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1 Abstract

Proteins are the main players in the game of life. Good understanding of their
structures, functions, and behaviors leads to good understanding of drugs,
diseases, and thus our health. So, much effort has been done to study and
categorize proteins. Nowadays, tens of thousands of proteins have been found.
Moreover, the problem of comparing the proteins is hard. Therefore, efficient
methods are needed to deal with this problem. In this paper, we use an impor-
tant computational geometric concept and graph matching algorithm, namely,
”Delaunay Tetrahedralization” and ”Similarity Flooding”, and propose a new
idea to extract similar parts of proteins. Furthermore, we used protein frag-
mentation to reduce the time and storage complexity of the model for larger
proteins.

2 Introduction

The number of known proteins is increasing every day; tens of thousands have
been studied and categorized by now.

To understand the functions and behaviors of a newly found protein, one
should find well studied proteins with similar structure. In fact, the behavior
of a protein is related to its sequence of amino acids and its 3D structure. So
the comparison of proteins is a key technique not only in finding similarities
in the structures of proteins but also to categorize them and define families
and super-families among the proteins. Like many comparison problems, this
? This author’s work has been partly supported by IPM School of Computer Science
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problem is hard because there is neither an exact definition of the likelihood
of proteins structures nor an efficient algorithm exits for it. Although there
exist optimal dynamic programming algorithms for comparing the sequences
of amino-acids, the result is highly related to the definition of the relations
of the sequences, which has not been uniquely defined [1]. The problem of
comparing the 3D-structures of proteins becomes even harder. There is no
efficient algorithm which guarantees the optimality of the answer. In fact,
this problem is NP-hard. When the proteins become more complicated, the
relationship models are more varied than the models of sequence relatedness.

In this paper, we will propose a model for protein matching or extracting
similar parts of two given proteins. We focus on the computational geometric
approach and the graph matching method that are used to model and compare
the sequence and 3D-structure of proteins.

The remainder of this paper is organized as follows: We first have a glance
at the related works. There are two major methods used in the literature:
“Delaunay Tetrahedralization” and “Similarity Flooding”. We will explain the
required information in the next section as the background knowledge, and
then propose a new idea in section 5 which can improve the current methods.
We will then present experimental results of the implemented method which
shows its effectiveness.

3 Related works

Delaunay triangulation and Delaunay tessellation are common computational
geometric methods used in the bioinformatics. For example in [2] the Delau-
nay tessellation the α-carbons of the protein molecule is used to study the
HIV-1 protease. This is because this model provides objective and robust de-
finition of four nearest-neighbor amino acid residues as well as a four-body
statistical potential function. The other usages are studied in the fields of
packing analysis [2, 3], fold recognition [4], virtual mutagenesis [5], and struc-
ture comparison.

Authors of [6] consider the Delaunay tetrahedralization determined by the
alpha carbon positions of some particular protein. Starting at the amino-
terminal residue, the edges of the tetrahedralization that connect to a residue
that has already been encountered are recorded as a relative residue differ-
ence. For example, if there is an edge between the 5th alpha carbon and
the 3rd one, this edge is represented as 2. When the edge of a particular
residue is exhausted a 0 is recorded to indicate a new residue. This linear
representation will contain each edge in the tetrahedralization exactly once.
Furthermore, secondary structural components will be indicated by particular
subsequences. Two one-dimensional representations are then compared by a
dynamic programming scheme adapted from protein sequence analysis, thus
reducing protein structural similarity to sequence similarity of the appropriate
structure strings. In [7] the Euclidean metric for identifying natural nearest
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neighboring residues via the Delaunay tessellation in Cartesian space and the
distance between residues in sequence space. In addition, authors of [8] find
recurring amino-acid residue packing patterns, or spatial motifs, that are char-
acteristic of protein structural families, by applying a novel frequent sub-graph
mining algorithm to graph representations of protein three-dimensional struc-
ture. Graph nodes represent amino acids, and edges are chosen in one of three
ways: first, using a threshold for contact distance between residues; second,
using Delaunay tessellation; and third, using the recently developed almost-
Delaunay edges. Furthermore, [9] presents a solution that reduced the compu-
tation of PSIMAP, a protein interaction map derived from protein structures
in the protein databank PDB and the structural classification of proteins
SCOP [10] to know about interaction of two proteins. The original PSIMAP
algorithm computes all pair-wise atom/residue distances for each domain pair
of each multi-domain PDB entry. But they developed an effective new algo-
rithm, which substantially prune the search space. The basic idea of their
novel algorithm is to prune the search space by applying a bounding shape to
the domains. Interacting atoms of two domains can only be found in the inter-
section of the bounding shapes of the two domains. Generally, the proposed
algorithm steps are:

1. A convex hull for each of the two domains is computed.
2. Both convex hulls are swelled by the required contact distance threshold.
3. The intersection of the two transformed convex hulls is computed.
4. All residue/atom pairs outside the intersection are discarded and for the

remaining residues/atoms the number of residue/atom pairs within the
distance threshold is computed. If this number exceeds the number thresh-
old the two domains are said to interact.

4 Background Knowledge

4.1 Delaunay Tetrahedralization

Delaunay tetrahedralization is a special type of tetrahedralization which is
defined based on the Voronoi diagram through the principle of duality[11].
A Voronoi box is formed through the intersection of planes and is therefore
a general irregular polyhedron (Fig. 4.1). The facets of the Voronoi boxes
correspond in the dual graph to the Delaunay edges which connect the points
of P .

• Voronoi : Let P = {p1, . . . , pk} be a finite set of points in the n-dimensional
space Rn and their location vectors xi 6= xj ∀ i 6= j. The region given by

V (pi) = {x | |x− xi| ≤ |x− xj | ∀ j 6= i}

is called the Voronoi region (Voronoi box) associated with pi and V(P ) =⋃k
i=1 V (pi) is said to be the Voronoi diagram of P .
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Fig. 1. Each Voronoi box associated with a point is differently shaded. Two triangles
t1 and t2 with their circumcenters M1 and M2 which are the vertices of the Voronoi
boxes are depicted for the correct Delaunay case and for the non-Delaunay case.
Incorrect Voronoi boxes which are derived from non-Delaunay triangles overlap.[11]

A Voronoi box is formed through the intersection of planes and is therefore a
general irregular polyhedron. The facets of the Voronoi boxes correspond in
the dual graph to the Delaunay edges which connect the points of P .

• Delaunay Edge: Let P be a finite set of points in a sub-domain Ωn of the n-
dimensional space Rn. Two points pi and pj are connected by a Delaunay
edge e if and only if there exists a location x ∈ Ωn which is equally close
to pi and pj and closer to pi, pj than to any other pk ∈ P . The location x
is the center of an n-dimensional sphere which passes through the points
pi, pj and which contains no other points pk of P .

eDelaunay(pi, pj) ⇔ ∃x : x ∈ Ωn

∧ |x− pi| = |x− pj |
∧ ∀k 6= i, j : |x− pi| < |x− pk|

Combining this criterion for the three edges of a triangle (Fig. 2) and further-
more for the four triangles of a tetrahedron leads to the following criterion for
Delaunay tetrahedron.

• Delaunay Triangle: Let P be a finite set of points in a sub-domain Ωn of
the n-dimensional space Rn. Three non-collinear points pi, pj and pk form
a Delaunay triangle t if and only if there exists a location x ∈ Ωn which
is equally close to pi, pj and pk and closer to pi, pj , pk than to any other
pm ∈ P . The location x is the center of an n-dimensional sphere which
passes through the points pi, pj , pk and which contains no other points pm

of P . For n = 2 only one such sphere exists which is the circumcircle of t.

tDelaunay(pi, pj , pk) ⇔ ∃x : x ∈ Ωn

∧ |x− pi| = |x− pj | = |x− pk|
∧ ∀m 6= i, j, k : |x− pi| < |x− pm|
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implies that an empty circumcircle is necessary but not sufficient for De-
launay surface triangles in three dimensions. This is the reason why a two-
dimensional Delaunay Triangulation code is of limited use to construct a
three-dimensional Delaunay surface triangulation. The Delaunay edge and
Delaunay triangle criteria are depicted in Fig. 2. A Delaunay tetrahedron
corresponds to a point in the Voronoi diagram, which is the vertex of four
incident Voronoi boxes.

Fig. 2. a) Delaunay Edge b) Delaunay Triangle criteria.[11]

• Delaunay Tetrahedron: Let P be a finite set of points in a sub-domain Ωn

of the n-dimensional space Rn, where n ≥ 3. Four non-coplanar points
pi, pj , pk and pl form a Delaunay tetrahedron T if and only if there exists
a location x ∈ Ωn which is equally close to pi, pj , pk and pl and closer
to pi, pj , pk, pl than to any other pm ∈ P . The location x is the center of
an n-dimensional sphere which passes through the points pi, pj , pk, pl and
which contains no other points pm of P . For n = 3 only one such sphere
exists which is the circumsphere of T .

TDelaunay(pi, pj , pk, pl) ⇔ ∃x : x ∈ Ωn

∧ |x− pi| = |x− pj | = |x− pk| = |x− pl|
∧ ∀m 6= i, j, k, l : |x− pi| < |x− pm|

A Delaunay tetrahedron must consist of Delaunay edges and Delaunay trian-
gles. The edge and triangle criteria are implicit, because the existence of the
n-dimensional sphere in Delaunay Edge criterion and in Delaunay Triangle
criterion is guaranteed by the sphere in Delaunay Tetrahedron criterion.

4.2 Similarity Flooding

Matching or finding similar elements of two data schemas or two data in-
stances plays a key role in data warehousing, e-business, or even biochemical
applications. Authors of [12] present a matching algorithm named “Similar-
ity Flooding” based on a fixpoint computation that is usable across different
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scenarios. As the example illustrating the Similarity Flooding Algorithm is
shown in Fig. 3, the algorithm takes two graphs (schemas, catalogs, or other
data structures) as input, and produces as output a mapping between corre-
sponding nodes of the graphs.

Fig. 3. Example illustrating the Similarity Flooding Algorithm[12]

As a first step, the schemas should be translated from their native format
into graphs G1 and G2. Next, the pair-wise connectivity graph (PCG) should
be made that is an auxiliary data structure derived from G1 and G2. If N1

represent the set of all nodes in G1 and respectively N2, each node in the
connectivity graph is an element from N1 × N2 and is called “map-pair”.
Furthermore, edges in connectivity graph defined as follow:

((x1, y1), P, (x2, y2)) ∈ PCG(G2, G2)
⇔

(x1, P, x2) ∈ G1 and (y1, P, y2) ∈ G2

Each map-pair contains one node from each graph and the similarity score
between them. The initial similarity for each map-pair is obtained using a
simple string matcher that compares common prefixes and suffixes of literals
in each node. Finally, computing the similarities relies on the intuition that
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elements of two distinct models are similar when their adjacent elements are
similar. In other words, a part of the similarity of two elements propagates to
their respective neighbors as follow:

σk+1(x, y) = σk(x, y)

+
∑

(ai,x)∈G1,(bi,y)∈G2

σk(ai, bi).W ((ai, bi), (x, y))

+
∑

(x,ai)∈G1,(y,bi)∈G2

σk(ai, bi).W ((x, y), (ai, bi))

where σk(x, y) shows the similarity between x and y after iteration k and
W ((ai, bi), (x, y)) is the propagation weight of the similarity between ai and
bi to the similarity between x and y. The above computation is performed
iteratively until the Euclidean length of the residual vector 4(σn, σn−1) be-
comes less than ε for some n > 0. If the computation does not converge, it
will be terminated after some maximal number of iterations.

5 Proposed Method

In this section we present the proposed approach. Here we combine sequence
similarity which is a simple extension of amino acid or nucleotide similarity
and structural similarity which is the residues position similarity. Using both
techniques leads to an efficient method for extracting similar parts of proteins.

The different phases of the proposed method may be represented as follow:

1. Protein Tetrahedralization
2. Creating pair-wise graph
3. Similarity propagation
4. Extracting similar components.

We will discuss each phase in the following subsections.

5.1 Protein Tetrahedralization

Each Protein is a sequence of residues in the 3D space in which each two
consequent residues are connected by one edge called “chain-edge”. Firstly,
for each protein, we use Delaunay tetrahedralization algorithm to convert
the protein sequence to a tetrahedralized shape (Fig. 4(b)). Since all pro-
teins have 3D shape, using Delaunay algorithm leads to create edges called
“tetrahedralization-edge” between atoms which are close to each other in
space, regardless of their distance in protein sequence. This closeness has an
extremely high influence on structural similarity which will be discussed in
proposed method for extracting similar parts of proteins.
Inasmuch as Tetrahedralization algorithm creates convex shape, in order to
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have a much more similar shape to the real protein shape, we need to elim-
inate edges whose length are more than α for tetrahedralization-edges and
more than β for chain-edges. Obviously, the value of β is more than α, be-
cause of the importance of chain-edges in proteins comparison (Fig. 4(c)).

Fig. 4. a) Protein chain b) Tetrahedralized protein c) Tetrahedralized protein after
removing worthless edges

We now construct a graph from the tetrahedralized shape. Each node in
this graph contains one number which is the amino acid number of correspond-
ing atom in protein and coordinates (x, y, z) expressing the coordination of
that atom. This graph has two different types of edges:

1. Edges which belong to the protein chain and also can be the part of the
tetrahedrons named chain-edges.

2. Edges obtained from tetrahedralization which do not belong to the protein
chain named tetrahedralization-edges.

Consequently, each protein is converted to one graph which not only contains
the protein chain but also contains edges connecting atoms near each other in
3D space. These graphs are data structures for similarity flooding algorithm
used in protein matching.

5.2 Creating Pair-wise Graph

Pair-wise Connectivity graph (PCG) arises from two protein’s graphs P1 and
P2 which were created through tetrahedralization in the first phase. If N1

and N2 show the sets of all nodes in P1 and P2, each node in the pair-wise
graph is an element from N1 ×N2. We call such nodes map-pairs. The edges
of pair-wise graph are categorized to 3 parts depending on their map-pairs
(see Fig. 5):
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Fig. 5. Pairwise connectivity graph for proteins

1. If a chain-edge exists between the first nodes of two map-pairs and there
is a chain-edge between the second nodes of those map-pairs in their pro-
teins, then we will connect these two map-pairs with an edge of type
chain.

((x, y),CH , (x′, y′)) ∈ PCG(P1, P2) ⇔
(x,CH , x′) ∈ P1 and (y,CH , y′) ∈ P2

where CH represents the edge of type chain.
2. If a Tetrahedralization-edge exists between the first nodes of two map-

pairs and there is a tetrahedralization-edge between the second nodes of
those map-pairs in their proteins, then we will connect these two map-
pairs tetrahedralization-edge.

((x, y), T, (x′, y′)) ∈ PCG(P1, P2) ⇔
(x, T, x′) ∈ P1 and (y, T, y′) ∈ P2

where T represents the edge of type tetrahedralization.
3. If a tetrahedralization-edge exists between the first nodes of two map-pairs

and there is a chain-edge between the second nodes of those map-pairs in
their proteins or vice versa, then we will connect these two map-pairs with
edge of type combine.

((x, y), C, (x′, y′)) ∈ PCG(P1, P2) ⇔
(x, T, x′) ∈ P1 and (y, CH, y′) ∈ P2

or

(x, CH, x′) ∈ P1 and (y, T, y′) ∈ P2

where C represents the edge of type combine.
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We categorized these edges to three types, because the influence of their nodes
in similarity propagation weights in the proposed method will differ from each
other.

5.3 Similarity Propagation

In the created pair-wise graph, the primary similarity of each map-pair de-
pends on the similarity between two nodes of that map-pair which are the
atoms of the proteins. This similarity derives from amino acids scoring matrix.
The two-dimensional matrix contains all possible pair-wise amino acid scores.
Scoring matrices are also called substitution matrices because the scores rep-
resent relative rates of evolutionary substitutions. According to the similar-
ity flooding algorithm the similarity of a map-pair increment based on the
similarities of its neighbors in the pair-wise graph. Hence, the similarities of
neighbors are affective in calculating final similarity between two atoms in
each map-pair. It seems more rational for neighbors related to chain-edges to
be much more affective in protein matching. Similarly, the weight of neighbors
related to combine edges is more than those of tetrahedralization-edges. Thus,
over a number of iterations, the initial similarity of any two nodes propagates
through the graphs. Similarity propagation in each iteration is computed as
follows:

Simi+1(x, y) = a ∗ Simi(x, y)
+ (1− a) ∗NeighborAffect(x, y)

NeighborAffect(x, y) = CHF ∗ CHAffect i/NF
+ CF ∗ CAffect i/NF
+ TF ∗ TAffect i/NF

In the above equation, Simi(x, y) defined as the similarity between x and
y in each map-pair after i number of iteration(s), and a is the learning rate
from the neighbors. Moreover,

• CHAffect is the average similarity of neighbors connecting with chain-edge
to the respective map-pair and is calculated as bellow:

CHAffect i(x, y) =
∑

((x,y),CH ,(xi,yi))
∈PCG(P1,P2)

Simi(xi, yi)
CHSize

and CHF is the propagation weight of CHAffect .
• CAffect is the average similarity of neighbors connecting with combine

edge to the respective map-pair and is defined as bellow:
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CAffect i(x, y) =
∑

((x,y),C,(xi,yi))
∈PCG(P1,P2)

Simi(xi, yi)
CSize

and CF is the propagation weight of CAffect .
• TAffect is the average similarity of neighbors connecting with Tetrahedralization-

edge to the respective map-pair and is computed as bellow:

TAffect i(x, y) =
∑

((x,y),T,(xi,yi))
∈PCG(P1,P2)

Simi(xi, yi)
TSize

and TF is the propagation weight of TAffect .

In the above formula, CHSize (CSize and TSize) is the number of edges
of type chain (combine and tetrahedralization) connected to the map-pair.
The sum of the CHF ,CF and TF must be equal 1 to restrict NeighborAffect
between valid rang which will be discussed in experimental results section.
Furthermore, NF is normal factor applying to cases in which there is no
neighbors related to edges of one type. For example, assume that there isn’t
any neighbor related to tetrahedralization-edge, but there are edges of chain
and combine types. Hence, we should set NF = CHF + CF to normalize
NeighborAffect into valid rang.

5.4 Extracting Similar Components

Due to the fact that the similarity degree of each map-pair in pair-wise graph
expresses the matching degree of its atoms, we should extract similar com-
ponents of two proteins by eliminating map-pairs and their related edges in
pair-wise graph which have similarity degree less than γ. Consequently, the
pair-wise graph transform to forest in which we have several connected com-
ponents. Each connected component declares one similar part of two pro-
teins, and each map-pair in connected components expresses matched atoms
between two proteins. Similarly, each edge in connected components shows
conforming edges between two proteins. Hence, by extracting each protein’s
nodes and edges from the connected component, we obtain two connected
sub-graphs, each of which belongs to one of two given proteins. Connected
components with the number of nodes less than η are not valuable for the
result of matching, therefore they should be removed. For example, assume
that you have two pictures, and you want to match them. Obviously if one
pixel of them is analogous, you can not assert that these two pictures are the
same or you find valuable matching. Hence, the number of nodes of each con-
nected components should be noticed and connected components containing
less than η number of atoms should be eliminated.
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6 Experimental Results

In this section we will explain SimDive engine which extract similar parts of
proteins by using proposed method. We read protein information from PDB
files. Then we used Visad4 package to do Delaunay tetrahedralization on the
input protein chain, this tetrahedralization contributes our sequence chain of
protein to convert to tetrahedralized shape which is needed in counting struc-
tural similarity in proposed protein matching algorithm. We can construct
filters that apply α = 2 for creating boundary for tetrahedralization-edges
length and β = 5 for removing worthless chain-edges. Hence, edges which are
longer than these thresholds were removed. Fig. 6 shows the accuracy ob-
tained after applying above filters in two proteins shape.

Fig. 6. a) Protein number 1 after tetrahedralization b) Protein number 2 after
tetrahedralization

Two tetrahedralized shapes in the form of graph data structure were used
to create pair-wise graph. After this creation, we used amino acid scoring
matrices presented in Blast book5 to assign primary similarity to each map-
pair. Table 1 shows the Amino Acid Scoring Matrix. Inasmuch as a part of
the similarity of two nodes in each map-pair propagates to their respective
neighbors, we propagated the similarities of map-pair via proposed equation in
which CHAffect,CAffect and TAffect were defined as the affect of neighbors
of the map-pairs. The final similarities were obtained after applying filters
shown in bellow.

Parameter a CHF CF TF
Value 0.8 0.5 0.3 02

4 http://www.ssec.wisc.edu/ billh/visad.html
5 http://safari.oreilly.com/0596002998/blast-CHP-4-SECT-3
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ALA 1 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
ARG 2 -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
ASN 3 -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
ASP 4 -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
CYS 5 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
GLN 6 -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
GLU 7 -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
GLY 8 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
HIS 9 -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
ILE 10 -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
LEU 11 -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
LYS 12 -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
MET 13 -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
PHE 14 -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
PRQ 15 -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
SER 16 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
THR 17 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
TRP 18 -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
TYR 19 -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
VAL 20 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Table 1. Amino Acid Similarity matrix

As you see in the above table, owing to the importance of neighbors in chain,
we set the CHF factor more than two times of the TF factor, and correspond-
ingly the CF factor more than the TF factor.

The similarity values between two amino acids in the scoring matrix are
between -4 and +11, and these similarities between one amino acid with itself
are between +4 and +11.
After propagating, the similarities still remained between -4 and +11. Hence,
to avoid removing map-pairs which contain two identical nodes or two dif-
ferent nodes with reasonable similitude degree, we set the threshold γ = +3.
Therefore, map-pairs whose similarities are less than this threshold were elim-
inated. After this removal, components which included more than η = 3 atoms
from each protein were extracted. Extracted similar components from small
parts of two proteins which shown in Fig. 6 are represented in Fig. 7 (Owning
to have clear figures, we choose very small part of proteins for this figures).
Because of the large number of residues in each protein, the pair-wise graph
created from two proteins will contain a large number of map-pairs. Conse-
quently dealing with these large number of map-pairs needs large amount of
memory. Moreover, the process of similarity propagation and similar compo-
nents extraction will become very time consuming jobs. Hence, for managing
this problem, we do protein fragmentation for larger proteins to accelerate the
whole process of comparison. In this case, we divided each of our proteins to
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Fig. 7. Extracted similar components

many segments and then each segment of protein will be compared with all
segments of the other one. After that we extracted similar parts between each
two fragments. Using this method reduces the model time and space complex-
ity. if f(n) presents the running time of our proposed model for comparing
two proteins of size n without using fragmentation, the time complexity of the
model will be exponential, However by using fragmentation it will be linear.
In other words, if m be the size of each fragment the time complexity function
f ′(n) will calculated as follow:

f ′(n) = (
n

m
)2 ∗ f(m)

Nevertheless, using fragmentation leads the similar parts of two proteins
which are located on fragmentation points to be broken. As you can see in
Fig. 8, (A,B) is a similar component of the two given proteins, and you can see
that after applying fragmentation the component (A,B) converts to (A1, B1)
and (A2, B2) which is an undesirable fracture.

Fig. 8. Protein Fragmentation
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To avoid these undesirable fractures, we let our segments to overlap with
each other over their boundaries( Fig.9). Hence, if m be the size of each
fragment and l be the size of segments overlap, the time complexity function
f ′′(n) will calculated as follow:

f ′′(n) = (
n

m
)2 ∗ f(m + 2 ∗ l)

Fig. 9. Overlapping

Fig. 10 shows our experimental results for running the whole algorithm.
It is obvious that by using fragmentation we hasten the whole process. This
chart related to segments of size 200 and overlapping parameter is equal to
50.

Fig. 10. Running Time
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We also calculate the tetrahedralization time with and without using frag-
mentation. You can see the results in Fig. 11.

Fig. 11. Triangulation Time

although we mentioned that using fragmentation leads to unwonted frac-
tures, Fig.12 expresses that the number of these unwonted fractures are not
worthy.
On the other hand, this figures shows that the number of similar component

Fig. 12. Number of Similar Components
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extracted in Overlapping mode is more than the basic fragmentation mode
because in the overlapping mode the similar component in overlapped sec-
tion may be calculated twice. The important thing is that by overlapping we
find both the fractured and not fractured components and just the duplicated
components should be ignored.

7 Conclusion and Future Works

In this paper we proposed a novel method used to extract similar parts of
proteins based on computational geometry and graph matching methods. Our
method used the Delaunay tetrahedralization of the α-carbon atoms in the
protein molecules to add some edges in protein structure for short distance
nodes in counting structural similarity. The basic method can build a robust
model for protein matching but it needed some enhancements. Because of the
large number of residues in each protein, the pair-wise graph created from
two proteins will contain a large number of map-pairs and therefore large
amount of memory was needed. Hence, we applied protein fragmentation and
overlapping to reduce the time complexity of our algorithm. We implement
SimDiv engine for testing the proposed method and the experimental results
show the final verifications and effectiveness of our proposed method.

Furthermore, we need some test collections for optimizing proposed model
parameters such as similarity propagation weight of each type in propagation
graph and thresholds used in the model. Moreover, this model will be test on
more real proteins with real size. In our experiments we use some parts of real
proteins instead of complete structure of real protein because of mentioned
problems.

Moreover, our proposed method can extracts similar parts of the two given
protein precisely. Furthermore, it includes both structural and sequential sim-
ilarity. Our model has great flexibility in all aspects and by changing different
model parameters such as propagation weight of different edge type, we can
change the influence of structural and sequence similarity.
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