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Abstract—Proteins are the main players in the game
of life. Good understanding of their structures, func-
tions, and behaviors leads to good understanding of
drugs, diseases, and thus our health. So, much ef-
fort has been done to study and categorize proteins.
Nowadays, tens of thousands of proteins have been
found. Moreover, the problem of comparing the pro-
teins is hard. Therefore efficient methods are needed
to deal with this problem. In this paper, we used
one important computational geometric method and
one graph matching method: ”Delaunay Tetrahedral-
ization” and ”Similarity Flooding” to propose a new
idea to extract similar parts of proteins by combining
both of these methods.
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1 Introduction

The number of known proteins is increasing every day;
tens of thousands have been studied and categorized
by now.To understand the functions and behaviors of a
newly found protein, one should find well studied proteins
with similar structure. In fact, the behavior of a protein
is related to its sequence of amino acids and its 3D struc-
ture. So the comparison of proteins is a key technique
not only in finding similarities in the structures of pro-
teins but also to categorize them and to define families
and super-families of the proteins. Like many comparison
problems, this problem is hard because there is neither
an exact definition of the likelihood of proteins structures
nor an efficient algorithm exits for it. Although there
exist optimal dynamic programming algorithms for com-
paring the sequences of amino-acids, the result is highly
related to the definition of the relations of the sequences,
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which has not been uniquely defined [1]. The problem
of comparing the 3D-structures of proteins becomes even
harder. There is no efficient algorithm which guarantees
the optimality of the answer. In fact, this problem is NP-
hard. When the proteins become more complicated, the
relationship models are more varied even than the models
of sequence relatedness.

In this paper we will propose a model for protein match-
ing or extracting similar parts of two given proteins. We
focus on the computational geometric approach and the
graph matching method used to model and compare the
sequence and 3D-structure of proteins.

The remainder of this paper is organized as follows: We
first have a glance at the related works. There are two
major methods used in the literature: ”Delaunay Tetra-
hedralization” and ”Similarity Flooding”. We will ex-
plain the required information in the next section as the
background knowledge, and then propose a new idea in
section 4 which can improve the current methods. We
will then present experimental results of the implemented
method which shows its effectiveness.

2 Related works

Delaunay Triangulation and Delaunay Tessellation are
common computational geometric methods used in the
bioinformatics. For example in [2] the Delaunay tessel-
lation the a-carbons of the protein molecule is used to
study the HIV-1 protease. This is because this model
provides objective and robust definition of four nearest-
neighbor amino acid residues as well as a four-body sta-
tistical potential function. The other usages are studied
in the fields of packing analysis [2, 3], fold recognition [4],
virtual mutagenesis [5], and structure comparison.

Authors of [6] consider the Delaunay Tetrahedralization
determined by the alpha carbon positions of some par-
ticular protein. Starting at the amino-terminal residue,
the edges of the Tetrahedralization that connect to a
residue that has already been encountered are recorded
as a relative residue difference. For example, if there is
an edge between the 5th alpha carbon and the 3rd one,
this edge is represented as 2. When the edge of a particu-
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lar residue is exhausted a 0 is recorded to indicate a new
residue. This linear representation will contain each edge
in the Tetrahedralization exactly once. Furthermore, sec-
ondary structural components will be indicated by partic-
ular subsequences. Two one-dimensional representations
are then compared by a dynamic programming scheme
adapted from protein sequence analysis, thus reducing
protein structural similarity to sequence similarity of the
appropriate structure strings. In [7] the Euclidean metric
for identifying natural nearest neighboring residues via
the Delaunay tessellation in Cartesian space and the dis-
tance between residues in sequence space. In addition,
authors of [8] find recurring amino-acid residue pack-
ing patterns, or spatial motifs, that are characteristic of
protein structural families, by applying a novel frequent
sub-graph mining algorithm to graph representations of
protein three-dimensional structure. Graph nodes rep-
resent amino acids, and edges are chosen in one of three
ways: first, using a threshold for contact distance between
residues; second, using Delaunay tessellation; and third,
using the recently developed almost-Delaunay edges.

3 Background Knowledge
3.1 Delaunay Tetrahedralization

Delaunay Tetrahedralization is a special type of Tetra-
hedralization which is defined based on the Voronoi dia-
gram through the principle of duality. A Voronoi box is
formed through the intersection of planes and is therefore
a general irregular polyhedron. The facets of the Voronoi
boxes correspond in the dual graph to the Delaunay edges
which connect the points of P.

o Delaunay Edge: Let P be a finite set of points in a
sub-domain Q" of the n-dimensional space R"™. Two
points p; and p; are connected by a Delaunay edge
e if and only if there exists a location z € 2™ which
is equally close to p; and p; and closer to p;,p; than
to any other pr € P. The location x is the center
of an n-dimensional sphere which passes through the
points p;, p; and which contains no other points py
of P.

&S dx:ze”
A e —pi| =z —pjl
AN VEFEi G |z —pi| <[z —pil

€ Delaunay (pi: pj)

Combining this criterion for the three edges of a trian-
gle (Fig. 1) and furthermore for the four triangles of a
tetrahedron leads to the following criterion for Delaunay
tetrahedron.
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Figure 1: a) Delaunay Edge b) Delaunay Triangle crite-
ria.

o Delaunay Tetrahedron: Let P be a finite set of points
in a sub-domain Q" of the n-dimensional space R",
where n > 3. Four non-coplanar points p;, p;, pr and
p; form a Delaunay tetrahedron 7 if and only if there
exists a location z € Q™ which is equally close to
DisDj, Pk and p; and closer to p;, pj, pr, pr than to any
other p,, € P. The location x is the center of an n-
dimensional sphere which passes through the points
Di,Dj, Pk, p1 and which contains no other points py,
of P. For n = 3 only one such sphere exists which is
the circumsphere of T'.

TDelaunay (piapjapkvpl) S dr: e Q"
Az =pil =l —pjl = |z —pel = [z = pi]
A Vm#z,],k,l : |x7pl‘<|x7pm|

A Delaunay tetrahedron must consist of Delaunay edges
and Delaunay triangles. The edge and triangle criteria
are implicit, because the existence of the n-dimensional
sphere in Delaunay Edge criterion and in Delaunay Tri-
angle criterion is guaranteed by the sphere in Delaunay
Tetrahedron criterion.

3.2 Similarity Flooding

Matching or finding similar elements of two data schemas
or two data instances plays a key role in data warehous-
ing, e-business, or even biochemical applications. Au-
thors of [9] present a matching algorithm named ”Sim-
ilarity Flooding” based on a fixpoint computation that
is usable across different scenarios. As the example il-
lustrating the Similarity Flooding Algorithm is shown in
Fig. 2, the algorithm takes two graphs (schemas, cata-
logs, or other data structures) as input, and produces as
output a mapping between corresponding nodes of the
graphs.

As a first step, the schemas should be translated from
their native format into graphs G; and G,. Next the
pair-wise connectivity graph (PCG) should be made that
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Figure 2: Example illustrating the Similarity Flooding Algorithm

is an auxiliary data structure derived from G, and Ga. If
Nj represent the set of all nodes in G; and respectively
Ns, each node in the connectivity graph is an element
from Ni x Ny and is called "map-pair”. Furthermore,
edges in connectivity graph defined as follow:

((z1,91), P, (72,32)) € PCG(G2,Ga)
o

(z1,Pyz2) € Gy and (Y1, P,y2) € G2

Each map-pair contains one node from each graph and
the similarity score between them. The initial similar-
ity for each map-pair is obtained using a simple string
matcher that compares common prefixes and suffixes of
literals in each node. Finally, computing the similarities
relies on the intuition that elements of two distinct mod-
els are similar when their adjacent elements are similar.
In other words, a part of the similarity of two elements
propagates to their respective neighbors as follow:

o, y) = 0" (,y)

>

(ai,x)€G1,(biy)€G2

>

(z,a;)€G1,(y,bi)EG2

Uk(aia bi)'W((aiv bi)’ (zv y))
ak(ai, bZ)W((l, y), (ai, bl))

where o (z,y) shows the similarity between 2 and y af-
ter iteration k and W ((a;,b;), (z,y)) is the propagation
weight of the similarity between a; and b; to the similarity
between z and y. The above computation is performed
iteratively until the Euclidean length of the residual vec-
tor A(c™,0" ') becomes less than ¢ for some n > 0. If
the computation does not converge, it will be terminated
after some maximal number of iterations.

4 Proposed Method

In this section we present the proposed approach. Here
we combine sequence similarity which is a simple exten-
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sion of amino acid or nucleotide similarity and structural
similarity which is the residues position similarity. Using
both techniques leads to an efficient method for extract-
ing similar parts of proteins.

The different phases of the proposed method may be rep-
resented as follow:

1. Protein Tetrahedralization
2. Creating pair-wise graph

3. Similarity propagation
4

. Extracting similar components.

We will discuss each phase in the following subsections.
4.1 Protein Tetrahedralization

Each Protein is a sequence of residues in the 3D space
in which each two consequent residues are connected by
one edge called ” chain-edge”. Firstly, for each protein, we
use Delaunay Tetrahedralization algorithm to convert the
protein sequence to a tetrahedralized shape (Fig. 3(c)).
Since all proteins have 3D shape, using Delaunay algo-
rithm leads to create edges called ”Tetrahedralization-
edge” between atoms which are close to each other in
space, regardless of their distance in protein sequence.
This closeness has an extremely high influence on struc-
tural similarity which will be discussed in proposed
method for extracting similar parts of proteins.

Inasmuch as Tetrahedralization algorithm creates convex
shape, in order to have a much more similar shape to
the real protein shape, we need to eliminate edges whose
length are more than « for Tetrahedralization-edges and
more than 3 for chain-edges. Obviously, the value of
is more than «, because of the importance of chain-edges
in proteins comparison (Fig. 3(d)). We now construct
a graph from the tetrahedralized shape. Each node in
this graph contains one number which is the amino acid
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Figure 3: a) Protein b) Protein chain c¢) Tetrahedralized protein d) Tetrahedralized protein after removing worthless

edges

number of corresponding atom in protein and coordinates
(z,y, z) expressing the coordination of that atom. This
graph has two different types of edges:

1. Edges which belong to the protein chain and also can
be the part of the tetrahedrons named chain-edges.

2. Edges obtained from Tetrahedralization which
do not belong to the protein chain named
Tetrahedralization-edges.

Consequently, each protein is converted to one graph
which not only contains the protein chain but also con-
tains edges connecting atoms near each other in 3D space.
These graphs are data structures for similarity flooding
algorithm used in protein matching.

4.2 Creating Pair-wise Graph

Pair-wise Connectivity graph (PCG) arises from two pro-
tein’s graphs P; and P, which were created through
Tetrahedralization in the first phase. If N; and Ny show
the sets of all nodes in P, and Ps, each node in the pair-
wise graph is an element from N; x Nz. We call such
nodes map-pairs. The edges of pair-wise graph are cat-
egorized to 3 parts depending on their map-pairs (see
Fig. 4):

1. If a chain-edge exists between the first nodes of two
map-pairs and there is a chain-edge between the sec-
ond nodes of those map-pairs in their proteins, then
we will connect these two map-pairs with an edge of
type chain.

((way)7 CH7 (J‘Jyy/)) € PCG(P17P2) A
(z, CH,2') € Py and (y, CH,y') € Py
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Figure 4: Pairwise connectivity graph for proteins

where C'H represents the edge of type chain.

. If a Tetrahedralization-edge exists between the

first nodes of two map-pairs and there is a
Tetrahedralization-edge between the second nodes of
those map-pairs in their proteins, then we will con-
nect these two map-pairs Tetrahedralization-edge.
((I7y),T, (xlvy/)) € PCG(P17P2) g
(z,T,2') € Py and (y,T,y') € P2

where T represents the edge of type Tetrahedraliza-
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tion.

3. If a Tetrahedralization-edge exists between the first
nodes of two map-pairs and there is a chain-edge
between the second nodes of those map-pairs in their
proteins or vice versa, then we will connect these two
map-pairs with edge of type combine.

(@,9),C, (") € POGPLP) <

(z,T,2ye P, and (y,CH,y') € P,
or
(xz,CH,2'Y e P and (y,T,y')€ P

where C' represents the edge of type combine.

We categorized these edges to three types, because the
influence of their nodes in similarity propagation weights
in the proposed method will differ from each other.

4.3 Similarity Propagation

In the created pair-wise graph, the primary similarity
of each map-pair depends on the similarity between two
nodes of that map-pair which are the atoms of the pro-
teins. This similarity derives from amino acids scoring
matrix. The two-dimensional matrix contains all possi-
ble pair-wise amino acid scores. Scoring matrices are also
called substitution matrices because the scores represent
relative rates of evolutionary substitutions. According
to the similarity flooding algorithm the similarity of a
map-pair increment based on the similarities of its neigh-
bors in the pair-wise graph. Hence, the similarities of
neighbors are affective in calculating final similarity be-
tween two atoms in each map-pair. It seems more ratio-
nal for neighbors related to chain-edges to be much more
affective in protein matching. Similarly, the weight of
neighbors related to combine edges is more than those of
Tetrahedralization-edges. Thus, over a number of itera-
tions, the initial similarity of any two nodes propagates
through the graphs. Similarity propagation in each iter-
ation is computed as follows:
Simt(z,y) = ax*Sim‘(z,y)
+ (1 — a) x NeighborAffect(x,y)

NeighborAffect(z,y) = CHF %« CHAffect'/NF
+ CF * CAffect'/NF
+ TF % TAffect'/NF

In the above equation, Sim®(x,y) defined as the similar-
ity between x and ¥y in each map-pair after ¢ number of
iteration(s), and a is the learning rate from the neighbors.
Moreover,
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o (CHAffect is the average similarity of neighbors con-
necting with chain-edge to the respective map-pair
and is calculated as bellow:

>

((z,9),CH,(z,;))
E€PCG(Py,Pa)

Simi(wuyi)

CHA ffect' (2,y) = CHSize

and CHF is the propagation weight of CHAffect.

o CAffect is the average similarity of neighbors con-
necting with combine edge to the respective map-
pair and is defined as bellow:

>

((z,9),C,(z4,y;))
€PCG(Py,Pa)

Simi(miayi)

CAffect'(z,y) = CSize

and CF is the propagation weight of CAffect.

e TAffect is the average similarity of neighbors con-
necting with Tetrahedralization-edge to the respec-
tive map-pair and is computed as bellow:

2

(=), T (x4,v;))
EPCG(P1,P2)

Sim’ (i, yi)

TAﬁecti(w, y) = TSize

and TF is the propagation weight of TAffect.

In the above formula, CHSize (CSize and T'Size) is
the number of edges of type chain (combine and Tetra-
hedralization) connected to the map-pair. The sum
of the CHF,CF and TF must be equal 1 to restrict
NeighborAffect between valid rang which will be dis-
cussed in experimental result. Furthermore, NF' is nor-
mal factor applying to cases in which there is no neighbors
related to edges of one type. For example, assume that
there isn’t any neighbor related to Tetrahedralization-
edge, but there are edges of chain and combine types.
Hence, we should set NF' = CHF + CF to normalize
NeighborAffect into valid rang.

4.4 Extracting Similar Components

Due to the fact that the similarity degree of each map-
pair in pair-wise graph expresses the matching degree of
its atoms, we should extract similar components of two
proteins by eliminating map-pairs and their related edges
in pair-wise graph which have similarity degree less than
~. Consequently, the pair-wise graph transform to forest
in which we have several connected components. Each
connected component declares one similar part of two
proteins, and each map-pair in connected components ex-
presses matched atoms between two proteins. Similarly,
each edge in connected components shows conforming
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Figure 5: a) Protein number 1 after Tetrahedralization
b) Protein number 2 after Tetrahedralization

edges between two proteins. Hence, by extracting each
protein’s nodes and edges from the connected component,
we obtain two connected sub-graphs, each of which be-
longs to one of two given proteins. Connected compo-
nents with the number of nodes less than 7 are not valu-
able for the result of matching, therefore they should be
removed. For example, assume that you have two pic-
tures, and you want to match them. Obviously if one
pixel of them is analogous, you can not assert that these
two pictures are the same or you find valuable matching.
Hence, the number of nodes of each connected compo-
nents should be noticed and connected components con-
taining less than 7 number of atoms should be eliminated.

5 Experimental Result

In this section we will explain our implementation of the
proposed method. We read protein information from
PDB files. Then we used Visad! package to do Delaunay
Tetrahedralization on the input protein chain, this Tetra-
hedralization contributes our sequence chain of protein
to convert to tetrahedralized shape which is needed in
counting structural similarity in proposed protein match-
ing algorithm. We can construct filters that apply « = 2
for creating boundary for Tetrahedralization-edges length
and B = 5 for removing worthless chain-edges. Hence,
edges which are longer than these thresholds were re-
moved. Fig. 5 shows the accuracy obtained after apply-
ing above filters in two proteins shape.

Two tetrahedralized shapes in the form of graph data
structure were used to create pair-wise graph. After this
creation, we used amino acid scoring matrices presented
in Blast book? to assign primary similarity to each map-
pair. Inasmuch as a part of the similarity of two nodes in

Thttp://www.ssec.wisc.edu/ billh/visad.html
2http://safari.oreilly.com /0596002998 /blast-CHP-4-SECT-3
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Figure 6: Extracted similar components

each map-pair propagates to their respective neighbors,
we propagated the similarities of map-pair via proposed
equation in which CHAffect,CAffect and TAffect were de-
fined as the affect of neighbors of the map-pairs. The final
similarities were obtained after applying filters shown in
bellow.

Parameter | a CHF CF TF
Value 0.8 05 0.3 02

As you see in the above table, owing to the importance
of neighbors in chain, we set the CHF factor more than
two times of the TF factor, and correspondingly the CF
factor more than the TF factor.

The similarity values between two amino acids in the scor-
ing matrix are between -4 and +11, and these similarities
between one amino acid with itself are between +4 and
+11. After propagating, the similarities still remained
between -4 and +11. Hence, to avoid removing map-pairs
which contain two identical nodes or two different nodes
with reasonable similitude degree, we set the threshold
v = +3. Therefore, map-pairs whose similarities are less
than this threshold were eliminated. After this removal,
components which included more than n = 3 atoms from
each protein were extracted. Extracted similar compo-
nents from small parts of two proteins which shown in
Fig. 5 are represented in Fig. 6 (Owning to have clear
figures, we choose very small part of proteins for this fig-
ures). In addition, due to the fact that will be explained
in conclusion section, our experiments applied on some
parts of proteins instead of complete set of atoms in each
protein.

6 Conclusion and Future Works

In this paper we proposed a novel method used to extract
similar parts of proteins based on computational geom-
etry and graph matching methods. Our method used
the Delaunay Tetrahedralization of the a-carbon atoms
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in the protein molecules to add some edges in protein
structure for short distance nodes in counting structural
similarity. This method can build a robust model for
protein matching but it needs some enhancements. Be-
cause of the large number of residues in each protein, the
pair-wise graph created from two proteins will contain a
large number of map-pairs and therefore large amount of
memory is needed. Hence, we need some heuristics to re-
duce pair-wise graph nodes. For example, we can remove
or do not create any map-pair with initial similarity less
than a defined threshold. Furthermore, we need some
test collections for optimizing proposed model parame-
ters such as similarity propagation weight of each type
in propagation graph and thresholds used in the model.
Moreover, this model will be test on more real proteins
with real size. In our experiments we use some parts of
real proteins instead of complete structure of real protein
because of mentioned problems.

Moreover, our proposed method can extracts similar
parts of the two given protein precisely. Furthermore,
it includes both structural and sequential similarity. Our
model has great flexibility in all aspects and by changing
different model parameters such as propagation weight of
different edge type, we can change the influence of struc-
tural and sequence similarity.
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