
ParLeda: A Library for Parallel Pro
essing in ComputationalGeometry Appli
ationsMohammad Ghodsi Mehdi SharifzadehComputer Engineering DepartmentSharif University of Te
hnologyghodsi�sharif.a
.ir, shzadeh�yahoo.
omAbstra
tParLeda is a software library that provides the basi
 primitives needed for parallel im-plementation of
omputational geometry appli
ations. It
an also be used in implementinga parallel appli
ation that uses geometri
 data stru
tures. The parallel model that we useis based on a new heterogeneous parallel model named HBSP whi
h is based on BSP and isintrodu
ed here. ParLeda uses two main libraries that are widely used: MPI for its messagepassing in the parallel environment and LEDA for its data stru
tures and
omputations. Dy-nami
 load balan
ing and repli
ating C++ obje
ts are two key features of this library. Thislibrary was implemented after a survey in resear
hes on parallel
omputational geometryalgorithms and sele
tion of their
ommon primitives.Keywords: Computational Geometry, Parallel Pro
essing, Load Balan
ing, LEDA, MPI,ParLeda.1 Introdu
tionResear
hers in many �elds of s
ien
e and engineering have a never-ending demand for more pro-
essing power and for in
rease in the
omputation eÆ
ien
y. Computational Geometry (CG)problems with extensive amount of
omputation and huge input/output size are ex
ellent
an-didates for parallel implementation. For example, DARPA Ar
hite
ture Workshop Ben
hmarkStudy, inserted four
omputational geometry problem in the eleven problem list whi
h they hadprovided for performan
e evaluation of parallel ar
hite
tures [7℄.Implementation of parallel CG appli
ations is a quite time
onsuming job and needs goodattention to many details. The purpose of this paper is to present issues involved in implementinga software library,
alled ParLeda, that provides a set of general parallel primitives to be usedin parallel implementation of most appli
ations with geometry data stru
tures, spe
ially CGappli
ations. The primitives are sele
ted su
h that the programmers are relieved from somedetails of the parallel implementation.To sele
t a good set of basi
 parallel primitives, we have studied eÆ
ient parallel algorithmsused for di�erent
lassi
al CG problems (su
h as
onvex hull, triangulation, et
.) and re
ognizetheir basi

ommon parallel primitives. These primitives are then de�ned in a general settingand are implemented as programming API for the proposed software library.1

The parallel
omputation model whi
h ParLeda is based on is a heterogeneous model namedHeterogeneous Bulk Syn
hronous Parallel (HBSP) whi
h uses heterogeneous
omputation unitsin BSP1 model.Most parallel
omputational geometry algorithms use some
omputational phases whi
hshare
ommon algorithmi
 behavior but di�er in input data types. Most of these phases are not
omputational geometry spe
i�
 and are used in another parallel algorithms too. In designingParLeda, we have suggested an abstra
t de�nition for su
h phases whi
h is data and algorithmindependent. This idea has been taken from Morin's resear
h in [4℄ where has suggested anAPI for a library named PLeda and has de�ned some basi
 parallel operators for
omputationalgeometry problems. However, the design and implementation of this library has been done froms
rat
h.As ParLeda works on a heterogeneous network of UNIX ma
hines, we have designed andimplemented algorithm spe
i�
 load balan
ing methods in the library whi
h will be explainedlater in this arti
le. At the end of this paper, we will show a sample of programming withParLeda API.2 Previous WorksIn this se
tion we present some resear
h on parallel CG problems we have
onsidered in oursurvey.Puppo, et al. developed a parallel algorithm for terrain Delaunay triangulation and imple-mented their algorithm on a CM-2 ma
hine [12℄. The problem had been addressed by severalother authors in the literature but they have had an a
tual parallel implementation for the �rsttime. Y. Ding and P.J. Densham [13℄ presented a parallel algorithm for
onstru
ting Delaunaytriangulation whi
h uses a dynami
, re
ursive and altering bise
tion approa
h to
ompose arasterized spa
e into partitions of whi
h lo
alized triangulation are
onstru
ted. The algorithmwas implemented on a distributed memory transputer and the results were presented for a rangeof problem sizes.G. Hristes
u [10℄ addressed the problem of eÆ
ient parallel triangulation methods for a�nite set of points in the plane and presented two approa
hes for the problem and implementedthem on a hyper
ube. P. Magillo and E. Puppo [11℄ reviewed examples of parallel algorithmsfor di�erent problems of terrain modeling and visualization. They have
onsidered di�erentprogramming paradigms and di�erent ar
hite
tures and have
onsidered both the theoreti
aland pra
ti
al aspe
ts of this problem.As an another resear
h in parallel terrain modeling problems, Y. Ansel Teng, et al.[16℄presented a parallel algorithm with O(log2n) time
omplexity for
omputing the visible pointsof a polyhedral terrain from a given viewpoint. They improved the algorithm proposed by Katz,et al.A. Clematis, et al [14℄ presented their experien
e in parallelising, in a systemati
 way, a
lassof Geographi
al Information Systems appli
ations. They used PVM and Linda as
ommuni
a-tion libraries for spatial data handling. In a resear
h arti
le S. C. Ro
he and B. M. Gittings [15℄dis
ussed the e�e
tiveness of both automati
 and manual parallelising te
hniques in GIS appli-
ations. They have used these te
hniques in a polygon line shading algorithm and
onsidered theresults. M. J. Atallah and M. T. Goodri
h [7℄
onsidered some well-known CG algorithms like1Bulk Syn
hronous Parallel 2

onvex hull, interse
tion of half-planes, kernel of a simple polygon, distan
e between two
onvexpolygons, 3-dimensional maxima, and the visibility problem in the framework of parallelism.They have reminded that as many of CG problems arose in real time appli
ations related toGIS, CAD/CAM, et
 we need to solve them as fast as possible and for many of these problems,however, we already are at the limits of what
an be a
hieved through sequential
omputation.Thus, it is natural to study what kinds of speed-ups
an be a
hieved through parallel
omputing.M. J. Attallah in [5℄ studied some typi
al CG problems and the parallelisation of their best al-gorithms on parallel ma
hine models like PRAM, Mesh, hyper
ube and some hybrid models. Hestated that previous work in parallel CG had been mostly theoreti
al and only some resear
hershave developed spe
ial purpose parallel CG algorithms for spe
ial parallel ma
hines.As the �rst general experimental work on parallel CG, Patrik Morin [4℄ de�ned the API ofa general parallel CG library to be used by CG programmers in order to develop parallel CGalgorithms. He has
alled his LEDA [2℄ based library PLEDA.In
ontext of repli
able obje
ts that we use in our implementation, many ideas have beendeveloped in order to provide parallelism for an obje
t oriented language like C++. Theirapproa
h is based on implementing
lasses whi
h
an provide parallelism in their methods and
an be used for sending and re
eiving data in a parallel obje
t oriented environment. In thisway, some libraries like Para++ [19℄ have been developed. Many of these libraries are in fa
tsoftware shells on
ommuni
ation libraries like MPI or PVM and only some of them like Dome[20℄ provide a distributed environment for sending and re
eiving large data stru
tures as ve
torsor arrays. Some approa
hes for parallelism has been developed in language stru
tures. Sothe modi�
ations have been done in the original language to generate a parallel programminglanguage. As we know none of these approa
hes have primitives for
ommuni
ating C++ obje
tsbetween nodes of a parallel ma
hine. Only some of them have features for spe
ial data typeslike arrays and lists [21, 22, 23℄.3 ParLeda in Appli
ation DevelopmentParLeda has been designed after studying many
lassi
al parallel CG algorithms with the purposeof retrieving
ommon basi
 primitives. The library provides basi
 primitives for partitioningthe domain of problem and features for load balan
ing between
omputation units. ParLeda'sdesign and implementation
on
epts are platform independent and it is portable. MPI library, insituation of a message passing standard that has been implemented on several di�erent platformsand portability is one of its design goals, plays a basi
 role in ParLeda's fun
tionality and preparesan environment for message passing over a TCP/IP based network. Some API fun
tions of thislibrary has been
hanged to be used in parallel CG appli
ations.ParLeda is also based on a a publi
 domain software library
alled LEDA2 [2℄. whi
h provideseÆ
ient implementation of many data stru
tures and algorithms on CG and other
ommon areas.Basi
 ParLeda primitives that provide data partitioning use LEDA's data types and
an easilybe used in data parallel programs that use LEDA data types as the building blo
ks of theirdata area. Developers in other relevant �elds like GIS
an use ParLeda in
onjun
tion withtheir appli
ation spe
i�
 libraries. In other words, one
an build spe
ial purpose libraries forCG related appli
ations like GIS or
uid dynami
s appli
ations over ParLeda. In the role of aninterfa
e, ParLeda provides parallel pro
essing
on
epts (data partitioning, load balan
ing, et
.)2Library of EÆ
ient Data stru
tures and Algorithms3

HardwareSoftwareLEDA MPIParLedaCG Spe
ial Purpose LibrariesParallel Appli
ation

Figure 1: ParLeda in Parallel Appli
ation Developmentand programmers
an be relieved from the parallel implementation details and
on
entrate onappli
ation spe
i�
 areas of the solution.Figure 1 depi
ts a layer stru
ture for developing a portable and modular parallel CG relatedappli
ation in ParLeda. Using separate related modules and an eÆ
ient implementation of theinterfa
es between layers
an result in an eÆ
ient design of the solution.4 Computational ModelParLeda is based on a heterogeneous parallel
omputational model, named HBSP whi
h is anextension to BSP model. The idea of design and using su
h model has been originated from[3℄ that used a similar model (HCGM) based on CGM. HBSP uses heterogeneous pro
essorswith di�erent speeds. The speed of pro
essors are
onsidered as model parameters. This speedis a fun
tion of all software and hardware parameters like its virtual memory and pro
essorspeed involved in pro
essor's overall performan
e. A Heterogeneous Bulk Syn
hronous Parallel(HBSP) ma
hine has p di�erent pro
essing units P0, P1, ... Pp�1 with di�erent speeds of S0, S1,... Sp�1 whi
h are integer numbers. The parameter S = Pp�1i=0 Si is denoted as the ma
hine'stotal speed.Ea
h Pi pro
esses a work with amount of W units, in time W=Si. In this model, ea
hpro
essor is aware of the speeds of other pro
essors. The speeds of the fastest and the slowestpro
essor are denoted as Smax and Smin respe
tively.In this way, Pmax = Pminfi:Si=Smaxg and Pmin = Pminfi:Si=Sming are identi�ed as fastestand slowest pro
essors. A typi
al HBSP with 4 pro
essors has been showed in �gure 2. Inthis ma
hine, Pmax = P1, Smax = 2, Pmin = P0 and Smin = 1. In a spe
ial
ase thatS0 = S1 = : : : = Sp�1 the ma
hines is BSP.Two parameters g and l from BSP model are di�erent in HBSP and should be de�ned asaverages on di�erent pro
essing units in parallel ma
hine. Ea
h pro
essor has its own lo
almemory with a size dependent to its speed. As speeds of pro
essors are not the same, a uni�eddistribution of problem data
auses an unbalan
ed pro
essing load. So a good distribution4

S0 = 1S1 = 2S2 = 1S3 = 2 P0memoryP1memoryP2memoryP3memory Inter
onne
ting networkHHHHHj ������AAAU ����Figure 2: an HBSP with 4 pro
essorsmethod should send more data to the faster pro
essors to gain better performan
e. We willexplain data partitioning methods for heterogeneous pro
essors in se
tion 5.5 Data Partitioning/Moving Te
hniquesMost parallel CG algorithms are data parallel in nature. In these algorithms, partitioning ofproblem data set is an important issue and the relation between two neighboring data subsetsand the size of ea
h are as important.In ea
h partitioning method, a relation � exists between ea
h two neighboring partitions.This relation is de�ned based on domain type. As an example, when we divide 2-dimensionalpoints into two right and left subsets with a verti
al line, we use a relation � for x
oordinateof points.For a balan
ed partitioning we should
onsider the size of ea
h resulting subset. Somemethods use regular shaped partitioning but others use unique data sizes in partitions whi
hhave no
ommon shapes.ParLeda provides data partitioning methods for
ommon
ases whi
h we have observed inparallel CG problems. These methods are explained below. We have determined no shape forthe area in
luding sele
ted geometri
 data sets in ParLeda, the only
omputed parameter is thesize of partitions.5.1 Random SamplingRandom parallel algorithms use random sampling as a eÆ
ient tool. Random sampling is
hoosing random subset with size O(r) of a data set with size n. This subset is sent to oneof the pro
essors and that pro
essor sends the results to other pro
essors after the required
omputation. As Pmax is the fastest pro
essor in HBSP ma
hine, it would be better to send therandom sample to this pro
essor. The algorithm is something like the following:Algorithm 11. Ea
h pro
essor Pi
hooses ea
h data item in its lo
al set for random set with the probabilityof rn .2. Chosen subsets in ea
h pro
essor are sent to one of them (Pmax).5

5.2 Linear PartitioningIf we assume that S is the set of problem data and the relation � is a partial ordering on S,the linear partitioning of S is dividing it to p individual subsets S0, S1, ... , Sp�1 so that for allx 2 Si and y 2 Sj that i < j we have x � y.Most parallel algorithms use linear partitioning as an initial stage. Sorting is a spe
ial
aseof linear partitioning whi
h all subsets reside on one ma
hine's lo
al memory. The followingalgorithm for HBSP model is a typi
al linear partitioning method:Algorithm 21. Ea
h pro
essor
hooses a random sample of its data set with size O(r) (r is a
onstant)using Random Sampling algorithm and sends it to pro
essor Pmax.2. Pmax sorts re
eived subsets. We assume that the re
eived data are inserted in sorted listK0, K1, ... , Kpr�1.3. Pmax
omputes p+ 1 splitters s0, s1, ..., sp among the list data items.si = 8>><>>: �1 if i = 0KlPij=0 rjm if 0 < i < p1 if i = prj is the share of pro
essor Pj of a data set with size pr.4. Pmax sends splitters to all other pro
essors.5. Ea
h pro
essor Pi puts data item x of its subset into bu
ket Bij if and only if sj � x � sj+1.6. Ea
h pro
essor Pi sends the data items in bu
ket Bij to Pj .5.3 Random PermutationRandom permutation is an approa
h for load balan
ing between pro
essors of a parallel ma
hinein whi
h the problem data are sent to involved pro
essors randomly. If the involved pro
essorsare similar, we should apply a homogeneous data distribution. But in HBSP uses the pro
essorspeeds in data distribution. The algorithm is:Algorithm 31. Ea
h pro
essor Pi sends ea
h data item to one of p bu
kets Bi0, ... , Bip�1 in a random way.The probability of sending ea
h data item to bu
ket Bij is equal to Probj. (Pp�1j=0 Probj =1)2. Ea
h pro
essor Pi sends the data items in bu
ket Bij to Pj .The probability Probj is
omputed based pro
essor's work load. By means of a load balan
ingmethod from time
omplexity of the
omputation algorithm whi
h will be applied on de�neddata sets, we
an determine ea
h pro
essor work load. In this
ase the probability of sendingdata to a pro
essor with a high work load is more than another pro
essor.6

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Scatter

GatherFigure 3: S
atter and Gather operators5.4 Global SortingSorting lo
al data sets is the next step after partitioning of problem domain and distribut-ing de�ned subsets. The following parallel sorting algorithm whi
h is a
ombination of linearpartitioning and sequential sorting and has been used in [10℄, is implemented in ParLeda.Algorithm 41. Problem data is partitioned into p subsets using linear partitioning algorithm.2. Ea
h pro
essor sorts its own data set in a sequential way and syn
hronous with otherpro
essors.5.5 S
atter/GatherTwo dual primitives s
atter and gather are used in distributing of a partitioning algorithmde�ned subsets and gathering lo
al results by the root pro
essor. In both operators one pro
essoris in a spe
ial role named root and is responsible for sending and re
eiving of data sets. Theseoperators are shown in �gure 3.6 Repli
able Obje
tsLEDA has implemented the geometri
al obje
ts as C++ obje
ts. So ParLeda must be able toex
hange these obje
ts between di�erent pro
essors in a parallel ma
hine. As API fun
tions ofMPI are implemented in C, we
an not use them to operate on C++ obje
ts. In other words,this library and MPI library
an not be used in pa
king, sending and re
eiving C++ obje
ts andprogrammer should manually pa
k and send their data parts to other pro
essors and rebuildthem from their data parts in the target pro
essor. In this way, we
an restru
ture a new versionof an obje
t similar to original obje
t only in data parts not in behavior.As C++ obje
ts have
ombined the methods and some
ontrol tables like inheritan
e tablebeside data parts, we
an not use MPI transfer fun
tions whi
h have been implemented to workon basi
 data types. Some obje
t properties like inheritan
e and polymorphism
an not bemoved from original obje
t to its new version in another pro
essor.In
ontrast with suggested works, ParLeda has implemented a general approa
h and provideda pro
edure for
onverting a C++
lass to an equivalent repli
able C++
lass. Programmer
an drive his/her
lass based on a repli
able
lass and de�ne
lass virtual methods for pa
kingand sending
lass obje
ts to use MPI fun
tions in order to send and rebuild obje
ts in remote7

pro
essors. He/She
an set the number of sent bu�ers and their sizes to minimize the size ofmessage in
luding obje
t data.The main idea is that we should implement
lasses named repli
able to provide data itemsneeded for
onstru
ting a
opy of an obje
t based on an original obje
t in their interfa
es. Thesedata is de�ned by
lass virtual methods. Two pa
king and rebuilding methods whi
h are dataindependent and use these virtual methods have also been implemented. Any C++
lass whi
his inherited from a repli
able obje
t and de�ne its virtual methods
an be used in MPI fun
tionsfor sending and re
eiving in pro
essors.Every C++ obje
t has a data part and some methods. For repli
ating this obje
t on adi�erent pro
ess or pro
essor we need to know the data part and the dynami
 part of its methods(we
all theses parts extents). So if we have these data in the target pro
ess, we
an rebuildthe obje
t. As an example for a LEDA point obje
t, its x and y
oordinates are the data weneed to rebuild it. So for its repli
ation or immigration (destru
ting original obje
t) we pa
k itsx and y
oordinate, pa
k them and send them to the target pro
ess. In the target pro
ess weshould unpa
k the re
eived bu�er,
onstru
t a point obje
t and set its x and y
oordinates tothe data stored in the re
eived bu�er. This s
enario is repeated for ea
h obje
t.Now, we have a general repli
ation method, but the programmer should need details aboutextents of the obje
t whi
h he want to repli
ate. If LEDA store a
ontrol data in its point
lass,repli
ated obje
t that uses only x and y
oordinate of the original point for its
onstru
ting isnot the same as the original. So, we de�ne two general
lasses for all repli
able
lasses: One,basi
 repli
able
lass whi
h is repli
able but have no repli
able obje
t in its data part. Two,
omposite repli
able
lass whi
h its data part is
omposed of repli
able obje
ts.Ea
h repli
able
lass has virtual methods for the following: 1) providing information aboutextents and their sizes (ex. value of x(size=4bytes), value of y(size=4bytes)). 2) providingnumber of extents (ex. 2), and 3) pa
k and unpa
k methods whi
h pa
k extents in bu�ers orunpa
k them from re
eived bu�ers. The following example shows repli
ating a basi
 repli
ableobje
t named rpoint in a pro
ess:#in
lude <PARLEDA/RPoint.h>point p(3,5);rpoint rp(p, MPI_COMM_WORLD);(void)rp.pa
k();MPI_Send(rp.pbuff(), rp.ppos(), MPI_PACKED, 1, BUFFER_SIZE,rp.get
omm());Rebuilding obje
t in the target pro
ess:#in
lude <PARLEDA/RPoint.h>point p;rpoint rp(p, MPI_COMM_WORLD);MPI_Re
v(rp.pbuff(), rp.plen(), MPI_PACKED, 0, BUFFER_SIZE,rp.get
omm());rp.unpa
k();It is interesting to know that in ParLeda ea
h pro
ess repli
ates an obje
t named Node-Info whi
h has information about its running pro
essor like its speed in other pro
esses. Thisinformation is used for load balan
ing.
8

7 Load Balan
ingIn a parallel environment with homogeneous pro
essors, partitioning of data domain into subsetsof equal size will
ause an equal load balan
e for pro
essors. Examples of data domain
an bethe number of 2-dimensional points in a 2-d
onvex hull problem or the surfa
e of partitions ina triangulation problem.In a heterogeneous parallel ma
hine, however, an equal size partitioning of data would resultin unbalan
ed loads between pro
essors. In this way, faster pro
essors �nish their work fasterthan the slower ones and should wait for possible syn
hronization.Pro
essor P with speed S
an �nish
omputation W in time WS . (S is the parameter we
onsidered in HBSP model de�nition) This time has been
onsidered in ParLeda as a parameterfor partitioning the problem domain. W is interpreted as the algorithm
omplexity of a
ompu-tation step and is a fun
tion over n (problem input size) (W =W (n)). This parameter is de�nedfor ea
h pro
essor based on its data subset and the
omputation needed for this subset. If allpro
essors have the same value for this parameter, we hope that all of them �nish
omputationW in the same time.Given that Pi works on a data of size ni and Wi = W (ni) is the time
omplexity of thiswork, in order to have all pro
essors �nish the work on their lo
al data subsets
on
urrently andat the same time, we should have:W (n0)S0 = W (n1)S1 = : : : = W (np�1)Sp�1For example in a parallel sort we should lo
ally sort lo
al data in ea
h pro
essor afterdistributing global data between pro
essors. As the best time
omplexity of this phase isW (n) =nlogn we should
onstru
t subsets of size n1, n2, ..., np�1 so that:n0logn0S0 = n1logn1S1 = : : : = np�1lognp�1Sp�1Sin
e the amount of Pp�1i=0 ni = n and the values of Si for ea
h pro
essor are known, we
ansolve this set of p equations and p variables and determine the value of ni for ea
h Pi.Lemma 1 In an HBSP ma
hine with p pro
essors P0; P1; : : : ; and Pp� 1 with speeds S0, S1,: : :, and Sp� 1 respe
tively, a
on
urrent
omputation phase with time
omplexity W = W (n)on a data of size n whi
h is distributed between pro
essors will be �nished at the same time inall pro
essors if and only if: W (n0)S0 = W (n1)S1 = : : : = W (np�1)Sp�1Proof:We know that W (ni)Si is the time for
ompletion of work W on data with size ni in pro
essorPi whi
h its speed is Si. So the equation in the above lemma is
lear.In order to �nd ni, we should solve this set of p equations and determine the value of pvariables: (W (n0)S0 = W (n1)S1 = : : : = W (np�1)Sp�1Pp�1i=0 ni = n 9

n and Si are �xed.It is diÆ
ult to solve the set if W (n) is a
omplex formula. So we use a way to determinevalues
lose to problem solution in ParLeda. Determining a range for the parameter W (ni)Si andusing divide and
onquer method are the main idea of the solution.We assume that : S0 � S1 � : : : � Sp�1So we have: n0 � n1 � : : : � np�1It is
lear that the following relation is true:n0 � np � np�1As W (n) is an in
remental fun
tion of n so this relation is true too:W (n0) �W (np) �W (np�1)Now we
an determine the range for value of W (ni)Si :W (n0)S0 � W (np)S0W (np�1)Sp�1 � W (np)Sp�1Or in another word: W (np)Sp�1 � W (n0)S0 = : : : = W (np�1)Sp�1 � W (np)S0The following divide and
onquer algorithm �nds the share of ea
h pro
essor in a balan
eddata partitioning using these two limits for parameter W (ni)Si :Algorithm 51. Initialize two parameters Pt1 and Ptp as the following:Pt1 = W (np)Sp�1Ptp = W (np)S02. Initialize Pt = Pt1+Ptp2 .3. Determine ni for i = 0; : : : ; p� 1 in relation W (ni) = SiPt.4. If Pp�1i=0 ni > n Then Ptp = Pt and follow the algorithm from step 2.5. If Pp�1i=0 ni < n Then Pt1 = Pt and follow the algorithm from step 2.6. In this step we have Pp�1i=0 ni = n and the value of ni are the solution for our problem.10

4 pro
essors 2 pro
essors 1 pro
essor number of points10 15 21 200017 43 60 400026 62 90 6000Table 1: The run time of parallel Delaunay triangulation using ParLeda (se
ond)8 Programming APIParLeda has been based on a C++
lass named ParLeda whi
h has implemented all ParLeda'sfun
tionalities as its methods. A programmer uses these fun
tionalities with
reating an obje
tbased on this
lass. Calling ParLeda's methods is valid after
alling its Init method and isinvalid after
alling Finalize method in sour
e
ode. Init initializes ParLeda and Finalizegra
efully shuts it down. Programmer should initialize MPI before
alling Init with MPI APIfun
tion MPI_INIT. ParLeda
omputes the speed of ea
h pro
essor using number of jobs in itsrun queue and some parameters like size of virtual memory and swap spa
e for load balan
ing.Two methods SetAlg and UnsetAlg are used before and after data transmission phase. Thesemethods set time
omplexity of the next
omputation step in ParLeda.As an example, the following is a global sort whi
h has been implemented using a serialsorting algorithm whi
h time
omplexity of O(nlogn):ParLeda pl(MPI_COMM_WORLD);void GlobalSort(list<int> data) {pl.SetAlg(PL_NLOGN);pl.Partition(data, int_
mp);pl.UnsetAlg();data.sort();} Algorithm's time
omplexity
an be set in ParLeda using
onstants like PL_NLOGN whi
h havebeen de�ned in the library.9 Experimental ResultsWe have implemented a parallel Delaunay triangulation algorithm using ParLeda operators.The algorithm uses a method named \Dividing Wall" for partitioning the whole set of points in2-dimensional spa
e. In another phase, we determine the triangles of �nal triangulation whi
hinterse
t with the dividing wall. Then we triangulate two partition resulted by the wall. Thealgorithm is a parallel master/slave algorithm in whi
h a master pro
ess gathers �nal resultsfrom another pro
esses.In original version of the dividing wall algorithm separates the original set into two subsetsof equal size. But using ParLeda load balan
ing operators we divide the set a

ording to theappropriate pro
essor loads.It's interesting to say that ParLeda implementation of the algorithms is 20less that its originalimplementation in
ase of program lines. 11

4 pro
essors 2 pro
essors number of points2.1 1.4 20003.5 1.39 40003.46 1.45 6000Table 2: The speed-up resulted by running parallel Delaunay triangulation using ParLeda10 Summary and Con
lusionWe have explained the pro
ess of design and implementation of a software library named Parledafor developing parallel CG appli
ations. We have identi�ed
ommon primitives whi
h are usedin parallel CG algorithms. These operators
an be used in
omputational data transmission andfor the balan
ed distribution between pro
essors. ParLeda has implemented typi
al pro
essordata inter
hange methods. Programmers use a global obje
t whi
h has de�ned these methodsin its interfa
e and
an dynami
ally balan
e pro
essor loads. We have de�ned a parallel modelfor our parallel ma
hine named HBSP whi
h has heterogeneous pro
essors.Referen
es[1℄ MPI Forum, \MPI: A message passing interfa
e," Pro
. of Super
omputing '93, 878{883,November 1993.[2℄ K. Mehlhorn and S. Naher, \LEDA: A Platform for Combinatorial and Geometri
 Com-puting," 1994, http://www.mpi-sb.mpg.de/LEDA.html.[3℄ P. R. Morin, \Two Topi
s in Applied Algorithmi
s," M.S. Thesis, S
hool of CS., CarletonUniversity, CA, 1998, Available through URL http://www.s
s.
arleton.
a/ morin.[4℄ P. R. Morin, \PLEDA User's Manual (v0.0)," Personal Communi
ation, 12 De
 1997.[5℄ A. Y. H. Zomaya (Ed.), \Parallel and Distributed Computing Handbook," M
Graw-Hill,1996.[6℄ R. Healy (Ed.), \Parallel Pro
essing Algorithms for GIS," Taylors & Fran
is, 1998.[7℄ M. J. Atallah and M. T. Goodri
h, \Deterministi
 Parallel Computational Geometry," 1993.[8℄ F. Dehne, A. Fabri, and A. Rau-Chaplin, \S
alable Parallel Geometri
 Algorithms forCoarse Grained Multi
omputers," Pro
. ACM 9th Annual Computational Geometry, 298-307, 1993.[9℄ F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar, \A Randomized Parallel 3DConvex Hull Algorithm for Coarse Grained Multi
omputers," 1993.[10℄ G. Hristes
u, \Parallel Triangulation of a Set of Point for Coarse Grained Multi
omputers,"Department of Computer S
ien
e, Rutgers University, O
tober 1994.[11℄ P. Magillo and E. Puppo, \Algorithms for Parallel Terrain Modelling and Visualization,"Parallel Pro
essing Algorithms for GIS, Taylors & Fran
is, 352-386, 1996.12

[12℄ E. Puppo, LS Davis, D. DeMenthon, and A. Teng, \Parallel Terrain Triangulation," Inter-national Journal of Geographi
al Information Systems, 8(2), 105-128, 1994.[13℄ Y. Ding and P. J. Densham, \A Dynami
 and Re
ursive Parallel Algorithm for Constru
tingDelaunay Triangulations," Pro
eedings 6th International Symp. on Spatial Data Handling,Edinburgh, UK, 682-696, 1994.[14℄ A. Clematis, B. Fal
idieno, and M. Spagnuolo \Parallel Pro
essing on Heterogeneous Net-works for GIS appli
ations," International Journal of Geographi
al Information Systems,10(6), 747-767, 1996.[15℄ S. C. Ro
he and B. M. Gittings, \Parallel Polygon Line Shading: The Quest for more
om-putational power from an existing GIS algorithm," International Journal of Geographi
alInformation Systems, 10(6), 731-746, 1996.[16℄ Y. A. Teng, D. Mount, E. Puppo, and L. S. Davis, \Parallelising an Algorithm for Visibilityon Polyhedral Terrains," International Journal of Computational Geometry and Appli
a-tions, World S
ienti�
 Publishing Company, 1995.[17℄ L. De Floriani, C. Montani, and R. S
opigno, \Parallelizing Visibility Computations onTriangulated Terrains," International Journal of Geographi
al Information Systems, 8(6),515-531, 1994.[18℄ Y. Ding and P. J. Densham, \Spatial Strategies for Parallel Spatial Modelling," Interna-tional Journal of Geographi
al Information Systems, 10(6), 669-698, 1996.[19℄ \Para++: C++ bindings for Message Passing Libraries," EuroPvm'95, Sept. 1995, Lyon,FRANCE, http://www.loria.fr/para++/parapp.html.[20℄ J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan., \Dome:Parallel programming in a heterogeneous multi-user environment," Te
hni
al ReportCMU-CS-95-137, S
hool of Computer S
ien
e, Carnegie Mellon University, April 1995,http://www.
s.
mu.edu/afs/
s.
mu.edu/proje
t/ne
tar-adamb/ web/Dome.html.[21℄ MPC++, http://www.rw
p.or.jp/people/mpslab/mp
++/ mp
++.html.[22℄ Dennis Gannon, Shelby X. Yang, and Peter Be
kman, \pC++", Departmentof Computer S
ien
e CICA Indiana University, Bloomington, Indiana, U.S.A.,http://www.extreme.indiana.edu/sage/.[23℄ Petitpierre C., \Syn
hronous C++, a Language for Intera
tive Appli
ations", IEEE Com-puter, September 1998, pp. 65-72, http://diwww.epfl.
h/w3lti/s
pp.html.
13

