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Abstract. Determining whether two segments s and t in a planar polyg-
onal scene weakly see each other is a classical problem in computational
geometry. In this problem we seek for a segment connecting two points
of s and t without intersecting edges of the scene. In planar polygonal
scenes, this problem is 3sum-hard and its time complexity is Ω(n2) where
n is the complexity of the scene. This problem can be defined in the same
manner when s and t are any kind of objects in the plane. In this paper
we consider this problem when s and t can be points, segments or convex
polygons. We preprocess the scene so that for any given pair of query
objects we can solve the problem efficiently. In our presented method, we
preprocess the scene in O(n2+ε) time to build data structures of O(n2)
total size by which the queries can be answered in O(n1+ε) time. Our
method is based on the extended visibility graph [1] and a range search-
ing data structure presented by Chazelle et al. [2].
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1 Introduction

The problem of detecting visibility between objects has many applications in
computer graphics, VLSI, motion planning and computational geometry. In com-
puter graphics and simulations, for example, computing the regions illuminated
by a fluorescent lamp in a scene may be needed. As the light source may be in
different positions, we seek for a way to quickly find the lightened up regions
in each position. This can be achieved by preprocessing the scene to do queries
efficiently. However, various versions of visibility problems has been defined.

In this paper, we focus on weak-visibility between objects in a planar polygonal
scene. Two objects s and t are said to be weakly visible from each other (or
simply weakly visible) if a point of s sees a point of t. Two points see each other
if the segment connecting them does not intersect edges of the scene. Given
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two objects and a scene, the problem is whether these two objects are weakly-
visible. When s and t are line segments, it has been proved by Gajentaan and
Overmars [3] that this problem is in the class of 3sum-hard problems and thus
the lower bound of the time complexity of its solutions is Ω(n2). Throughout
this paper n is the complexity of the scene which is the number of its vertices
or edges. Wismath [4] has presented an algorithm for this problem with optimal
O(n2) time complexity. His method is based on the visibility graph which will
be introduced in the next section.

The set of points of the scene that are visible from a point p is called its
visibility polygon and is denoted by VP(p). We know that VP(p) is a star-
shaped simple polygon. Visibility polygon can also be defined for a segment or
polygon of a scene. Visibility polygon of a planar object s, or VP(s), is the set
of the points of the scene that are visible from at least one point of s. Generally
VP(s) is a polygon with holes.

We consider weak-visibility problem for two objects s and t, when these ob-
jects are points, segments or convex polygons. Also, we consider this problem in
two cases: (1) when one of the objects is known in advance and the other one is
given in query time, and (2) when both of the objects are given in query time.
For the first case, we can preprocess the scene based on the given object say s,
so that the queries for each t can be answered efficiently. This is done by first
finding VP(s) in the preprocessing step and then checking the intersection of t
with this region in query time.

In the second case, the scene is preprocessed to build data structures by which
the queries can be answered efficiently. Initially, we assume that the objects are
line segments. In this case, we first preprocess the scene to find its extended
visibility graph, to be explained later. Then we build a multi-level range searching
structure on the edges of this graph. This range searching structure is based on
the scheme proposed by Chazelle et al. to be discussed in the next section. Having
this structure, we can find the edges of the extended visibility graph that are
intersected by both query segments. We will show that if the intersection is not
empty, then the query segments are weakly visible, otherwise, it is sufficient to
check the weak-visibility of the endpoints of the query segments.

When the query objects are convex polygons, we will prove that the convex
polygons are weakly visible if and only if two of their edges are weakly visible.
Therefore, to solve the problem for convex objects, we just need to solve the
problem for any pair of edges.

In a brief summary, we achieve the following results on weak-visibility problem
in planar polygonal scenes when the complexity of the query objects is constant
and an object can be a point, a segment, or a convex polygon.

– The weak-visibility between a query object and a given point can be answered
in O(log n) time using O(n log n) and O(n) preprocessing time and space,
respectively.

– The weak-visibility between two query points can be answered in O(
√

n log n)
time using O(n log2 n) and O(n

√
n log4.3 n) preprocessing time and space.
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– The weak-visibility between a query point and a line segment or a convex
polygon can be answered in O(n log n) time.

– The weak-visibility between two query line segments or convex objects can
be detected in time O(n1+ε) using O(n2+ε) and O(n2) preprocessing time
and space, respectively.

Other than the weak-visibility problem, we have proposed a range searching
method for determining the segments of a planar arrangement that are inter-
sected by two given line segments. This solution can also be used in other range
searching problems.

In the rest of this paper, the basic concepts and data structures are discussed
in Section 2. Some properties of weak-visibility are described and proved in
Section 3 and our methods and results are presented in Section 4. The materials
are summarized and concluded in Section 5.

2 Basic Data Structures and Concepts

In this section we introduce the basic data structures and concepts that are
used in our weak-visibility detection methods. We first describe the extended
visibility graph of a scene. The edges of this graph define the boundaries of the
regions with different views. Then, we describe a point location algorithm in
a star-shaped simple polygon. This method help us to solve the weak-visibility
problem when one of the objects is a point. Another problem that we have
to solve as a subproblem in our method is ray shooting problem in a planar
environment. If the environment was a simple polygon, we can do this work
more efficiently than doing it in a planar arrangement as will be discussed next.
Finally, we describe range searching in a planar scene and present a method for
solving an special version of range searching: in a planar scene, find the set of
segments intersected by two query segments.

To solve this problem, we extend the range searching scheme presented by
Chazelle et al. [2]. As will be proved, we can answer this range searching problem
in O(n1/2+ε) using O(n1+ε) preprocessing time and O(n) space.

2.1 Extended Visibility Graph

Consider a set S = {s1, s2, ..., sn} of n segments in the plane. The visibility graph
G = (V, E) is defined as a graph whose vertices are the set of the end points of
the segments in S and there is an edge vivj ∈ E when vi sees vj . It is easy to
show that the number of edges of G is O(n2). Initial algorithms for computing
the visibility graph were proposed by Welzl [5] and Asano et al. [6] with time
complexity of O(n2). Later, Ghosh and Mount [7] developed an optimal output
sensitive algorithm that computes the visibility graph in O(E + n logn) time.
Finally, Overmars and Welzl [8] presented a suboptimal but practical algorithm
that computes the visibility graph in O(|E| log n) time.

The extended visibility graph [1] is defined over the visibility graph by extend-
ing each edge vivj ∈ E at both ends until it intersects a segment in S. Assume
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Fig. 1. The dashed segments are the edges of the extended visibility graph of S =
{s1, s2, s3, s∞}

that sl and sm are the first segments intersected by vivj when it is extended
from its endpoints. If p and q are these intersection points then they are two
vertices of the extended visibility graph and pq is an edge of this graph. In cases
that there is no intersection, a segment s∞ is assumed at infinity that is inter-
sected by all extended edges. Therefore each extended edge of G intersects two
segments in the set S ∪ s∞ and itself is a segment. The set of these extended
edges compose an arrangement of O(n2) possibly intersecting segments in the
plane. Fig. 1 shows a sample extended visibility graph.

Suri and O’Rourke [1] used a modified version of Welzl’s algorithm [5] and
compute the extended visibility graph in O(n2) time. Keil et al. [9] presented
a method that for any edge of the visibility graph, its corresponding edge in
the extended visibility graph can be computed in constant time. Combining this
method and the algorithm of Ghosh and Mount [7], the extended visibility graph
can be computed in O(E + n log n) time.

2.2 Point Location

As a subproblem in our methods, we need to solve a special case of the point
location problem. The general point location problem is to preprocess a planar
subdivision S with n edges, so that we can quickly find the face f of S that
contains a query point q. This problem can be solved in O(log n) query time
using O(n log n) and O(n) preprocessing time and space, respectively [10]. But,
the point location problem that we need to answer is to check whether a query
point q lies inside a give star-shaped simple polygon P .

We can solve this version of point location problem more efficiently than the
general case, when we know a kernel point of P . Recall that a polygon P is
star-shaped when there is a point p inside it such that for any other point p′

inside P , the segment pp′ lies completely inside P . If so, p is said to be a kernel
point of P . Assume that p is a kernel point of P and v1v2...vn are the vertices of
P in counterclockwise order such that pv1 has the least angle with the x-axis.

Having this ordered list of vertices v1v2...vn, we can locate position of a query
point q in this list in O(log n) time by a classical binary search. Assume that
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q lies between vk and vk+1. Then, we must only check whether the segment pq
intersects vkvk+1 or not which can be performed in constant time. Therefore, we
can answer the point location query in O(log n) time only by having a kernel
point and the ordered list of the vertices of P . Trivially, p is a kernel point of
VP(p) and we can use this method for point location on these polygons.

2.3 Ray Shooting

In a planar scene, the ray shooting problem is to find the first segment intersected
by a ray from a given point toward a given direction. We examine this problem
when the scene is a simple polygon and when the scene is a planar arrangements
of segments.

Ray shooting in a simple polygon. The problem of shooting a ray in a simple
polygon was first addressed by Chazelle and Guibas [11]. They showed that it
can be answered in O(log n) time using O(n) preprocessing time and space.
Then, simpler methods were presented by Chazelle et al. [12] and Hershberger
and Suri [13]. The method of Hershberger and Suri is based on finding a Steiner
triangulation of the polygon. In this triangulation, any ray intersect at most
O(log n) triangles and by tracing the set of the intersected triangles, we can find
the first intersection point of the ray and the polygon boundary.

Ray shooting in a planar subdivision. There are many approaches for
solving the ray shooting problem in a planar subdivision. This problem can be
solved using half-plane range searching data structures to be discussed later.
Using this approach, Agarwal and Erickson [14] have shown that this problem
can be solved in O(n1/2+ε) query time using O(n log3 n) preprocessing time and
space, or it can be solved in O(log3n)query time using O(n2+ε) preprocessing
time and space.

Another method with near linear space requirement, is the ray shooting algo-
rithm introduced by Cheng and Janardan [15]. They showed that ray shooting in
an arrangement of n non-intersecting segments can be answered in O(

√
n log n)

by spending O(n log2 n) space and O(n
√

n logω n) preprocessing time, where ω
is a constant less than 4.3. In the case of possibly intersecting segments, the
space increases to O(n log3 n).

2.4 Range Searching

In range searching problems, there is a set of n points in d-dimensional space
and we want to report (or count) the points lying in a region R in this space. In
this paper, we need to solve this problem when P is a set of points in the plane
and R is a half-plane or a triangle.

The first near optimal query time using linear preprocessing time and space
was achieved by Welzl [16]. He used the idea of spanning tree with low cross-
ing numbers and answered the queries in time close to O(

√
n). Matoušek and

Welzl [17] developed a method that solve half-plane range queries in O(
√

n log n)
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time using O(n log n) preprocessing time and space. Chazelle et al. [2] introduced
a simplex range searching method, called CSW, for any dimension d that answer
queries in O(n1−1/d+ε) by using O(n1+ε) preprocessing time and O(n) space, for
any arbitrary small positive constant ε. They also allow a tradeoff between stor-
age and query time, so if one can spend storage of size O(m), where n ≤ m ≤ nd,
the preprocessing can be done on the set of points in time O(m1+ε), so that the
query can be answered in O( n1+ε

m1/d ). This solution comes close to the lower bound,
up to a factor of nε. Since we use this approach for our problem(finding the set
of segments intersected by two given segments), we give an overview of this
method.

We briefly describe the CSW method just for 2 dimension. For a point set S of
n points, a family F = {Ξ1, ..., Ξk} of triangulations of the plane is constructed
such that the size of any one of these triangulations is O(r2) for some constant
r. This family of triangulations has this property that for any line l, there is at
least one triangulation Ξi that only O(n/r) of the set of n points lie inside the
triangles of Ξi that are intersected by l. We denote this triangulation associated
for a line l by Tl. This process is continued recursively for each triangle of these
family of triangulations that contains more that i pints for some constant value
of i. Inside the leaf nodes of this tree the search is done in a standard partitioning
scheme.

Assume that we want to search for points lie inside a half-plane H that is
above a line l. We first find Tl from the above range searching data structure.
The points lie inside the triangles of Tl which are above (below) l are (are not)
inside the half-plane and we must recursively continue the search only over the
triangles of Tl intersected by l. However these triangles only contains O(n/r) of
the points.

The size of this data structure is O(n) and can be constructed in O(n1+ε)
time. Using this data structure, the half-plane range searching (counting) can
be answered in time O(n

1
2+ε).

The above data structure, or generally any other partition tree gives the result
of range searching as the disjoint union of some canonical subsets. As previously
has been used, e.g. by Dobkin and Edelsbrunner [18], these canonical subsets
can further be preprocessed, so that a conjunction of range searchings can be
answered on the point set. It can be shown that using these data structures in
a multilevel fashion does not increase the amount of needed space, but increase
the amount of query time by a poly-logarithmic factor, however since the query
time has a factor nε, this factor can be neglected. Therefore we can use the
data structure of Chazelle et al. recursively to answer a conjunction of range
searchings, without any space/time overhead.

2.5 Common Intersecting Segment Detection

A new problem we encountered while trying to solve the weak-visibility problem
is to determine if any line segment ei from a set E = {e1, e2, ..., en} of n segments
in the plane is intersected by two given segments s and t. We refer to this problem
as CISD for Common Intersecting Segment Detection.
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In order to solve CISD we use the technique described above for half-plane and
triangle range searching. If a segment ei with xi and x′

i as end points intersects
segment s, then xi and x′

i are in opposite sides of the supporting line of s,
denoted by ls. The same statement is true for the endpoints of s, vs and v′s, and
the supporting line of ei, lei . When ei intersects both s and t, xi and x′

i lies in
certain positions. As can be seen in Fig. 2, ls and lt divide the plane into four
regions. Let call them by the position of them relative to ls and lt. If the two
segments are intersecting, one of xi and x′

i lies in UU and the other one in LL,
or one in LU and the other one in UL. But if the two segments do not intersect,
only one of these situations are possible. Therefore in order to detect whether
ei intersects both s and t, we should check the positions of xi and x′

i in that
four regions, and the positions of the end points of s and t in the two regions
separated by lei .

Thus, the CISD problem can be solved in this way: Consider s and t intersect
each other. We first find all segments in E that have one end point in UU and
the other one in LL. We also find all segments that have one end point in LU
and the other one in UL. These segments are the set of segments that intersects
ls and lt. The same thing should be done for end points of s and t. We dualize s
and t and also lei for each ei in the resulting set of segments. In the dual plane,
each lei is mapped to a point and segments s and t are mapped to two double
wedges. In this plane, we should search for points lie in the intersection of two
double wedges corresponding to s and t.

The procedure for non-intersecting query segments is similar, except that in
some cases we should search in only one pair of regions (UU , LL) and (LU , UL).
If both s and t lies in one side of the vertical line drawn from the intersection of
ls and lt, then we must only search intersecting segments that has an end point
in UU and the other in LL. If both s and t lies in different sides of this vertical
line we should search in regions LU and UL. Otherwise, we should search in
both pairs of regions.

Therefore we solve the problem by combining a series of half-plane and triangle
range searchings. We define three range searching problems Pi for 1 ≤ i ≤ 3 with
relations ♦i as below [14]:

– e♦1H: The left endpoint of segment e lies in half-plane H.
– e♦2H: The right endpoint of segment e lies in half-plane H.
– e♦3γ: The supporting line of segment e intersects segment γ; or equivalently,

in the dual plane, the point dual to le lies in the double wedge dual to γ.

By combining this searching problems, we can solve the CISD problem. Let
problems Pi, 1 ≤ i ≤ 3, use the relation ♦i. In order to solve we must solve four
subproblems:

– 1(2): Find segments whose left end points lie above(below) both lines ls and
lt and right end points lie below(above) both lines ls and lt and also the
supporting line of them intersects both segments s and t.

– 3(4): Find segments whose left end points lie above(below) ls and below
(above) lt and right end points lie below(above) ls and above(below) lt and
also the supporting line of them intersects both s and t.
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Fig. 2. Different cases arise when a segment intersects s and t

In the first subproblem we should find segments whose left end points lie above
ls and lt. It can be done by using P1 two times, the first time with the half-plane
above ls and the second time with the half-plane above lt. In the result set, we
should select those segments, whose left end point lie below ls and lt. This can be
achieved by using P2 two times, with the half-planes below ls and lt, respectively.
Then, we select those segments of the result that intersect both ls and lt, and
it can be done by using P3 two times with s and t, respectively. Therefore, by
joining problems P1, P2 and P3, we can solve subproblem 1. As discussed in
Section 2.4 for multi-level searches, and discussions in [14], we conclude that
subproblem 1 can be solved in O( n1+ε

m1/d ) time using O(m) space and O(m1+ε)
preprocessing time, where n2 ≥ m ≥ n. As commented, the nε factor can also
be replaced by a poly-logarithmic factor. Similarly, other subproblems (2-4) can
be solved with the same time and space complexities.

This discussion leads to the following lemma about solving the CISD problem:

Lemma 1. We can preprocess a scene of n segments in time O(n1+ε) and build
a data structure of size O(n) such that for any given pair of segments s and
t, we can determine whether both segments intersect a segment of the scene in
O(n1/2+ε) query time.
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Fig. 3. Weak-visibility between two segments

In our main weak-visibility problem, we need to solve the CISD problem on the
edges of the extended visibility graph of a scene of n segments. Since the size of
the extended visibility graph is O(n2) we can conclude the following theorem:

Theorem 1. The extended visibility graph of a scene of n segments can be pre-
processed in O(n2+ε) time and O(n2) space such that for any given pair of seg-
ments s and t, we can determine whether there is a segment in this graph that
intersects both segments in O(n1+ε) query time.

3 Weak-Visibility Properties

In this section we illustrate two properties that facilitate detection of the weak-
visibility between two objects s and t in a planar polygonal scene. The first
property is about the visibility of two segments and the second property is about
the visibility between two convex polygons.

Lemma 2. In a planar polygonal scene, two segments ss′ and tt′ are weakly
visible from each other if and only if one endpoint of ss′ or tt′ sees a point on
the other segment or there is at least one edge in the extended visibility graph of
the scene which is intersected by both ss′ and tt′ segments.

Proof. Proof of the if part: Trivially, when an endpoint of one segment sees
the other segment, the segments are weakly visible. Moreover, the edges of the
extended visibility graph do not intersect the scene objects. So, if both segments
intersect an edge of this graph they can weakly see each other along this edge
and therefore they are weakly visible.

Proof of the only if part: Assume that the segments are weakly visible. Then,
there are middle points p and q on ss′ and tt′, respectively, which are visible
from each other. As shown in Fig. 3, we move the endpoints of pq along ss′ and
tt′ in opposite directions. We do this process in a manner such that pq does not
intersect edges of the scene. Continuing this movement, either p or q reaches the
corresponding endpoint of ss′ or tt′, or pq touches two vertices A and B of the
scene from its opposite sides. The former means that one endpoint of ss′ or tt′

sees the other segment. In the latter, both ss′ and tt′ intersect the edge of the
extended visibility graph drawn from A and B.
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Fig. 4. Weak-visibility between two objects

Using the above lemma, we can determine the weak visibility of two segments by
reducing it to range search and point-segment visibility problems to be discussed
in the next section.

The next lemma is about the weak visibility of two convex polygons. Assume
that O and O′ are two disjoint convex objects and CHOO′ is the convex hull of
these polygons. Some of the segments of O and O′ lie on the boundary of CHOO′

and other segments lie inside this convex hull. Assume that Oss′ and O′
tt′ are

respectively those segments of O and O′ that lie inside CHOO′ (See Fig. 4).

Lemma 3. In a planar polygonal scene, the objects O and O′ are weakly visible
if and only if a segments of Oss′ is weakly visible from a segment of O′

tt′ .

Proof. Proof of the if part: Trivially, the segments belong to their corresponding
objects and if an edge of O sees an edge of O′, the objects are also weak-visible.

Proof of the only if part: Trivially, when the objects are weakly visible, a point
p from O sees a point q of O′. The segment pq intersects an edge of Oss′ and an
edge of O′

tt′ and therefore these intersected edges are also weakly visible.

According to this lemma, to determine the weak visibility of two convex objects,
it is enough to check this problem for any pair of their segments(one from each
object).

We use these lemmas in the following section to determine whether two seg-
ments or two convex polygons are weakly visible.

4 Visibility Detection Methods

Now, we are ready to discuss our method of detecting weak-visibility between
two objects. The objects we consider in this paper can be points, line segments
or convex polygons. To simplify our analysis, we assume that convex objects
have constant complexities, i.e they have at most c vertices for some constant
value of c.

We consider two versions of this problem: In the first version, one of the
objects is known in advance and we can do some preprocesses on it and the
other object is given in query time. In the other version, both of the objects are
given as query. We refer to the first problem by SOQ(Single Object Query) and
the socond by TOQ(Two Objects Query).
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4.1 Visibility Detection in SOQ

Assume that object s is known in advance and t is given in query time. If s is
a point, VP(s) can be obtained in O(n log n) [1] in the preprocessing phase. In
query time, the query object, t, is tested against VP(s). If t intersects VP(s)
then s and t are weakly visible. Whereas VP(s) is a simple polygon of size O(n),
we can build a point location structure on it in linear time (as discussed in
Section 2.2) by which any point location query is answered in O(log n) time. As
discussed in Section 2.3, we can also build a ray shooting structure on it in O(n)
time and space by which any ray shooting query is answered in O(log n) time.
Therefore, if we preprocess VP(s) for point location and ray shooting queries, we
can find the answer in O(log n) time when t is a point. If t is a segment, we first
locate one endpoint of it and do a ray shooting towards the other endpoint and
check the result of this ray shooting. If the intersection point of the ray shooting
problem(if any) lies on the segment t, it means that t intersects VP(s). Finally,
if t is a convex object, it is enough to only check its edges and while it has a
constant number of edges, we can check the intersection between t and VP(s) in
O(log n) query time. So, we can say the following result about this case of the
problem:

Corollary 1. In a planar polygonal scene, the visibility between a query object t
and a given point s can be answered in O(log n) time using O(n log n) and O(n)
preprocessing time and space, respectively.

When s is a line segment, we can use the same method as the one discussed
above. However, for a line segment s, VP(s) can be of size O(n4) and is ob-
tained in O(n4) time [1]. Moreover, VP(s) is not a simple polygon and it is a
polygon with holes. For this kind of VP(s), to answer the point location queries
in O(log n) time, a point location data structure of size O(n4) is required [10].
Unfortunately, preparing the corresponding ray shooting data structure requires
O(n6 log4.3 n) and O(n4 log2 n) preprocessing time and space by which the ray
shooting problems can be answered in O(n2 log n) time [15]. Although, we can
reduce the preprocessing cost by considering V P (s) as a set of overlapping tri-
angles, but, the query time will be still high. According to Lemma 3, the same
result is obtained when s is a convex polygon.

In the next section we present a method with less preprocessing cost and
better query time when both objects are given in query time. Also, we can use
this method in SOQ problems in which one of the query objects is known in
advance.

4.2 Visibility Detection in TOQ

In TOQ version of the problem, both objects s and t are given in query time
and it is not possible to preprocess based on them in advance. However we
can preprocess the underlying scene to facilitate answering the TOQ problems.
We present the visibility detection methods in four subversions of the problem:
both object are points, only one of the objects is a point, both objects are line
segments, and one or both objects are convex polygons.
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If both s and t are points, we can preprocess the scene for ray shooting to
answer the problem efficiently. Whereas the scene is a polygonal scene, its ray
shooting data structure requires O(n

√
n log4.3 n) time and O(n log2 n) space and

the ray shooting queries can be answered in O(
√

n log n) time (Section 2.3).
Having this data structure, we shoot a ray from s towards t and if the first
intersection point lies between s and t they are not visible from each other and
otherwise they are visible from each other. So, we can say,

Corollary 2. In a planar polygonal scene, the visibility between two query points
can be answered in O(

√
n log n) time using O(n

√
n log4.3 n) and O(n log2 n) pre-

processing time and space, respectively.

If one of the objects is a point we do not preprocess the scene. If s is the point,
VP(s) is found in O(n log n) time. While VP(s) is a star-shaped simple polygon
we can test whether it is intersected by t in O(n) time. This can be done when
t is a line segment or it is a convex polygon of constant complexity. Therefore,

Corollary 3. In a planar polygonal scene, the visibility between a query point
and a query line segment or convex polygon can be answered in O(n log n) time.

Now, we return to our main problem: assume that both s and t are line segments
and both are given in query time and we need to decide whether they are weakly
visible. To solve this problem we use the result of Lemma 2 and Theorem 1.

Theorem 2. A planar polygonal scene of total complexity of n can be prepro-
cessed in O(n2+ε) time to build data structures of O(n2) total size, so that the
weak-visibility between two query line segments can be determined in O(n1+ε)
time.

Proof. According to Lemma 2, we must check two cases to decide about the
weak-visibility between two segments: an endpoint of one segment weakly sees
the other segment or both segments intersect some edges of the extended visi-
bility graph of the scene. According to Corollary 3, the first case can be checked
in O(n log n) time without any preprocessing cost. To check the other one, the
extended visibility graph of the scene can be constructed in O(n2) in the pre-
processing phase as described in Section 2. This extended visibility graph is
preprocessed for range searching according to the result of Theorem 1. There
are O(n2) segments in the extended visibility graph. So, the range searching
structure of size O(n2) can be constructed in O(n2+ε) preprocessing time. Ac-
cording to Theorem 1, this range searching structure enables us to check if two
query segments intersect some edges of the extended visibility graph in O(n1+ε)
time. Clearly, the preprocessing cost and the query time of this argument follow
the theorem.

We can extend our result of two line segments to solve the problem for two convex
polygons. According to Lemma 3, to determine the weak visibility between two
convex polygons, it is enough to decide about the weak-visibility of any pair of
their edges. If we assume that the complexity of the objects is constant, the above
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argument along with the result of Theorem 2 leads to the following theorem
about determining weak visibility of two convex object in a planar polygonal
scene:

Theorem 3. A planar polygonal scene of total complexity of n can be prepro-
cessed in O(n2+ε) time to build data structures of O(n2) total size so that the
weak-visibility problem for two query convex polygons with constant complexity
can be determined in time O(n1+ε).

5 Conclusion

Despite the extensive research and results on visibility problems, there are still
many open problems in this area. Many practical applications of these problems
motivate researchers to optimize solutions of these problems and make them
more practical. Here, we focus on determining weak visibility between two ob-
jects in a planar environment. We use the extended visibility graph and build a
multi-level range searching structure to facilitate answering our problem.

In this problem, the preprocessing data structures are used to efficiently de-
cide whether two query objects are weakly visible. Our method uses O(n2+ε)
preprocessing time to build a data structure of size O(n2) which enables us to
answer the queries in O(n1+ε) query time. It is notable that this problem is
3sum-hard and the lower bound of its solutions is Ω(n2).

Although the off-line version of the problem has been solved optimally, but
to our best knowledge, this is the first attempt to solve this problem in the
query version. This work can be extended in several directions: we can extend
this method to other types of objects, for example, to concave objects. The
method can also be extended for upper dimensions as well as to cover dynamic
environments.
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