 36]. Since the data-set was very huge, we have applied our
implementation on the data of the first user of the data-set, in which there
exist 14,186 sample points.

6.1 Sequential Algorithm Experimental Results

We have implemented Algorithm 13 on the bounded-size input that is varied
from 12 KiloBytes (KB) to 55 KB. In all the tests, the shape of the query is a
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disk. To analyze the running time of the algorithm, we have repeated our test
on four different input size categories. This is carried out by dividing the input
data by their size to the following categories: 12-25 KB, 25-35 KB, 35-45 KB,
and 45-55 KB. Also each test is repeated for four different values of r that are
0.0125, 0.025, 0.035 and 0.045. The summary of the results of Algorithm 13
is shown in Table 3. Also, with three different values of f as a threshold of
being popular, we have counted the number of popular places of each case.
The spent time and the complexity of the AQD are the averages of the data
in the mentioned size-range. In Figure 15, we have depicted the number of
popular places of each r for each size-range category of the input.

In the reported times in Table 3 we have excluded the construction time
of the Voronoi Diagrams.

As a result, on the range 12 KB to 55 KB, the spent time of the algorithm
is completely reasonable. However, for the larger size, we needed to implement
the MapReduce algorithms to achieve such a reasonable time.

6.2 MapReduce Experimental Results

For dealing with the problem of popular places on a big data-set, we have
introduced a MapReduce algorithm. To be able to run our algorithm on the
input curve, we needed an extra condition that the total number of the curves
that are passing through a vertical line is at most K. To meet this criterion,
we performed some preprocessing on the input curve.

Since the sampled points in several cases were very close, before running our
algorithms, we have rounded almost the same data by rounding the sampled
points (to achieve the accuracy of five digits for floating points), which we
call them aggregated points. We have considered an extra parameter that is
the weight for each aggregated instance of the data, which is the number of
times that segment was traversed. With this preprocessing, we converted the
input curves to a fewer set of x-monotone curves with weighted edges. For a
total of 14,186 sample points, we had 57,633 and 58,183 aggregated segments
for square queries of radii 0.5 and 0.025, with a total number of 181,405 and
63,392 segments in partitions to be sent to the machines, for the same radii.

The input is drawn in Figure 16 and the outputs of our algorithm are drawn
in Figures 17 and 18. In Figures 17 and 18 the boundaries of the solution
space of the popular places problem are drawn, in which the colors represent
the popularity of that point. Some jitter was added to the figure to make the
colors visible.

In our experiments, 277 machines each with 850 aggregated segments have
been used. The union of the solutions had sizes 63,303 and 63,392 for radii 0.5
and 0.025, respectively.
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Input size
(KB)

r f = 0.015 f = 0.02 f = 0.025 Time (s) AQD
size

12-25

0.0125 9182 2744 26 1.0249 532
0.025 5393 2175 842 0.8679 532
0.035 5358 2162 832 1.0317 532
0.045 5383 2176 834 0.5964 359

25-35

0.0125 14346 12789 11034 3.3583 1130
0.025 14544 13085 11502 3.0981 1130
0.035 14540 13071 11510 3.0788 1130
0.045 14514 13063 11494 3.0073 1124

35-45

0.0125 36968 32597 29077 6.0853 1762
0.025 37517 34553 31710 5.7762 1737
0.035 37222 34262 31456 5.9387 1751
0.045 37484 34581 31738 5.5676 1753

45-55

0.0125 20909 19448 17584 10.17 2113
0.025 21141 19913 18544 9.0423 2135
0.035 21169 19923 18533 8.923 2136
0.045 21116 19877 18522 9.1894 2114

Table 3 Experimental results of the sequential algorithm of the popular places problem.
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Fig. 15 The number of popular places of each r value for each category of the input. The
plotting of the categories on the x-axis is ordered by increasing the category’s size

7 Conclusions And Open Problems

While many data structures in computational geometry focus on counting and
reporting queries, we propose a data structure for a more complicated query:
computing the sum of the lengths of segments inside a query region. Prior to
our work, one had to first solve the reporting problem, and then compute the
sum of lengths on the results. For length queries with polygonal shape, we get a
logarithmic query time. Also, we give a constant factor approximation for disk
queries with logarithmic query time on c-packed curves. This gives the first
algorithm for computing the minimum value c for which a curve is c-packed,
if such a constant value c exists. Proving similar results for pseudolines is also
interesting, where point location is more challenging.
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Fig. 16 The input curve S.
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Fig. 17 The middle part of the boundary of the popular places of S computed by our
algorithm for square queries of size 0.5×0.5. The color of each point represents its popularity.
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Fig. 18 The boundary of the popular places of S computed by our algorithm for square
queries of size 0.025× 0.025. The color of each point represents its popularity.

We extend our results to MapReduce and give an algorithm for computing
segment intersections when the input curves are x-monotone and if the output
fits in the total available memory. Using this algorithm, we solve the popular
places problem for x-monotone curves. Solving the problem in MapReduce for
general polygonal curves or an arbitrary set of segments remains open.
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