

RAQ: A Range-Queriable Distributed Data Structure*

Hamid Nazerzadeh1 Mohammad Ghodsi1,2

1Computer Engineering Department, Sharif University of Technology, Tehran, Iran
2School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

Different structures are used in peer-to-peer networks to represent their inherently distributed, self-organized, and decentralized memory
structure. In this paper, a simple range-queriable distributed data structure, called RAQ, is proposed to efficiently support exact match and
range queries over multi-dimensional data. In RAQ, the key space is partitioned among the network with n nodes, in which each element has
links to (log)O n other elements. We will show that the look-up query for a specified key can be done via (log)O n message passing. Also,

RAQ handles range-queries in at most (log)O n communication steps.

Keywords: P2P Networks, Range-Query, Distributed Data Structure.

1. Introduction

Distributed and peer-to-peer networks are significant
components of recent research on networking. There is a
simple idea behind the peer-to-peer networks: each node
maintains its own index and searching mechanism compared
to the traditional client-server architecture with global
information. The significant growth in the scale of such
networks, (e.g. Gnutella [4]), reveals the critical emerging
need to develop decentralized searching methods.

A peer-to-peer storage system can be considered as a
large scale distributed decentralized data structure. We use
the term Queriable Distributed Data Structure (QDS) to
denote such a self-organized, decentralized, distributed,
internet-scale structure which provides searching and data
transferring services. New file sharing systems such as
Scour, FreeNet, Ohaha, Kazaa and Jungle Monkey are
examples QDS from current internet systems. In QDS, every
node of the network is an element of the whole structure,
which provides decentralized searching services over the
data scattered among the nodes of the network.

Distributed Hash Table (DHT) [15, 11] can be viewed as
a QDS. In DHT systems, keys and data are stored in the

nodes of the network using a hash function, in which data
can be the addressing information (e.g. IP address of the
server containing the data), rather than its actual data.
Searching mechanism in these systems consists of two main
phases: (1) hashing the key, and (2) querying the network to
find the node that contains the key. This node handles the
query by providing the actual data or its addressing
information.

Similarly, some other systems like SkipNet [6] are
designed based on more theoretical data structures like skip
graphs [2], allows more flexibility on the location of the data
on the nodes of the network. In this paper, we propose RAQ,
a range-queriable distributed data structure to handle exact
match and range queries over multi-dimensional data
efficiently. In RAQ, the key space is partitioned among the
n nodes of the network, in which each element has links to

(log)O n other elements of the network. We will show that the

look-up query for a specified key can be done, in our
structure, via (log)O n message passing. The bound on the

out-degree of the nodes and the exact-match query cost are
both comparable to those in DHT systems like Chord [15],
CAN [11], Pastry [13] and Viceroy [19].

The CSI Journal on
Computer Science and Engineering
Vol. 6, No. 2 & 4 (b), 2008
Pages 1-5
Regular Paper

H. Nazerzadeh and M. Ghodsi: RAQ: A Range-Queriable Distributed Data Structure … (Regular Paper) 2

The main contribution of RAQ is that it is simple and can
handle range-queries in multi-dimensional space. Our data
structure supports such queries in at most (log)O n

communication steps. Split the Space, Duplicate the Query is
a novel approach used by the RAQ to resolve range-queries.
This method anticipates the answer space of the query at the
source and spreads the query only through the appropriate
nodes by duplicating the query meanwhile each of the new
queries addresses a reduced subspace.

Most other QDS systems do not support multi-
dimensional range-queries, because they mostly use one-
dimensional key space. CAN [11] supports multi-
dimensional key space, but despite of its similarity to RAQ's
basic structure, the out-degree of node and its routing cost
depend on the dimension of the key space. For a
d dimensional space, the average routing path length in CAN
is 1/(/ 4)()dd n hops and individual nodes maintain

2d neighbors. This limitation forces the system to use
hashing to reduce the dimension. But, since hashing destroys
the logical integrity of the data, such systems cannot support
range queries over multi-dimensional data efficiently.

In this paper, we first overview the related works briefly,
followed by the principal ideas and structures of RAQ.
Query handling methods are discussed in sections section 5
and section 6, followed by the algorithms for joining and
leaving a node.

2. Related Works

Supporting range queries in QDS systems has been the
subject of several recent works. In SWAM [3], for example,
the key space is partitioned according to Voronoi
Tesselation. By this property, and using links based on
Small-World Phenomenon [8, 10], SWAM resolves k -
nearest-neighbor search and range queries via (log)O n R

message passing, where R is the size of the answer. But, the
number of links of each node grows exponentially with the
dimension size [14].

Prefix Hash Tree is a solution proposed by Rantasamy et.
al [12] to face the problem of hashing used in DHTs that
destroys the integrity of the data. Their approach is based on
distributed trie. Given a query, this system attempts to
recognize the longest prefix of the query that appears as a
trie-node. The complexity of this operation is

(log log log)O d n , where d is the size of the discrete

domain. Gao and Steenkiste [5], present a QDS which relies
on a logical tree data structure, the Range Search Tree (RST),
to support range queries in one dimensional space. In this
system, nodes in RST are registered in groups. To handle the
range queries, queries are decomposed into a small number
of sub-queries where the cost depends on the load factor of
the data and query capacity of the nodes in the network.

Figure 1. The partition tree,
2P , on the left corresponds to the

points on the right.

3. Partition Tree

We have n points in our d -dimensional space. Partition
Tree,

dP , is the main data structure used in RAQ. Similar to

the data structure used in [11],
dP partitions the d-

dimensional space, so that in the final level, each region has
only one point. Each internal vertex of the tree corresponds
to a region in space, and the root represents the whole space.
Each pair of the sibling vertices divide their parent region
into two parts, and each leaf represents an undivided region
called a cell, each corresponds to one single point in that
region. Figure 1 portrays the partitioning of

2P .

Each vertex x is assigned a label to specify the region
space of x . We define

1 1 2 2 () ()((,),(,), ,(,))label r x r xx p d p d p d

where:
 r x : The distance of xfrom the root of the tree.

ip : The plane equation that partitions the current region

into two parts.

id : Determines one side of the plane
ip .

1 1 () 1 () 1() ((,), ,(,))label r x r xparent x p d p d

1 1 () ()() ((,), ,(,)),label r x r xsibling x p d p d Where
id is the opposite

side of d .i

,labelroot i.e. the empty string.

We treat the labels as strings. The expression
1 2l l means

that
1l is a prefix of

2l , | |l represents the size of l (i.e. the

number of (,)i ip d pairs) and is the concatenation operator.

Also,
def

[] { | }labell x V l x where l is a label and V is the vertex

set of the partition tree. Obviously, for a vertex x , | | ()labelx r x .

4. Design Principle of RAQ

RAQ is a structure on the nodes of a network. Each node
maps to one point in the d dimensional search space. A
partition tree Ptree is constructed over the points and thus
each node corresponds to a single cell. We say that a node
owns its cell and is responsible for providing data to the
queries targeting any point in that cell. Since there is a one-
to-one map between nodes and the leaf points of the partition
tree, we use them interchangeably. So, for example, we
assume having labels for each node.

Moreover, each node has several links to other nodes of
the network. Each link is basically the addressing
information of the target node which can be its IP address.
The links are established based on the partition tree
information and the following rule.

Connection Rule: Consider node x and its label

1 1 2 2((,),(,), ,(,))label k kx p d p d p d . The connection rule of node

ximplies that xis connected to exactly one node in each of
these | |labelx sets:

1 1 1 1 2 2 1 1 2 2[((,))],[((,),(,))], ,[((,),(,), ,(,))]k kp d p d p d p d p d p d

For example, in Figure1, node 1 is connected to one node
in each of these sets: {2}, {4}, {6, 7, 8}. We will show that
the join and leave mechanisms guarantees the maintenance
of connection rule over the network.

The CSI Journal on Computer Science and Engineering, Vol. 6, No. 2 & 4 (b), 2008 3

Lemma 1. An arbitrary chosen vertex has link to (log)O n

other nodes in the network.
It is important to note that the partition tree is not directly

maintained by the elements of RAQ; given the coordinates
and the labels of the leaves, all information of the partition
tree can be uniquely obtained, and these are the only data
which are maintained by the nodes of the network. In fact,
the partition tree is the virtual data structure of RAQ.

It is obvious that Ptree is a balanced tree with the height
of (log)O n when it is first constructed. We will argue that this

property holds even in the dynamic environment where the
nodes join and leaves the network.

5. Exact Match Query

In RAQ, exact-match queries are of the form Exact-
Query(target, metadata). The value of target is the
coordinate of the point that is searched for and \emph{meta-
data} contains the data to be used after the query reaches the
target. Note that the queries aim to reach the target and the
responses vary in the different cases. As mentioned, the
target of a query is a node whose region contains the query
target point.

We say, a point p matches a label l at levelk , if k is the

greatest value of i such that the subspace induced by a vertex

x with 1 1 2 2((,),(,), ,(,))label i ix p d p d p d . Contain p and
labelx l

In other words, say l represents a leaf y in Ptree. Then, x

is the lowest common ancestor of y and the node

containing p .

Lemma 2. Suppose node x receives a query targeting
point p and pmatches

labelx at levelk . If | |labelk x then the cell

of x contains p . Otherwise, x has a link to a node y so that

labely matches p at a level greater thank .

Proof: Let
1 1 () ()((,), ,(,))label r x r xx p d p d . If k x_ label ,

then, obviously, xcontains p . If not, from the connection

rule, we know that x is linked to a node y with

1 1 1 1((,), ,(,))k k labelp d p d y . Therefore, according to the

definition, p matches
labely at a level not less than 1k .

Now, the algorithm for exact match routing becomes
clear. Once the query Q is received by a node x , if xcontains

the target point, then we have done. Otherwise, x sends the
query via a link to a node y with a label that matches the

target point at a higher level. This will continue until the
query reaches the target.

Theorem 1 The exact match query resolves via (log)O n

message passing.
Proof: Suppose the target of query Q is the node x . From

lemma 2, Q will reach to xin at most | |labelx steps and

| | (log)labelx O n . So, the routing operation is

6. Range Query

We assume that a range query Q is of the form Range-

Query(label, pivot, func,
1d ,

2d , metadata) where label

implies that Q must be sent only to the nodes xso that

labellabel x , we denote the label of Q by Q_ label . The initial

value of
labelQ is set to empty string. The value of pivot is the

coordinate of the point that the distances are measured from,
and func is the distance function.

The above range query means that Q should be sent to

every node in the network with the distance of
1 2d d d

from pivot. func can be any distance function F with the
following characteristic: Given a point p , a hyper-cubic

subspace S and a distance d , let { |A x x S and (,) }F x p d .

The problem of whether or not A is empty must be
computable. For example, F can be

pL -norm function, in

which case the answer space of Q is 1/
1 2{ | (()) }p p

i ix d p x d .

To handle the range queries, we use split the space,
duplicate the query method, or split-duplicate for short.
Suppose that node x receives a range query Q and

1 1 () ()((,), ,(,)). ,label r x r x label labelx p d p d Obviously Q x . If
label labelQ x ,

then x itself will give the appropriate response. Otherwise,
we iterate the following sequence of operations:

 Duplicate Q and name the results as
1Q and

2Q .

Set
1 | | 1 | | 1(,)
label label l lQ Q p d and

2 | | 1 | | 1(,)
label label l lQ Q p d .

 If the answer space of Q has intersection with the

subspace induced by
2label

Q , then send
2Q via the link to node

y where
2label labelQ y . Note that by the connection rule, y

exits.
 Iterate split-duplicate operation subsequently on

1Q ,

while the split subspace has intersection with the answer
space.

Lemma 3. If node x receives range query
1Q , then

1Q will

be routed to all nodes y where
label labelQ y , and the intersection

of the cell of y and answer space of
1Q is not empty.

Proof: We prove this by backward induction on | |labelQ . If

| | | |label labelQ x , then obviously
label labelQ x thus the induction

basis holds.
Suppose that x receives the query and the induction

hypothesis holds for k x_ label . If
label labelQ x then x is the

only target of the query and we are done. Otherwise, two
new queries are generated by the algorithm, while the second
query

2Q is sent to its adjacent node via an appropriate link,

if the subspace induced by
2label

Q has nonempty intersection

with the answer space. The size of the labels of these new
queries is increased by one. Thus, by the induction
hypothesis, Q will be routed to all nodes z with

label labelQ z

where the cell of z has a nonempty intersection with the
answer space. The union of the induced spaces of these
labels covers the whole space of

labelQ . The claim is therefore

correct.
Theorem 2. RAQ resolves range queries in at most

(log)O n communication steps. In other words, a query will

be received by a target node by crossing (log)O n intermediate

hops.
Proof: As we mentioned, the basic-queries enters the

system by initializing its label to an empty string. By

H. Nazerzadeh and M. Ghodsi: RAQ: A Range-Queriable Distributed Data Structure … (Regular Paper) 4

lemma3, the range-query will be received by all nodes whose
cells have nonempty intersections with the query answer
space. In each communication step, the size of the query
label is increased at least by 1. Thus, when a node receives a
query, the distance to the source must be (log)O n , or

equivalently the size of the label.

7. Joining and Leaving

In this section, we describe the joining and leaving
mechanism and demonstrate the validity of our claim in
section 4 that the partition tree remains balanced all the time.

Suppose that node xwants to join to the network. x
chooses a fairly random point p , in the space and finds yone

of the active nodes in the network. Several mechanisms can
be adopted for the arriving node to find an active node; we
assume that RAQ uses the same mechanism as in CAN [11].

Sending an exact match query by y to find the node z

whose cell contains p . z divides its cell into two parts, with

one containing the corresponding point of z and the other
includes p . We assume that x possess the cell containing p .

This is just a simple insertion into the partition tree. This is
done by updating the labels of px and pz. Since we are

not directly maintaining this tree, this update is sufficient.
The connections are now updated to follow the given

connection rule: xchooses one random point in each of the
subspaces induced by the labels specified by the connection
rule. For each of these points, say r , z routes an exact match
query to find the node that owns r . Consequently, x
establishes a connection link to this node. of E and F from a,
the vertices b and c can be removed.

Theorem 3. Join operation is done via 2(log)O n message

passing.
Proof: The arriving node finds its region by an exact

match query. By lemma 1, the arriving node has to create
(log)O n connections. Establishing each connection is done by

a exact-match lookup, via (log)O n message passing.

Therefore, the whole operation is completed by 2(log)O n

message passing.

7.1. Leaving Mechanism

Let x be the node that wants to leave the network. After x
leaves the network, its sibling in Ptree will maintain the
region once belonged to x . From Ptree viewpoint, leaving is
just a simple deletion of a leaf in a binary tree, so

labelz and

thus Ptree will be updated easily. The difficult part is
updating the connection links of the nodes that have links to
x . To handle this issue Departure links or for short dlinks,
are defined below.

In RAQ, node b maintains addressing information of a ,
or a dlink to a , when node a establishes a connection link to
nodeb . When bdecides to leave the network, it sends a
message to each of the nodes referred to by its dlinks. In the
following, we denote d-degree of b as the number its dlinks.

Theorem 4. The expected value of d-degree is (log)O n .

Proof: Here we argue the validity of our claim. From the
mechanism described above to establish a connection link,

and from the dynamic structure of the network where the
nodes frequently join to and leave the network, we can fairly
conclude that the probability that a node v has a link to a
node u is equal to the probability that u has a link tov. We
avoid discussing the uncomplicated details of this claim, due
to the lack of space. Accordingly, [] []degree d degreeE v E v for an

arbitrary node v in the network.
Theorem 4.
By lemma 1 and theorem 4, each nodes of the network

maintains the addressing information of (log)O n nodes of the

network.
Consider the time when x is to leave the network. x

sends a departure message to all of its nodes on its dlink. As
mentioned, every connection in RAQ is a link to a subspace,
each of the nodes that receives this departure message,
chooses a new random point, say p , in the corresponding

subspace and sends an exact match query via x to establish a
new connection link to the node that possesses p . After these

operations, x will peacefully leaves the network and the
connection rule of RAQ is maintained.

Theorem 4. The leave operation is done via 2(log)O n

message passing.
Proof: According to theorem 4, (log)O n links must be

updated. Each update is performed by (log)O n message

passing, thus the total number of message passing is 2(log)O n .

According to the discussion, arriving nodes are
distributed all over the space. Thus, the partition grows
uniformly and remains balanced. Uniform distribution of the
nodes also implies that the nodes leave the network randomly
in the entire space. We can thus conclude that the claimed
proposition about the balancing of the partition tree is valid.

8. Conclusion

In this paper we presented RAQ, a range-queriable
distributed data structure for peer-to-peer networks to
organize the multidimensional data it holds, and to efficiently
support exact and range queries on the data. Our structure is
easy to implement and use (log)O n memory space for each

of its n nodes. The exact match query can be performed, as
in other works, by (log)O n message passing. The main

contribution of this paper is that the structures broadcast the
range query to the target nodes within at most (log)O n link

traversing steps. We showed that all properties of RAQ can
be maintained when nodes join the network or leave it.

We are currently working on other extensions of the
RAQ model, including its probabilistic model to reduce the
complexity of the degree of the nodes in the network. We
also intend to validate our results through experimental
evaluation with real data. Other ideas can be to design a fault
tolerant model to handle different faults such as the situation
the nodes abruptly leave the network or abstain to handle the
queries temporarily. Load balancing is another important
property of the RAQ to look at. In this case, we are going to
study the situations that the data points are not uniformly
distributed in the search space; also, the computing power of
the nodes of network are different. Further works on these
topics are underway.

The CSI Journal on Computer Science and Engineering, Vol. 6, No. 2 & 4 (b), 2008 5

References

[1] J. Aspnes, y. Kirschz, and A. Krishnamurthy, "Load
Balancing and Locality in Range-Queriable Data Structures,"
Proc. of the Annual ACM symposium on Principles of
Distributed Computing, pp. 115-124, 2004

[2] J. Aspnes, and G. Shah, "Skip Graphs," Proc. of the
Symposium on Discrete Algorithms, 2003.

[3] F. Banaei-Kashani, and C. Shahabi, " SWAM: A Family
of Access Methods for Similarity-Search in Peer-to-Peer
Data Networks," Proc. of the Conference on Information and
Knowledge Management, pp. 304-313, 2004.

[4] Gnutella, http://gnutella.wego.com.

[5] J. Gao, and P. Steenkiste, "An Adaptive Protocol for
Efficient Support of Range Queries in DHT-based Systems,"
Proc. of the IEEE International Conference on Network
Protocols, pp. 239-250, 2004.

[6] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman, "SkipNet: A Scalable Overlay Network with
Practical Locality Properties," Proc. of the USENIX
Symposium on Internet Technologies and Systems, Vol. 9
2003.

[7] D. R. Karger, and M. Ruhl, "Simple Efficient Load
Balancing Algorithms for Peer-to-Peer Systems," Proc. of
the ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 36-43, 2004.

[8] J. Kleinberg, "The Small-World Phenomenon: An
Algorithmic Perspective," Proc. of the ACM Symposium on
Theory of Computing, pp. 163-170, 2000.

[9] D. Malkhi, M. Naor, and D. Ratajczak, "Viceroy: A
Scalable and Dynamic Emulation of the Buttery," Proc of the
ACM Symposium on Principles of Distributed Computing,
pp. 183-192, 2002.

[10] H. Nazerzade, "Making Querical Data Networks
Navigable," Proc. International Conference on Informatic,
2004.

[11] S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp,
"A Scalable Content-Addressable Network," Proc. of the
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pp. 161-172,
2001.

[12] S. Ratnasamy, J. Hellerstein, and S. Shenker, Range
Queries over DHTs, Technical Report, IRB-TR-03-009, Intel
Research, 2003.

[13] A. I. T. Rowstron, and P. Druschel, "Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems," Proc. of the International Conference
on Distributed Systems Platforms, pp. 329-350, 2001.

[14] R. Seidel, "Exact Upper Bounds for the Number of
Faces in D-Dimensional Voronoi Diagrams," DIMACS
Series, Vol. 4, American Mathematical Society, 1991.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, "Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications," Proc. of the Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pp. 149-160, 2001.

Hamid Nazerzadeh is a post-doc
researcher at Microsoft Research, New
England. He received his Ph.D. in
Operations Research from Stanford
University, under the supervision of
professors Amin Saberi and Ashish
Goel and prior to that, he received his

B.Sc. in computer engineering from Sharif University under
the supervision of professor Ghodsi. He will join Information
and Operations Management department at USC Marshall
School of Business as an assistant professor in 2011.
E-mail: hamidnz@microsoft.com

Mohammad Ghodsi received his BS in EE
from Sharif University of Technology
(SUT) in Iran in 1975, MS in EECS from
UC Berkeley in 1978, and PhD in computer
science from Pennsylvania State
University, in 1989. He has been a faculty
member of SUT since 1979. Presently, he is

a full professor in computer engineering department of SUT,
Tehran, Iran. His main research interests include design of
efficient algorithms, computational geometry, and parallel
and systolic algorithms.
E-mail: ghodsi@sharif.edu

* This work has been supported by a grant from IPM School of Computer
Science (No. CS1384-2-01).

Paper Handling Data:

Submitted: 11.15.2006
Received in revised form: 08.16.2010
Accepted: 11.16.2010
Corresponding author: Dr. Mohammad Ghodsi,
Computer Engineering Department, Sharif University of
Technology, Tehran, Iran.

	vol6-no2&4(b) jeld

