
Discrete Applied Mathematics ( ) –

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Scheduling tasks with exponential duration on unrelated
parallel machines
Mostafa Nouri a,∗, Mohammad Ghodsi b,1
a Computer Engineering Department, Sharif University of Technology, Tehran, Iran
b Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

a r t i c l e i n f o

Article history:
Received 20 September 2008
Received in revised form 18 June 2012
Accepted 25 June 2012
Available online xxxx

Keywords:
Stochastic parallel scheduling
Multiple choice hyperbolic 0–1
programming

a b s t r a c t

This paper introduces a stochastic scheduling problem. In this problem a directed acyclic
graphs (DAG) represents the precedence relations among m tasks that n workers are
scheduled to execute. The question is to find a schedule Σ such that if tasks are assigned
to workers according toΣ , the expected time needed to execute all the tasks is minimized.
The timeneeded to execute task t byworkerw is a randomvariable expressed by a negative
exponential distribution with parameter λwt and each task can be executed by more than
one worker at a time. In this paper, we will prove that the problem in its general form is
NP-hard, but when the DAG width is constant, we will show that the optimum schedules
can be found in polynomial time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Scheduling is the problem of allocating resources to a set of tasks over time, with the objective of optimizing some
performance measures. By changing the types of resources and tasks, the objective measures and constraints, hundreds of
useful problems can be formulated. Tasks compete for resources, such as CPU, memory, I/O devices, agents in a bank, etc.
Tasks can also have different characteristics, such as ready times, due dates, relative urgency weights, etc. The relations
between tasks can be defined in different ways. In addition, different criteria can be taken into account for measuring the
quality of performance of any schedule.

In this paper, we have defined a new problem. In this problem, called Memoryless Workers (or MW), we have a set of
resources W = {w1, . . . , wn}, called workers, and a set of tasks T = {t1, . . . , tm}. The dependency relations between tasks
are modeled using a directed acyclic graph (DAG) G. The execution time needed for each task t executed on worker w is a
random variable with exponential distribution with parameter λwt . The problem is to find an optimal schedule, such that
the expected completion time for all tasks is minimum.

Our problem is much related to the problem introduced by Malewicz [14], called ROPAS,2 in which there is uncertainty
in the successful completion of a task assigned to a worker. In ROPAS, there are a set of nworkers {w1, . . . , wn}, and a set of
m unit-time tasks {t1, . . . , tm}, whose interdependencies are modeled by a DAG G. For each worker w and each task t , we
are given a probability pwt , which is the probability of successful completion of t when executed by w at any given step. The
goal of ROPAS is to find a schedule to minimize the expected time to complete all the tasks.

The author of [14] proves that his problem is NP-hard and provides a polynomial-time solution to the problemwhen the
precedence graph width and the number of workers are bounded.

∗ Corresponding author. Fax: +98 21 6601 9246.
E-mail addresses: nourybay@ce.sharif.edu (M. Nouri), ghodsi@sharif.edu (M. Ghodsi).

1 This author’s research was partially supported by the IPM under grant No: CS1389-2-01.
2 Recomputation and Overbooking allowed Probabilistic dAg Scheduling.

0166-218X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2012.06.010

http://dx.doi.org/10.1016/j.dam.2012.06.010
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:nourybay@ce.sharif.edu
mailto:ghodsi@sharif.edu
http://dx.doi.org/10.1016/j.dam.2012.06.010


2 M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) –

1.1. Our results

• We will prove that MW is an NP-hard problem in the general case.
• We will propose a simple and optimal solution for multiple-choice hyperbolic 0–1 programming problems, which are a

class of optimization problems in which the objective function is a quotient of two linear functions and the variables are
partitioned into some disjoint subsets and only one variable in each partition can be 1 and the others should be 0.
• We will propose a polynomial time algorithm for MW when the width of G is constant (independent of n,m and other

parameters of the model). The solution is based on a reduction to multiple-choice hyperbolic 0–1 programming problem
which is also solved in this paper. It is an interesting result that the scheduling complexity is polynomially dependent on
the number of workers in contrast to ROPAS.

1.2. Related works

Scheduling has a rich background. Relatively simple scheduling algorithms are studied by researchers in operations
research, industrial engineering and management to manage activities in a workshop, to lower the production cost in a
manufacturing process, etc. in the 1950s. Later in the 1960s, computer scientists also encountered scheduling problems in
the development of operating systems. Introducing complexity theory, they realized that many scheduling problems may
be inherently difficult to solve. In the 1970s many scheduling problems were shown to be NP-hard [1,11,12,16].

Scheduling problems classified based on several factors. In a scheduling problem, theworkersmaybe parallel or dedicated.
Parallel workers do the same functions while dedicated workers are specialized for specific tasks. When the workers are
parallel, they may be identical, i.e. they have equal speeds, or uniform, i.e. each worker has a constant speed, independent of
the tasks, or theymay be unrelated if the speed of eachworker depends on the task it processes. If the workers are dedicated,
there may be three different cases: flow shop, open shop or job shop. In these cases, each job needs to be executed on several
workers.

There may be some precedence constraints among tasks of T . The tasks in T are called dependent if there are two tasks
in T , with restriction in their order of execution. If there are no such pairs of tasks, the tasks are called independent. Usually
a task set with precedence relation is represented as a DAG, in which nodes correspond to tasks and arcs correspond to
precedence constraints.

The problem of optimal scheduling of m tasks on n identical workers to minimize the completion time for all the tasks,
when the preprocessing time of each task is 1, given any arbitrary dependency relations was proved to be NP-hard [21,11].
However, the problem has a polynomial time algorithm when the precedence relations form a tree [10] or the number of
workers is 2 [6]. For this problem, the NP-hardness proof of Lenstra and Rinnooy Kan [11] implies that the best possible
worst-case bound for a polynomial time approximated algorithm would be 4/3, unless P = NP. Most of the other related
problems are also proved to be NP-hard.

For scheduling problems with unit time tasks, that are NP-hard with regard to only arbitrary dependency graphs, we can
find a polynomial time algorithm, if we assume the dependency graph has a boundedwidthw. This is because, in the process
of scheduling tasks, at any time there will be at most 2w possible combinations of tasks that can be executed. Obviously, if
there are more parameters which make the problem NP-hard, assuming those parameters as constants, too, makes the
problem tractable. Möhring [15] and Veltman [23] assumed DAG width is constant and, using dynamic programming,
obtained polynomial time algorithms for multiprocessor scheduling with communication delays.

Scheduling problems with uncertainty are categorized into reactive scheduling, stochastic scheduling, scheduling under
fuzziness, proactive (robust) fuzziness, and sensitivity analysis. Among these categories, stochastic scheduling is the problem
we tackle in this paper. In stochastic scheduling, we need to schedule tasks with uncertain durations in order to minimize
the expected completion time of the tasks. For more information about the classification of scheduling problems under
uncertainty, refer to the survey by Herroelen and Leus [9].

Pinedo and Weiss [17] studied the problem of scheduling of m tasks on two identical parallel workers, when the
preprocessing time of each task is an exponential random variable, and showed that the longest expected processing time
(LEPT) first policy minimizes the expected completion time of all the tasks. They also considered the problem of preemptive
scheduling of m tasks on n uniform workers in [25], and studied the effect of assigning at every moment the task with
shortest or longest expected processing time to the fastest available worker for various cost functions. There are many
works on stochastic scheduling, with different criteria [2,22,24]. To see a full list of works on stochastic scheduling see [16].

In the work related to this paper, Malewicz [14] showed that the difficulty of the ROPAS problem totally depends on
two parameters of the instance, namely the precedence graph width and the number of workers. He proposed a polynomial
time algorithm when both parameters are bounded, and proved that the problem is NP-hard in cases that either parameter
is unbounded. He also showed that if both parameters are unbounded, the problem cannot be approximated within a factor
less than 5/4. More recently, Lin and Rajaraman [13] found an approximation algorithm for ROPAS for some special cases
of dependency graphs with logarithmic approximation ratio.

1.3. Paper structure

The structure of the remaining sections is as follows.We first introduce the required concepts anddefine the newproblem
formally in Section 2. In Section 3 the algorithm for the problem with a restriction is presented. This restriction is on the



M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) – 3

value of DAG width, which we assume is constant. To solve the actual problem we first give a solution for Multiple-Choice
Hyperbolic 0–1 programming. We also show two examples to demonstrate our method of scheduling. In Section 4, the
complexity of the problem without restriction on the value of DAG width is discussed. Finally, Section 5 summarizes the
obtained results.

2. Definitions

In this section we briefly review the required concepts and notations and then formally define the problems.

2.1. Required concepts

Let G = (NG, EG) represent a DAG where NG is the set of nodes and EG is the set of edges. An antichain in G is a subset of
nodes NG, none of the nodes of which is an ancestor of another, i.e. no two are comparable with regard to the parent–child
relation. A famous theorem of Dilworth [5] states that the size of the largest antichain is equal to the minimum number of
paths covering all the nodes; i.e. having each node at least on one path. The size of the largest antichain is defined as the
width of the graph.

In the parallel scheduling problem of our interest, tasks and their relations aremodeled as a DAG. Nodes denote the tasks
and edges represent the precedence relations between the tasks. If v is a child of u, then v can be started only if u has been
finished. It means that a task can only be started if all its parents are already finished. Assuming the subset X of tasks has
been completed, the subset E(X) of tasks, called eligible tasks, is defined as all u ∈ NG − X , such that all parents of u are
contained in X . In the next round, we can start any task in E(X). A subset Y of tasks is said to satisfy precedence constraints
if there is no task in Y whose parent is not.

2.2. Memoryless Workers

We now define the Memoryless Workers problem or simply MW. As in the ROPAS problem [14], there are n workers to
perform m tasks. In contrast to ROPAS, in MW, the duration of executing task t by worker w is a random variable with
negative exponential (simply exponential) distribution. Therefore the time needed for executing a task by a worker is not
fixed (a unit time); instead worker w can execute task t within a time determined by an exponential distribution with
parameter λwt . The goal is to find a schedule that minimizes the expected completion time. The completion time of a set of
tasks is the total time needed to execute all the tasks.

Formally, given a subset X of accomplished tasks (initially empty), in each round the schedule Σ assigns some tasks in
E(X) to the workers, possibly assigning a single task to more than one worker, or assigning nothing to a worker. Σ is a
function that maps X ⊆ NG satisfying precedence constraints, to a function fX : W → (NG ∪ {⊥}). By assigning tasks to the
workers, the schedule waits until (at least) one of the workers executes its assigned task. After completion of one or more
tasks, the accomplished tasks are added to X and Σ reassigns the new eligible tasks, E(X), to the workers.

3. Scheduling algorithms for restricted versions

Aswewill see in the next section, the general case ofMW isNP-hard, sowemust solve the problemwith some restrictions
that make it tractable in polynomial time. This restriction, as stated previously, is to limit the DAG width. In this section we
focus on a polynomial time algorithm for the restricted version of the problem, but before continuing, we first consider a
programming problem which is useful for solving the actual problem.

3.1. Multiple-choice hyperbolic 0–1 programming

In this section we give a solution for multiple-choice hyperbolic 0–1 programming (MCHP). Based on this solution, in the
next section we will solve MW easily. The multiple-choice hyperbolic 0–1 programming can be defined as follows:

(MCHP) Minimize z(x) =

a0 +
m
j=1

n
i=1

aijxij

b0 +
m
j=1

n
i=1

bijxij

m
j=1

xij ≤ 1 i = 1, . . . , n

xij ≥ 0, integer i = 1, . . . , n, j = 1, . . . ,m.

MCHP is a generalization of unconstrained hyperbolic 0–1 programming. The unconstrained hyperbolic 0–1 program
consists of optimizing the sum of ratios of linear functions of binary variables. Hammer and Rudeanu [7] studied the single



4 M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) –

ratio version of the unconstrained hyperbolic 0–1 program. They showed that when all coefficients are non-negative, any
local optimum solution of the problem is also a global optimum solution. They also gave two polynomial algorithms for the
problem in that case. Robillard [20] improved the running time of the algorithm to solve the problem.

Later, Hansen et al. [8] proposed a linear time algorithm that can solve the problem in efficient time assuming that the
denominator of the objective function is always positive. They showed that if the sign of the denominator is unrestricted,
the problem is NP-complete.

Prokopyev et al. [18,19] considered both single-ratio and multiple-ratio unconstrained hyperbolic 0–1 programmings.
They proved that checking whether these problems have a unique solution is NP-hard. They also showed that finding the
global maximizer of problems even with a unique solution is NP-hard.

In order to solve MCHP, we use a linear 0–1 program in the same way Hansel et al. used for their problem. Since
unconstrained hyperbolic 0–1 programming is a special case of MCHP, the claim of Hansel et al. [8] about the sign of the
denominator still holds for MCHP. This linear 0–1 program is shown in the following theorem.

Theorem 3.1. Assume the denominator of the objective function of MCHP is always positive. Let z∗ denote the optimal value of
MCHP. x∗ is the optimal solution of MCHP iff it is an optimal solution of the following multiple-choice linear 0–1 programming
problem (MCLP):

(MCLP) Minimize y(x) = a0 +
n

i=1

m
j=1

aijxij − z∗

b0 +

n
i=1

m
j=1

bijxij


(1)

m
j=1

xij ≤ 1 i = 1, . . . , n

xij ≥ 0, integer i = 1, . . . , n, j = 1, . . . ,m.

Proof. Let x∗ be a 0–1 n-vector. Since b0 +
n

i=1
m

j=1 bijxij > 0, dividing (1) by b0 +
n

i=1
m

j=1 bijxij shows that y(x∗) <

0 ⇐⇒ z(x∗) < z∗, which contradicts the definition of z∗; y(x∗) = 0 ⇐⇒ z(x∗) = z∗; and y(x∗) > 0 ⇐⇒ z(x∗) > z∗.
Therefore x∗ is an optimal solution of MCHP if and only if it is an optimal solution of MCLP. �

Theorem 3.2. The optimal value of MCLP can be found by a piecewise linear function of z∗.

Proof. Let z∗ be a fixed value. In order to minimize (1), for each i = 1, . . . , n, we should select the best element (aij, bij)
from the set Si = {(aij, bij)|j = 1, . . . ,m} such that the value of aij − bijz∗ is the minimum value among all possible values,
while it is also negative. If for all elements of Si, this value is non-negative, wewill not select anything from Si, corresponding
to the case that all xij = 0 for j = 1, . . . ,m.

Now consider the following function:

F(z) = a0 − b0z +
n

i=1

fi(z),

where fi(z) = min

minm

j=1{aij − bijz}, 0

.

Obviously for each possible value of z, which is the set of real numbers, R, F(z) determines the optimal value of MCLP.
fi(z) is the minimum ofm linear functions, so fi(z) is a continuous piecewise linear function with at mostm− 1 breaking

points. fi(z) is also a concave function, i.e. any segment connecting two points of fi(z) completely lies below fi(z). This is
because each linear function is concave and the minimum of a set of concave functions is also concave. Therefore F(z),
which is the sum of these continuous, piecewise linear, concave functions is also a continuous, piecewise linear, concave
function with at most n(m− 1) breaking points.

To specify the function F(z) explicitly, we find all the distinct maximal intervals in which F(z) is linear. In each of these
intervals F(z) is defined as a linear function c − dz. The value of c, d is determined by a particular selection of (aij, bij)’s. In
addition, each two adjacent intervals have different expressions, because they differ in selection of at least one (aij, bij). For
each interval we find the best selection of (aij, bij)’s and assign xij = 1 for all the selected (aij, bij)’s and xij = 0 for all the
others, and compute F(z) for this assignment.

The function F(z) gives us the optimal value of y(x) in MCLP for each given z. As we saw in the proof of Theorem 3.1, the
optimal solution x∗ of MCHP is the optimal solution of MCLP when the optimal value y(x∗) of MCLP is 0. Therefore we need
to search for the smallest value of z such that F(z) = 0. This can be easily done by checking each linear part of F(z) and see
if it intersects the x-axis. If this is the case, the value of z for which F(z) = 0, is a candidate for the optimal value of MCHP.
The exact solution is the minimum value among all such candidates.

Because F(z) is a concave function, there are at most two values z such that F(z) = 0. We can use the concavity property
of F(z) to speed up searching for the optimal value of z. The process of finding the intersections of F(z) with line y = 0 can
be accomplished in O(log n) [4]. �



M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) – 5

Algorithm 1 The algorithm for solving multiple choice hyperbolic 0-1 programs.
1: function SolveMCHP(a0, b0, A, B)

◃ A is a n×m matrix stores aij for each i = 1, . . . , n, j = 1, . . . ,m
◃ B is a n×m matrix stores bij for each i = 1, . . . , n, j = 1, . . . ,m

2: for i← 1 to n do
3: LEi ← ComputeLowerEnvelope(A[i], B[i]).

◃ A[i] is the i-th row of A
◃ B[i] is the i-th row of B

4: end for
5: F ← a0 − b0z +

n
i=1 LEi

6: (x, 0)← The leftmost intersection of F with line y = 0.
7: if (x, 0) exists, then return x.
8: end function

The above theorem leads us to algorithm SolveMCHP for the MCHP problem which can be seen in Algorithm 1.
To complete the algorithm SolveMCHP, we should describe themethod for computing the linear pieces of fi(z) efficiently.

It is easy to see that they can be computed in O(n2) by comparing each line aij1 − bij1z with all other lines aij2 − bij2z and
finding the interval in which aij1−bij1z is theminimum compared to other lines. But we can domuch better by the following
geometric approach.

Draw all lines aij − bijz for all j = 1, . . . ,m. We want to compute the piecewise linear lower envelope of these m lines.
Consider dualizing these lines. Each line lij = aij − bijz will be mapped to point l′ij = (−b,−a). The lower envelope of those
lines will be mapped to the upper hull of the convex hull of these points [4]. It is enough to compute the upper hull of the
convex hull of points l′ij for j = 1, . . . ,m. The order of l′ij in the convex hull determines the order of lines lij in the lower
envelope. ComputeLowerEnvelopewhich is presented in Algorithm 2 can be used for computing the lower envelope.

Algorithm 2 The algorithm for finding lower envelope of a piecewise linear function.
1: function ComputeLowerEnvelope(A, B)

◃ A is a vector stores aij for each j = 1, . . . ,m
◃ B is a vector stores bij for each j = 1, . . . ,m

2: LE ← ∅. ◃ Sorted list of lower envelope lines and break points of fi(z)
3: CH ← ConvexHull((−bi,0,−ai,0), . . . , (−bi,m,−ai,m), (0, 0)).
4: for each vertex (p, q) in the upper hull of CH do
5: insert line y = px− q into LE.
6: end for
7: for each two adjacent lines k : y = px− q and l : y = rx− s in LE do
8: insert point (

q−s
p−r ,

qr−ps
p−r ) between k, l.

9: end for
10: return LE.
11: end function

Theorem 3.3. Algorithm SolveMCHP determines an optimal solution of problem MCHP in O(nm log(nm)).

Proof. Algorithm ComputeLowerEnvelope runs in O(m logm) since it will compute the convex hull of m points in
O(m logm) and then for each edge (O(m)) will produce a break point.

Algorithm SolveMCHP uses ComputeLowerEnvelope for each i so this will be done in O(nm logm). Then it merges Bi’s
into Bwhich are n sorted lists of size O(m) in O(nm log n) [3] and finally for each interval computes the ratio for the selection
of xij’s. If we compute the ratio by simply summing the required terms, the total running time will be O(n2m), but since the
differences between each two adjacent intervals are at most in the value of two variables xij1 and xij2 ,

3 we can compute the
new ratio by simply a subtraction and an addition in the numerator and the denominator of the previous ratio. Thus the
total running time will be O(nm logm+ n+ nm log n) = O(nm log(nm)). �

3.2. Scheduling algorithm for MW problem

In this section, we give a solution for the MW problem, based on MCHP. The following lemma proves that the minimum
expected time to completion of tasks across all schedules, denoted by BX is finite when the schedule starts with tasks X

3 If two or more fi(z) have a common break point, the two adjacent intervals differ in more than two values of xij , but in this case the total number of
intervals is substantially reduced.



6 M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) –

already executed. Then, we give a schedule for executing the tasks and prove that it has the minimum expected time to
completion of tasks.

Lemma 3.4. For any set X of tasks that satisfies precedence constraints, BX is finite.

Proof. The proof is very simple, and similar to the proof of Lemma 2.1 in [14]. The general idea is to assign all the workers
to each task one after another and show the expected execution time of this schedule is finite, and so is BX . �

For a set of tasks, X , satisfying precedence constraints, in order to compute BX , we must derive the relationship between
BX and BX ′ for any possible executed tasks. This relation helps us to decide in each iteration how to assign the tasks to the
workers. The next theorem states this relation.

Theorem 3.5. Consider a schedule Σ , a set X of tasks that satisfies precedence constraints and does not contain all sinks of G.
Let the expected time to completion for the schedule starting with tasks X already executed be finite. Let τ(w) be the task that is
assigned to w by Σ(X). Then

TX =
1+


w∈W

(TX∪τ(w) · λwτ(w))
w∈W

λwτ(w)

. (2)

In the above equation, when nothing is assigned to w, we set λwτ(w) = 0.

Proof. Let us first describe the meaning of Eq. (2). Σ assigns a task from E(X) to each worker. Because the distribution
of executing a task by each worker is exponential, and thus memoryless, the expected execution time of each task from
now, given it has not been finished yet, is equal to the expected execution time of that task from the beginning. Therefore
whenever a worker finishes a task successfully, Σ tries to reassign the new set of eligible tasks to the workers.

Let Yw denote the required time to execute τ(w) by w. Yw is a random variable with exponential distribution with
parameter λwτ(w). The required time to finish the first task among all assigned tasks is Y = minw∈W {Yw}. Y is a random
variable with exponential distribution with parameter


w∈W λwτ(w). The expected value of Y is 1/


w∈W λwτ(w), which is

the first term in Eq. (2). TX is the sum of the expected value of Y and the expected time to finish the remaining tasks. The
probability that worker w finishes its task before all other workers, is

λwτ(w)
w′∈W

λw′τ(w′)

.

If we multiply this probability to the expected execution time for the remaining tasks, assuming τ(w) is finished, and sum
over all workers, we will have the expected execution time for the remaining tasks. Therefore the expected time to execute
the remaining tasks will be

w∈W
(TX∪τ(w) · λwτ(w))
w∈W

λwτ(w)

,

which is the second term in Eq. (2).
We now give a formal proof for the theorem. Let RX denote the time needed to execute all tasks, starting with tasks X

already executed. We can write the probability density function (pdf) of RX as

fRX (t) =

w∈W

fY=Yw (t − TX∪τ(w))

=


w∈W


fYw (t − TX∪τ(w)) ·


u≠w

P(Yu > t − TX∪τ(w))


.

In the above equation, the term fY=Yw (t − TX∪τ(w)) is the probability density of success of w before all other workers
exactly at time t − TX∪τ(w), fYw (t − TX∪τ(w)) is the probability density that worker w finishes its assigned task at exact time
t − TX∪τ(w) and P(Yu > t − TX∪τ(w)) is the probability that worker u finishes its task after time t − TX∪τ(w). Therefore we
consider the possibility of success of each worker and sum up the probabilities.

Based on fRX , we can easily compute the expected value of RX , which is TX :

E[RX ] =


∞

0
t · fRX (t)dt

=


∞

0
t

w∈W


fYw (t − TX∪τ(w)) ·


u≠w

P(Yu > t − TX∪τ(w))


dt



M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) – 7

=


w∈W


∞

0
t


fYw (t − TX∪τ(w)) ·


u≠w

P(Yu > t − TX∪τ(w))


dt

=


w∈W


∞

0
(t + TX∪τ(w))


fYw (t) ·


u≠w

P(Yu > t)


dt

=


w∈W


∞

0


(t + TX∪τ(w)) · λwτ(w)e−tλwτ(w)


u≠w

e−tλuτ(u)


dt

=


w∈W


∞

0


(t + TX∪τ(w)) · λwτ(w)e−t


u∈W λuτ(u)


dt

=


w∈W


∞

0
t · λwτ(w)e−t


u∈W λuτ(u)dt +


w∈W


∞

0
TX∪τ(w) · λwτ(w)e−t


u∈W λuτ(u)dt

=


w∈W

λwτ(w)
u∈W

λuτ(u)

2 +

w∈W

TX∪τ(w)

λwτ(w)
u∈W

λuτ(u)



=


w∈W

λwτ(w)
u∈W

λuτ(u)

2 +


w∈W

TX∪τ(w) · λwτ(w)
u∈W

λuτ(u)

=

1+


w∈W
(TX∪τ(w) · λwτ(w))

w∈W
λwτ(w)

and hence Eq. (2) holds. �

Using Eq. (2), we can discuss about the optimum scheduling. We try to express this optimization with a multiple-choice
hyperbolic 0–1 programming. In the previous section, we showed how to solve this problem efficiently.

Let xwt = 1 if the worker w is assigned to task t and xwt = 0 otherwise. In other words, for t = τ(w), xwt = 1, and for
t ≠ τ(w), xwt = 0 otherwise. Obviously τ(w) ∈ E(X), so we can rewrite Eq. (2) using these new variables as

TX =

1+


w∈W


t∈E(X)

TX∪{t} · λwt · xwt
w∈W


t∈E(X)

λwt · xwt
. (3)

We have to add some additional constraints such that for each worker w, there exists at most one t with xwt = 1 and the
others must be 0. The following constraints fulfill what we need:

t∈E(X)

xwt ≤ 1 ∀w ∈ W , (4)

xwt ≥ 0, integer ∀w ∈ W , ∀t ∈ E(X). (5)

Eqs. (3)–(5) demonstrate the characteristic of every schedule, when the set of finished tasks is X . Each different
combination of 0 and 1 for variables xwt , gives a schedule and each schedule can be characterized with a unique sequence
of 0 and 1. So the problem of finding the optimum schedule, when we have finished tasks in X , is equivalent to finding the
minimum value for TX , given Eqs. (3)–(5).

This will lead us to a multiple-choice hyperbolic 0–1 programming, in which we try to minimize TX , given values TX∪{t},
for each t ∈ E(X). In the previous section we gave an algorithm to solve MCHP problems. We can use that algorithm to
solve the problem of scheduling MW. For W = {w1, . . . , wn} and E(X) = {t1, . . . , tk}, the input parameters of MCHP are
as follows: aij = λwitj · TX∪{tj}, bij = λwitj , a0 = 1 and b0 = 0. Since λwitj > 0, the denominator of the objective function
is always positive, unless nothing is assigned to any worker, which is a useless schedule. The details of the algorithm for
finding the optimum value of TX , given values of TX∪{t} can be seen in Algorithm 3.

As it can be seen, the optimum values of TX∪{t} for all tasks t ∈ E(X) are required to find the optimum value of TX . We
compute these values using dynamic programming, similar to the method used for ROPAS by Malewicz [14]. For this, we
create a graph A, called the admissible evolution graph, and for each different set X of executed tasks we add a node to A,
and for each set of executed tasks X and each task t ∈ E(X), we add an edge from node X to node X ∪ t . We start from node
T with TT = 0, which is the node with all tasks executed before we compute the expected time to execute unfinished tasks
for each node. The procedure continues until we compute T∅ which we are looking for.



8 M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) –

Algorithm 3 The algorithm for finding optimum schedule for Memoryless Workers problem.
1: function ComputeMinimumDuration(E(X), Λ, TX+)

◃ E(X) = {t1, . . . , tk}
◃Λ is a n× kmatrix stores λwt for each w ∈ W , t ∈ E(X)

◃ TX+ is a vector stores TX∪{t} for each t ∈ E(X)
2: A← [Λ[i, j]TX+[j]]

◃ A is a matrix, with item in i-th row
◃ and j-th column equal to λwitj .TX∪tj

3: for i← 1 to n do
4: LEi ← ComputeLowerEnvelope(A[i], Λ[i]).

◃ A[i] is the i-th row of A
◃Λ[i] is the i-th row of Λ

5: end for
6: F ← 1+

n
i=1 LEi

7: (x, 0)← The leftmost intersection of F with line y = 0.
8: if (x, 0) exists, then return a.
9: end function

The difference between Malewicz’s method and ours is in the dependency of TX to different assignments of tasks to
workers. In other words Malewicz needs to consider different assignments of tasks to workers and then selects the best
one, which has exponential dependency on the number of workers, but in our method, in each state, based on the result of
MCHP, we select the best assignments of tasks to workers.

The running time of our algorithm, as in ROPAS, grows exponentially when the width of G increases. This is unavoidable,
as we will see in the next section, because if the DAG width is unbounded, MW will be NP-hard. Therefore we assume the
DAG width is limited by a constant and cannot increase arbitrarily.

We now give a bound on the running time of the algorithm. Let d be the width of G. By Dilworth’s Theorem [5], there
are d chains that cover G completely. Let X be a subset of tasks that satisfies precedence constraints. If a task t in a chain is
in X , then all preceding tasks in that chain are also in X . The maximum size of a chain is m, so there are at most (m + 1)w
distinct subsets X that satisfy precedence constraints, which is the number of states for dynamic programming. For each X ,
the number of different values TX∪{t} that must be computed before, so that TX is computable, is |E(X)| which is at most w.
Since the timeneeded to compute TX whileweknowall required values TX∪{t}, isO(n|E(x)| log(n|E(x)|)), which is the running
time ofMCHP, the total time needed for finding the optimum schedule is at mostO((m+1)dnd log(nd)) = O(nd log(nd)md),
which is polynomial when d is bounded. This yields the following theorem.

Theorem 3.6. There is a polynomial time algorithm for solving the MW problem when the width of G is bounded by a constant.
The dependency of the running time of the algorithm to the number of workers is O(n log n).

3.3. Example 1: an interesting special case

Consider the case in which each worker executes all tasks similarly; i.e. for w ∈ W , t ∈ T , λwt = λw . This example
is more general than the example used by Malewicz [14], because in his example, he chose a constant p, such that the
probability of executing each task successfully by each worker is p.

Let X be the set of tasks finished, and E(X) = {t1, . . . , tk} be the set of eligible tasks. By definition,

F(z) = a0 − b0z +
n

i=1

min


k
min
j=1
{aij − bijz}, 0


= 1+


w∈W

min

min
t∈E(X)
{λwTX∪{t} − λwz}, 0


.

In the above equation, the inner min function selects the itemwith the lowest value for TX∪{t}, which means that worker
w is assigned to task t , such that TX∪{t} is the smallest. This is true for all workers, so in this iteration, all workers are assigned
to a specific task, such that, when the task is finished, the minimum completion time is the smallest.

The interesting conclusion here is that the order of the assignment in this example is not important, as long as the
dependency relations between tasks are satisfied; i.e. we can assign all workers to t1, then to t2 and so on. This is because
in each step all workers are assigned to the same task, and this makes the order of assignment unimportant. Therefore we
can compute the optimum execution time, by simply computing the expected time to execute each individual task by all
workers and summing up these values. This can be done in O(mn).



M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) – 9

3.4. Example 2

Consider a set of 5 tasks with dependency relations G in Fig. 1(a) and two workers that can execute the tasks with
parameters listed in Fig. 1(b). Fig. 1(c) shows the admissible evolution of executions of the tasks, A. Each node in A,
represents a set X that satisfies precedence constraints. From each node, there are outgoing edges to other nodes associated
to sets of finished tasks after one step. In each node, the optimum time for executing all tasks, starting from black tasks in
that node executed, is written inside it. The optimum schedule for each node is also shown by assigning each worker to a
task among eligible tasks in that node.

Let us describe computing the optimum schedule for a node. Consider the second node in the fourth level of A, with
expected completion time equal to 0.489. In this node, each worker has three option to work on: t3, t4, t5. In this node, we
have f1(z) = min{1× 0.278− 1× z, 1× 0.358− 1× z, 4× 0.403− 4× z, 0}, which is

f1(z) =

0 if z ≤ 0.278,
0.278− z if 0.228 < z ≤ 0.445,
1.612− 4z if 0.445 < z.

For the second worker we have f2(z) = min{3× 0.278− 3× z, 5× 0.358− 5× z, 2× 0.403− 2× z, 0}, or

f2(z) =

0 if z ≤ 0.278,
0.834− 3z if 0.278 < z ≤ 0.478,
1.79− 5z if 0.478 < z.

We can rewrite function F(z) = 1+ f1(z)+ f2(z) as

F(z) =


1 if z ≤ 0.278,
2.112− 4z if 0.278 < z ≤ 0.445,
3.446− 7z if 0.445 < z ≤ 0.478,
4.402− 9z if 0.478 < z.

Solving equation F(z) = 0, gives z = 0.489, which shows the best tasks forw1 andw2 are t3 and t2, respectively. The optimal
schedule and expected execution time for the node are shown in the graph.

Using graph A, we can easily apply the optimum schedule for executing tasks. We start from the source of A, in which
none of the tasks are executed, and assignworkers based on its optimumschedule. Afterwe saw the first success in executing
a task by the workers, we switch to the associated node in A and choose the optimum schedule for that node, and so on.

It can be easily seen thatA in Fig. 1(c) is similar to the admissible evolution graphof execution inMalewicz’s example [14].
In spite of this resemblance, which is the result of similarity in dependency relations between tasks in these two examples,
the required time for computing the optimum schedule for MW ismuch less than computing it for ROPAS. This is because in
each node in ROPAS, we need to consider all possible assignments ofworkers to eligible tasks and select the best assignment,
which grows exponentially as the number of workers increases, while in MW, it has complexity O(n log n), where n is the
number of workers.

4. Complexity of scheduling

In this sectionwe discuss the complexity of the introduced scheduling problem. Aswe described earlier, wemust restrict
the DAG width so that the problem can be tractable, otherwise it is NP-hard. We will show that if the number of workers is
restricted to two while the DAG width can grow, MW is NP-hard. Because of the similarity of MW to ROPAS, the process is
basically like the proof of NP-hardness of ROPAS when the number of workers is two, with some modifications. This can be
proved using an auxiliary problem that has been defined and proved to be NP-complete by Malewicz [14]. For convenience
we mention the problem here.

Fixed Ratio Many Subsets with Small Union (FIRMSSU)
Instance: Number k, nonempty subsets S1, . . . , S3k of the set {1, . . . , 3k}whose union is {1, . . . , 3k}.
Question: Are there 2k of these subsets whose union has cardinality at most 2k?

We use this problem and prove the NP-hardness of scheduling the Memoryless Workers problem.

Theorem 4.1. Scheduling the Memoryless Workers problem restricted to two workers while the DAG width can grow is NP-hard.

Proof. We reduce an instance of FIRMSSU to an instance of MW by a polynomial reduction, and based on the minimum
expected completion time of tasks of the new problem, we can determine exactly if the answer to the given instance of
FIRMSSU is positive.

Take an instance of FIRMSSU with n = 3k nonempty subsets S1, . . . , S3k on {1, . . . , 3k}. We construct an instance of the
MWproblem. The tasks are arranged in a DAGwith three levels (see Fig. 2 for an example) and in five different sets. For each
i ∈ {1, . . . , n} we have a group of n nodes in A1, labeled with i. For each set Sj, j = 1, . . . , n, we have a node in B2, labeled
with Sj. If in the instance of FIRMSSU, i ∈ Sj, we connect all nodes in the i-th group of A1 to node Sj. We add three more sets



10 M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) –

a b

c

Fig. 1. (a) Dependency graph between tasks, G. (b) Parameters for execution of tasks by workers. (c) Admissible evolution of execution, A, for G.

of nodes to the DAG, a set of 2/3n2 nodes, A2, a set of 2/3n nodes, B1, and a set of 1/3n2 nodes, C2. We add an edge from each
node in A2 to each node in B1 and B2. We also add an edge from each node in B1 to each node in C2.

We use the above described DAG to express the dependency relations between tasks in our new problem. We set the
workers parameters such that the first worker can execute tasks in A1 and B1 with mean time equal to 1 and the second
worker can execute tasks in A2, B2 and C2 with mean time equal to 1. Each worker can execute tasks in the other sets with a
very small parameter λϵ (which wewill later give a bound for), that is, the mean time for executing those tasks is very large.

Assume the answer to the instance of FIRMSSU is positive. Therefore there are 2k subsets from S1, . . . , S3k with union
U such that |U| is at most 2k. If the cardinality of U is less than 2k, add some additional elements from {1, . . . , 3k} so as to
increase the cardinality of U to 2k. Consider the following schedule, which consists of four rounds. In the first round, the
secondworker starts executing tasks inA2 one after the other and the firstworker selects those 2/3n2 tasks ofA1 fromgroups
corresponding to U . After both of them finished their tasks, in the second round, the first worker executes tasks in B1 which



M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) – 11

Fig. 2. A reduction from FIRMSSU to the MW problem with two workers and unconstrained DAG width. Each task in A1 and B1 can be executed quickly
by the first worker and each task in A2, B2 and C2 can be executed by the second worker quickly.

are eligible now, and the second worker executes those tasks in B2 that are eligible. Obviously the number of eligible tasks
in B2 is at least 2/3n2. When both of the workers finished their tasks, in the third round, the first worker starts executing
the remaining tasks from A1 and the second worker starts executing the tasks in C2. In the fourth round, after both finished
their tasks, the remaining tasks in B2 which are at most 1/3n are executed by both of them.

Because in the first three rounds, the expected time to execute a task by each worker is 1, and the number of tasks for
each worker is n2

+ 2/3n, the expected time for the first three rounds is n2
+ 2/3n in this schedule. The expected time to

execute tasks in the fourth round is

1/3n×
1

1+ λϵ

= 1/3n−
n · λϵ

3(1+ λϵ)
.

Because the optimum expected time to execute all tasks is not greater than the expected required time for any given
schedule, the optimum time will be at most n2

+ n− n·λϵ

3(1+λϵ )
which is less than n2

+ n.
Now consider that the instance of FIRMSSU has a negative answer. Pick any schedule to execute the tasks. The union of

any 2k subsets has cardinality at least 2k+ 1. Therefore we need to execute at least 2/3n2
+ n tasks from A1, to make 2/3n

tasks of B2 eligible. We claim after 2/3n2
+ 2/3n tasks from A1 and B1 are finished, there are at least 1/3n2

+ 1/3n+ 1 tasks
that have not been executed yet. This is because (i) after we have executed 2/3n2

+ 2/3n tasks from A1, there are at most
2/3n− 1 eligible tasks in B2 and (ii) all tasks of C2 depend on exactly 2/3n2

+ 2/3n tasks that must be executed before. So
there are 1/3n+ 1 tasks in B2 and 1/3n2 tasks in C2 not executed yet. Based on this reasoning, the expected execution time
for tasks will be at least

(2/3n2
+ 2/3n+ 1/3n2

+ 1/3n+ 1)
1

1+ λϵ

= (n2
+ n+ 1)

1
1+ λϵ

or

n2
+ n+ 1−

(n2
+ n+ 1)λϵ

1+ λϵ

.

If we choose λϵ small enough such that ϵ = (n2
+ n+ 1)λϵ < 1, the optimum expected execution time for tasks will be at

least n2
+ n+ 1− ϵ which is greater than n2

+ n.
Therefore by comparing the minimum expected completion time of the tasks by n2

+ n, we can determine whether the
answer to the instance of FIRMSSU is positive or negative. Since FIRMSSU is NP-complete, computing theminimumexpected
completion time of the tasks in this case is NP-hard. �

5. Conclusion

In this paperwe introduced a new scheduling problembased on the ROPAS [14] problem. The goal of ROPAS is to schedule
some related tasks by someworkers so that the total expected time to execute the tasks is minimum. The relations between
the tasks is modeled by a DAG.

This problem, called MW, differs from ROPAS in how workers execute tasks. In ROPAS each worker can execute a task
successfully by a predetermined probability in a unit time; however in MW each worker can execute a task in a time
determined by an exponential distribution.

We proved that the problem is NP-hard in the general form, unless the width of the dependency graph between tasks is
limited by a constant. We also gave a polynomial time algorithm for the problem in the restricted form. The running time



12 M. Nouri, M. Ghodsi / Discrete Applied Mathematics ( ) –

of the algorithm is O(ndmd log(nd)), where n is the number of workers, m is the number of tasks and d is the DAG width. If
d is constant, obviously the algorithm has polynomial running time.

References

[1] P. Brucker, Scheduling Algorithms, fifth ed., Springer, 2007.
[2] J. Bruno, P. Downey, G.N. Frederickson, Sequencing tasks with exponential service times to minimize the expected flow time or makespan, Journal of

the ACM 28 (1981) 100–113.
[3] T.H. Cormen, C. Stein, R.L. Rivest, C.E. Leiserson, Introduction to Algorithms, McGraw-Hill Higher Education, 2001.
[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, third ed., Springer, 2008.
[5] R.P. Dilworth, A decomposition theorem for partially ordered sets, Annals of Mathematics 51 (1950) 161–168.
[6] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey,

Annals of Discrete Mathematics 4 (1979) 287–326.
[7] P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas, Springer-Verlag, Berlin, Heidelberg, New York, 1968.
[8] P. Hansen, M.V.P. de Aragão, C.C. Ribeiro, Hyperbolic 0–1 programming and query optimization in information retrieval, Mathematical Programming

52 (2) (1991) 255–263.
[9] W. Herroelen, R. Leus, Project scheduling under uncertainty: Survey and research potentials, European Journal of Operational Research 165 (2) (2005)

289–306.
[10] T.C. Hu, Parallel sequencing and assembly line problems, Operations Research 9 (1961) 841–848.
[11] J.K. Lenstra, A.H.G. Rinnooy Kan, Complexity of scheduling under precedence constraints, Operations Research 26 (1) (1978) 22–35.
[12] J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker, Complexity of machine scheduling problem, in: Annals of Discrete Mathematics 1, North-Holland,

Amsterdam, 1997, pp. 343–362.
[13] G. Lin, R. Rajaraman, Approximation algorithms for multiprocessor scheduling under uncertainty, in: SPAA’07: Proceedings of the Nineteenth Annual

ACM Symposium on Parallel Algorithms and Architectures, New York, NY, USA, 2007, pp. 25–34.
[14] G. Malewicz, Parallel scheduling of complex dags under uncertainty, in: SPAA’05: Proceedings of the Seventeenth Annual ACM Symposium on

Parallelism in Algorithms and Architectures, New York, NY, USA, 2005, pp. 66–75.
[15] R.H. Möhring, Computationally tractable classes of ordered sets, in: Algorithms and Order, 1989, pp. 105–193.
[16] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, third ed., Springer Publishing Company, Incorporated, 2008.
[17] M. Pinedo, G. Weiss, Scheduling of stochastic tasks on two parallel processors, Naval Research Logistics Quarterly 26 (3) (1979) 527–535.
[18] O.A. Prokopyev, H.-X. Huang, P.M. Pardalos, On complexity of unconstrained hyperbolic 0–1 programming problems, Operations Research Letters 33

(3) (2005) 312–318.
[19] O.A. Prokopyev, C.N. Meneses, C.A.S. Oliveira, P.M. Pardalos, Onmultiple-ratio hyperbolic 0–1 programming problems, Pacific Journal of Optimization

1 (2) (2005) 327–345.
[20] P. Robillard, (0, 1) hyperbolic programming problems, Naval Research Logistics Quarterly 18 (1) (1971) 47–57.
[21] J.D. Ullman, NP-complete scheduling problems, Journal of Computer and System Sciences 10 (1975) 384–393.
[22] L. Van Der Heyden, Scheduling jobs with exponential processing and arrival times on identical processors so as to minimize the expected makespan,

Mathematics of Operations Research 6 (2) (1981) 305–312.
[23] B. Veltman, Multiprocessor scheduling with communication delays. Ph.D. Thesis, Eindhoven University of Technology, 1993.
[24] R.R. Weber, Scheduling jobs with stochastic processing requirements on parallel machines to minimize makespan or flowtime, Journal of Applied

Probability 19 (1982) 167–182.
[25] G.Weiss, M. Pinedo, Scheduling taskswith exponential service times on nonidentical processors tominimize various cost functions, Journal of Applied

Probability 17 (1980) 187–202.


	Scheduling tasks with exponential duration on unrelated parallel machines
	Introduction
	Our results
	Related works
	Paper structure

	Definitions
	Required concepts
	Memoryless Workers

	Scheduling algorithms for restricted versions
	Multiple-choice hyperbolic 0--1 programming
	Scheduling algorithm for MW problem
	Example 1: an interesting special case
	Example 2

	Complexity of scheduling
	Conclusion
	References


