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The path-matching problem is to find a set of vertex- or
edge-disjoint paths with length constraints in a given
graph with a given set of endpoints. This problem has
several applications in broadcasting and multicasting in
computer networks. In this paper, we study the algorith-
mic complexity of different cases of this problem. In
each case, we either provide a polynomial-time algo-
rithm or prove that the problem is NP-complete. © 2002
Wiley Periodicals, Inc.
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1. INTRODUCTION

Let G � (V, E) be a graph and S be a subset of its
vertices. A path-matching in G covering S is a collection �
of paths in G, such that every vertex of S is an endpoint of
exactly one path in � and every path in � has both its
endpoints in S. A path-matching is called vertex-disjoint, or
edge-disjoint, if the collection of paths has this property.
The path-matching problem is to find (if possible) a vertex-
disjoint or edge-disjoint path-matching in the given (directed
or undirected) graph that covers a given set S. Other restric-
tions may also be imposed on the path-matching. In this
paper, we only consider restrictions on the length of the
paths. Other restrictions such as an upper bound on the total

length of the paths, the number of vertices used, the maxi-
mum degree of a vertex in the subgraph induced by the
paths, and the weight of the paths in weighted graphs can
also be considered (see Cohen et al. [2] and Wu and Manber
[13]).

The path-matching problem, under the name of pseudo-
matching, was considered by Cohen et al. [2] in the study of
broadcasting and multicasting protocols in cut-through
routed networks. Cohen et al. [2] provided an algorithm for
broadcasting in log n rounds in a cut-through routed
network of n nodes, assuming a model called the line model
[6]. This algorithm is based on finding an edge-disjoint
path-matching at each round. The maximum length of the
paths in this path-matching is a good measure of the time
taken in this round. Therefore, to reduce the total broadcast
time, one approach is to find path-matchings with length
constraints in each round. Other variants of the line model
such as the vertex-disjoint line model were studied by
Cohen and Fraigniaud [1].

A graph-theoretic version of the path-matching problem
was dealt with in Faudree and Gyárfás [7] and Wu and
Manber [13], in which the authors presented some results on
finding perfect path-matchings (i.e., path-matchings cover-
ing all the vertices) in graphs with constraints on the total or
maximum length of the paths. Datta and Sen [5] presented
an approximation algorithm for the weighted case of the
problem. The relationship between the path-matching prob-
lem (with a slightly different definition) and the matroid
intersection problem was studied by Cunningham and
Geelen [4]. Also, several related problems were studied by
Csaba et al. [3] and Yinnone [14]. A generalization of this
problem called S-paths was introduced by Mader [10] (see
also Schrijver [11]).
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We denote each case of the path-matching problem by a
triple. The first component of the triple indicates whether
the input graph is directed (D) or undirected (U); the
second component indicates whether we want the paths to
be vertex-disjoint (V) or edge-disjoint (E); and the third
component indicates the restriction on the length of the
paths: � � k means that the length of each path (i.e., the
number of edges in the path) is required to be at most k, and
� � � means that the path-lengths are unrestricted. Note
that, in general, k is a part of the input, unless otherwise
stated. For example, (U, E, � � 3)-PM is the problem of
finding a path-matching in the given undirected graph such
that the paths are edge-disjoint and the length of each path
is at most 3 (see Fig. 1).

When we say (D/U, V, � � 3)-PM has a property P
(e.g., being NP-complete), it means both problems (D, V, �
� 3)-PM and (U, V, � � 3)-PM possess the property P.
Cohen et al. [2] proved that

● (U, E, � � �)-PM can be solved in polynomial time.
● (U, E, � � k)-PM is NP-complete for general k.

Faudree and Gyárfás [7] proposed a polynomial-time algo-
rithm for (U, E, � � 2)-PM when S � V(G).

In this paper, we prove that (D/U, V/E, � � 2)-PM, (U,
V/E, � � 3)-PM, and (D/U, V/E, � � �)-PM are
polynomially solvable. Also, we prove that (U, V/E, � �
k)-PM is NP-complete for any fixed k � 4 and (D, V/E, �
� k)-PM is NP-complete for any fixed k � 3. Algorithms
are presented in Section 2 and NP-completeness results are
proved in Section 3.

2. POLYNOMIALLY SOLVABLE SUBPROBLEMS

In this section, we provide efficient algorithms for some
of the subproblems of the path-matching problem. In most
cases, the algorithm is based on a polynomial-time reduc-
tion to the following problem:

TWIN-MATCHING PROBLEM

INSTANCE: An undirected graph G, a subset X of vertices
of G, and a set of disjoint pairs ( y1, y�1), ( y2, y�2), . . . , ( yk,
y�k) of vertices of G. The vertices yi and y�i are called twins.

Vertices other than y1, y�1, . . . , yk, y�k do not have any
twin.

QUESTION: Is there a matching M in G such that

● M covers all vertices in X (i.e., every vertex in X is an
endpoint of an edge in M), and

● for each pair of twin vertices, M covers either both or
neither of them?

First, we prove that the TWIN-MATCHING PROBLEM can be
solved in polynomial time.

Lemma 1. TWIN-MATCHING PROBLEM can be solved in poly-
nomial time.

Proof. From the given graph G, we construct another
undirected graph G� as follows: For each pair of twin
vertices ( yi, y�i), we add two new vertices vi and v�i, and
edges yivi, y�iv�i, and viv�i to G. Let G� be the resulting
graph. We prove that G has a twin-matching if and only if
G� has a matching that covers all the vertices of X� :� X �
{ yi, y�i, vi, v�i : i � 1, . . . , k}.

Suppose that G has a twin-matching M. Then, if both of
the twin vertices yi, y�i are covered by M, we add the edge
viv�i; otherwise, we add viyi and v�iy�i to M. The resulting set
of edges is clearly a matching for G� that covers all the
vertices of X�. On the other hand, if G� has a matching M�
that covers X�, it is not difficult to see that M� � E(G) is
a twin-matching for G.

Now, we construct G� by adding a clique of size
�V(G�)�X�� � b to G� and connecting all vertices of this
clique to all vertices in V(G�)�X�, where b is set to either 0
or 1, so that the number of vertices of G� is even. It is easy
to verify that G� has a matching that covers X� if and only
if G� has a perfect matching. Therefore, we can use the
O(�E�V�1/ 2) algorithm for finding perfect matchings in gen-
eral graphs [12] to obtain an O(�E�V�1/ 2) algorithm for the
TWIN-MATCHING PROBLEM. �

Now, we are ready to prove the following theorems:

Theorem 2. (D, V, � � 2)-PM can be solved in polyno-
mial time.

Proof. Assume that a directed graph G � (V, E) and
S � V are given. We construct an undirected graph G� from
G as follows: Corresponding to each vertex u in S, we put
a vertex xu in G�. Let X be the set of these vertices. Also,
for each vertex v in V �S, we put two twin vertices yv, y�v in
G�. Now, for every u � S and v � V �S, if there is an edge
from u to v in G, we connect xu to yv in G�, and if there is
an edge from v to u in G, we connect xu to y�v in G�. If for
some u, v � S there is an edge from u to v in G, we put an
edge between xu and xv in G�.

It is not difficult to see that G has a path-matching with
path-lengths at most 2 if and only if G� has a twin-matching.
Therefore, Lemma 1 completes the proof. �

FIG. 1. An example of (a) (U, E, � � 3)-PM and (b) (D, V, � �

�)-PM. Vertices covered by the path-matchings are marked with squares.
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Theorem 3. (D, V, � � �)-PM can be solved in polyno-
mial time.

Proof. We construct an undirected graph G� from the
given digraph G � (V, E) and the subset S of V. The
construction is similar to the construction in the proof of
Theorem 2, with the only difference that here, if for two
vertices u, v � V �S there is an edge from u to v in G, we
add the edge y�uyv to G�. Notice that there is a one–one
correspondence between the edges of G and the edges of
G�.

It is easy to see that if there is a path-matching in G
covering S the set of corresponding edges in G� will con-
stitute a twin-matching in G�. Conversely, if there is a
twin-matching in G�, the set of corresponding edges in G
constitute a path-matching for G plus a set of disjoint cycles
in V�S. Therefore, G has a path-matching if and only if G�
has a twin-matching. Thus, Lemma 1 completes the proof.

�

Theorem 4. (U, V, � � 3)-PM can be solved in polyno-
mial time.

Proof. Assume that the undirected graph G � (V, E)
and S � V are given. The graph G� is constructed as
follows: Similar to the above proofs, for every u � S, we
put a vertex xu in G�, and for every v � V �S, we put two
twin vertices yv and y�v in G�. Let X � { xv : v � S}. The
edges of G� are determined as follows:

● If there is an edge between u, v � S in G, we put an edge
between xu and xv in G�;

● If there is an edge between u � S and v � V �S in G, we
connect xu to both yv and y�v in G�; and

● If u, v � V �S are adjacent in G, we put an edge between
yu and yv in G�.

It is not difficult to observe that G has a path-matching with
path-lengths at most 3, if and only if G� has a twin-
matching. Hence, Lemma 1 completes the proof. �

The following lemma provides a reduction from the
undirected to the directed case.

Lemma 5. For every fixed k, there is a polynomial-time
reduction from (U, V, � � k)-PM to (D, V, � � k)-PM. Also,
there is a polynomial-time reduction from (U, V, � � �)-PM
to (D, V, � � �)-PM.

Proof. It is sufficient to replace each undirected edge
uv with two directed edges, one from u to v and the other
from v to u. Clearly, a collection of vertex-disjoint paths in
the original graph corresponds to a collection of vertex-
disjoint paths in the resulting digraph, with all paths of the
same length. �

Notice that the above reduction does not work in the
edge-disjoint case. Using the above lemma and Theorems 2
and 3, we can prove the following corollaries:

Corollary 6. (U, V, � � 2)-PM can be solved in polyno-
mial time.

Corollary 7. (U, V, � � �)-PM can be solved in polyno-
mial time.

The following lemma provides another reduction among
subproblems:

Lemma 8. For any fixed k, (U, E, � � k)-PM can be
reduced in polynomial time to (U, V, � � k � 1)-PM. Also,
(U, E, � � �)-PM can be reduced in polynomial time to (U,
V, � � �)-PM.

Proof. For a given graph G � (V, E) and S � V, we
construct a graph G� as follows: Corresponding to each
edge e � E, we put a vertex ye in G�. Also, for every vertex
u � S, we put a vertex xu in G�. For every two edges in G
that share an endpoint, we connect the corresponding ver-
tices in G� by an edge. If u � S is an endpoint of e � E,
we put an edge between xu and ye in G�.

It is easy to see that G has an edge-disjoint path-match-
ing with all paths of length at most k if and only if G� has
a vertex-disjoint path-matching with all paths of length at
most k � 1. �

It is worth noting that the above lemma can also be
generalized for the directed case using essentially the same
proof technique. We can use this generalization and Theo-
rems 3 and 7 to prove the following:

Corollary 9. (D/U, E, � � �)-PM can be solved in
polynomial time.

We need the following lemma in the proof of Theorem
11:

Lemma 10. Let k � 3, G � (V, E) be an undirected graph
and S � V. If there is a (not necessarily edge-disjoint)
path-matching with path-lengths at most k in G covering S,
then G also has an edge-disjoint path-matching with path-
lengths at most k covering S.

Proof. Let M be a path-matching with paths of length
at most k in G covering S, such that the total length of the
paths in M is minimum. We prove that M is edge-disjoint.
Assume, for contradiction, that there are two paths P1 and
P2 in M that are not edge-disjoint. It is easy to see that if we
replace P1 and P2 with their symmetric difference, we
obtain another path-matching M� with a smaller total length
of paths. Furthermore, since k � 3, the length of each path
in M� is at most k. This contradiction shows that M is
edge-disjoint. �
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Now, we can prove the following theorem. Notice that
the k � 2 case of the following theorem is also a corollary
of Theorem 4 and Lemma 8:

Theorem 11. (U, E, � � k)-PM can be solved in polyno-
mial time for k � 3.

Proof. We construct another graph G� as follows: The
vertex set of G� is S, and two vertices are adjacent if and
only if there is a path of length at most k between them in
G. It is clear that G� has a perfect matching if and only if
there is a path-matching in G with all path-lengths at most
k that covers S. By Lemma 10, this is equivalent to the
existence of an edge-disjoint path-matching in G with path-
lengths at most k. �

Theorem 12. (D, E, � � 2)-PM can be solved in polyno-
mial time.

Proof. It is easy to see that any path-matching with
path-lengths at most 2 is edge-disjoint. Therefore, we can
use a technique similar to the proof of Theorem 11. �

We will prove in the next section that (D, E, � � 3)-PM
is NP-complete. However, the next theorem shows that this
problem can be solved in polynomial time if S is an inde-
pendent set.

Theorem 13. (D, E, � � 3)-PM can be solved in polyno-
mial time for instances (G, S) such that S is an independent
set of G.

Proof. We construct an undirected graph G� from G as
follows: Corresponding to each vertex u in S, we put three
vertices au, bu, and cu in G�, and for each edge e in G, we
put two twin vertices ye and ze in G�. For every u � S, we
connect cu to both au and bu. Also, if for some vertex u in
S and edge e � vw there is an edge from u to v in G, we
put an edge between au and ye, and if w � u or there is an
edge from w to u in G, then we put an edge between ze and
bu. There is no other edge or vertex in G�. Let X :� {au,
bu, cu : u � S}. We claim that G has a path-matching
covering S with path-lengths at most 3, if and only if G� has
a twin-matching covering X.

Assume there is a path-matching M in G covering S. For
every path u1u2u3u4 of length 3 in M (u1, u4 � S),
consider the edges au1

yu2u3
and zu2u3

bu4
, and for every path

u1u2u3 of length 2 in M (u1, u3 � S), consider the edges
au1

yu2u3
and zu2u3

bu3
in G�. Let A be the set of all these

edges. It is easy to see that A is a twin-matching, that is, for
every pair of twin vertices, it covers either both or none of
them. Furthermore, for every u � S, A covers exactly one
of the vertices au and bu. Thus, we can match cu with the
unmatched one. By adding all these edges to A, we obtain
a twin-matching of G� that covers X.

Conversely, assume that G� has a twin-matching M�.
Consider an edge e � u2u3 in G, for which both ye and ze

are matched in M�. ye must be matched with xu1
, for some

u1 � S that has an edge to u2. Also, ze must be matched
with either xu3

or xu4
for some u4 � S that has an edge from

u3. In the first case, consider the path u1u2u3, and in the
second case, consider the path u1u2u3u4. Let M denote the
set of all these paths. For every u � S, cu must be matched
with exactly one of au and bu. Therefore, u is either the
head or the tail of one of the paths in M. Furthermore, for
every two paths in M, their second edge is different and
therefore they are edge-disjoint. Thus, M constitutes an
edge-disjoint path-matching for M that covers S. �

3. NP-COMPLETENESS RESULTS

In this section, we prove NP-completeness of several
subproblems of the path-matching problem. We use a re-
duction from the 3-SAT problem (see Garey and Johnson
[8]), similar to the reduction that is used by Itai et al. [9]. In
fact, we use a reduction from the following restricted ver-
sion of the 3-SAT problem, in which, for every variable xi,
the number of occurrences of xi in the formula is equal to
that of x� i. We call this problem Equal Occurrence 3-SAT or
EO-3-SAT. It is easy to see that 3-SAT is reducible to this
problem (see also Itai et al. [9]).

Theorem 14. (D, V, l � k)-PM is NP-complete for any
fixed k � 3.

Proof. It is clear that the problem is in NP. We prove
its NP-completeness by showing a reduction from EO-3-
SAT. First, we show this reduction for k � 3. Let � be an
EO-3-SAT formula in which the literal xi (and, therefore,
x� i) has occurred mi times. We construct a directed graph G
and a subset S of its vertices such that � is satisfiable if and
only if G has a vertex-disjoint path-matching covering S
with path-lengths at most 3.

Corresponding to each variable xi, G has one component
which has { zi, j, yi, j, xi, j, x� i, j, wi, j, vi, j, ui, j : j � 1, . . . ,
mi} as its vertex set and { zi, jyi, j, yi, jxi, j, yi, jx� i, j, xi, jwi, j,
x� i, jwi,( j mod mi)�1, xi, jvi, j, x� i, jvi, j, vi, jui, j : j � 1, . . . , mi}
as its edge set. This component is shown in Figure 2.

Also, corresponding to each clause Ci in �, G contains a
vertex ci, and if the rth occurrence of the literal xi ( x� i) is in
Cj, we put a directed edge from cj to xir ( x� ir, respectively).
Now, let U be the set of all ui, j’s, W be the set of all wi, j’s,
Z be the set of all zi, j’s, and C be the set of all ci’s. If the

FIG. 2. The component corresponding to xi in the reduction from EO-3-
SAT to (D, V, � � 3)-PM.
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size of U � W � Z � C is odd, we add a new vertex to
U. For every two vertices u, u� � U, we put an edge from
u to u� in G. There is no other vertex or edge in G. Let S
:� U � W � Z � C. We claim that � is satisfiable if and
only if (G, S) is a yes-instance of (D, V, � � 3)-PM.

Assume that � is satisfiable, and consider a satisfying
truth assignment t. For every variable xi, if t( xi) � true
(false), consider the set of paths zi, jyi, jx� i, jwi,( j mod mi)�1

( zi, jyi, jxi, jwi, j, respectively) for j � 1, . . . , mi. Let A
denote the set of all these paths. Also, for every clause Cj,
consider a literal xi ( x� i) in Cj that is satisfied by t and
consider the path cjxi,rvi,rui,r (cjx� i,rvi,rui,r, respectively),
where r is a number such that Cj is the rth occurrence of xi

( x� i, respectively). Let B denote the set of all these paths. It
is clear that A � B is a set of vertex-disjoint paths of length
3 that covers Z, W, C, and a subset U� of U. Thus, by
adding a perfect matching in U�U� to A � B, we obtain a
path-matching for (G, S). Therefore, (G, S) is a yes-
instance of (D, V, � � 3)-PM.

Now, assume that G has a vertex-disjoint path-matching
M covering S. Since there is no path of length at most 3
from Z to S�W, therefore M must match every vertex of Z
with a vertex of W. It is easy to see that, for every i, there
are only two possibilities: either zi, j is matched with wi, j by
the path zi, jyi, jxi, jwi, j or it is matched with wi,( j mod mi)�1

by the path zi, jyi, jx� i, jwi,( j mod mi)�1. In the former case, let
t( xi) � false, and in the latter case, let t( xi) � true. Since
�W� � �Z�, every vertex of W must be matched with a vertex
of Z in M. Furthermore, there is no path between two
vertices in C. Therefore, every vertex of C must be matched
with a vertex of U. It is easy to see that this implies that t
is a satisfying assignment for �.

For k � 4, it is sufficient to replace the edges zi, jyi, j,
cjxi,r, and cjx� i,r by paths of length k � 2. The above
argument implies that the resulting graph is a yes-instance
of (D, V, � � k)-PM if and only if � is satisfiable. �

Theorem 15. (U, V, l � k)-PM is NP-complete for any
fixed k � 4.

Proof. The proof is very similar to that of Theorem 14.
We use the same reduction, with all edges replaced by
undirected edges. The only difficulty is in proving that there
is no path of length at most k between Z and S�W or

between two vertices of C. This can be done by observing
that the length of the shortest path between two vertices of
Z is 2(k � 2) � 4 � k � 1, the length of the shortest path
between a vertex of Z and a vertex of U is k � 1, the length
of the shortest path between a vertex of Z and a vertex of C
is 2(k � 2) � 1 � k � 1 (since k � 4), and the length
of the shortest path between two vertices of C is 2(k � 2)
� 2 � k � 1. The rest of the proof is similar. �

Theorem 16. (D, E, l � k)-PM is NP-complete for any
fixed k � 3 and (U, E, l � k)-PM is NP-complete for any
fixed k � 4.

Proof. The proof is very similar to that of Theorems 14
and 15. The only difference is in the component that rep-
resents the variable xi. For the directed case and k � 3, this
component is shown in Figure 3. For k � 3, we replace the
edges zi, jyi, j, cjxi,r, and cjx� i,r by paths of length k � 2. For
the undirected case, we omit the direction of the edges. In
each case, an argument similar to the proof of Theorems 14
and 15 implies that the reduction is correct. �

4. CONCLUSIONS

In this paper, we studied several subproblems of the
path-matching problem with constraints on the length of the
paths. Table 1 shows a summary of our results. There are
several open problems related to the path-matching prob-
lem. For example, complexity of the path-matching problem
for restricted classes of graphs, such as planar graphs, is an
open question. Also, similar to Itai et al. [9], one can
consider the subproblem in which the length of the paths is
restricted to be equal to a given number k. Faudree and
Gyárfás [7] defined a bipartite version of the path-matching
problem in which the set S is partitioned into two subsets S1

and S2 and the paths in the path-matching are required to
match the vertices of S1 with the vertices of S2. All the
above problems can also be considered in the bipartite case.
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FIG. 3. The component corresponding to xi in the reduction from EO-3-
SAT to (D, E, � � 3)-PM.

TABLE 1. Summary of the results.

k 1 2 3 �4 �

(D, E, � � k)-PM P P NPC NPC P
(D, V, � � k)-PM P P NPC NPC P
(U, E, � � k)-PM P P P NPC P
(U, V, � � k)-PM P P P NPC P
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