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In this paper, we consider the problem of computing the visibility polygon (VP) of a
query point q (or VP(q)) in a scene consisting of some obstacles with total complexity
of n. We show that the combinatorial representation of VP(q) can be computed in
logarithmic time by preprocessing the scene in O (n4 log n) time and using O (n4) space.
We can also report the actual VP(q) in additional O (|VP(q)|) time. As a main result of
this paper, we will prove that we can have a tradeoff between the query time and the
preprocessing time/space. In other words, we will show that using O (m) space, we can
obtain O (n2 log(

√
m/n)/

√
m) query time, where m is a parameter satisfying n2 � m � n4.

For example, when m = n3, the query time of our algorithm is O (
√

n log
√

n), that improves
the query time of the only available algorithm with this memory usage (Zarei and Ghodsi,
2008 [26]), which degrades to O (n log n) in the worst case. An elegant feature of our
algorithm that makes it useful in many applications is that it can determine the properties
of the VP without actually computing it.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Visibility plays an important role in some problems in robotics and computer graphics. In robotics, for example, the
efficient exploration of an unknown environment requires computing the visibility polygon of the robot. In some computer
graphics applications, also, it is important to identify the objects in a scene that are illuminated by a light source.

The visibility polygon (VP) of a point q, denoted by VP(q), is defined as the set of points of the scene that are visible
from q. In this paper, we consider the problem of computing the VP of a query point q, when the scene is a fixed polygonal
domain with total complexity of n. In the preprocessing phase, we construct some data structures based on the scene, from
which we compute VP(q) for any given q, quickly.

1.1. Related work

For simple polygons, this problem has been thoroughly investigated. ElGindy and Avis [11] and Lee [17] showed that
VP(q) can be computed in O (n) time without any preprocessing. Later, Guibas et al. [13] and Bose et al. [4] proposed algo-
rithms that use O (n3) space, and report VP(q) in O (log n + |VP(q)|) time. The preprocessing time in the former algorithm
is O (n3), while it is O (n3 log n) in the latter. Later, Aronov et al. [1] reduced the preprocessing time and space to O (n2 log n)

and O (n2), respectively, at the cost of increasing the query time to O (log2 n + |VP(q)|).

✩ A preliminary version of this paper appeared in Proceedings of the Third International Workshop on Frontiers in Algorithmics, volume 5598 of Lecture Notes
in Computer Science, pages 120–131, Springer-Verlag, 2009.
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Computing the VP is more challenging when the scene is a polygonal domain with total complexity of n, consisting of
a simple polygon with h holes. Without preprocessing, VP(q) can be computed in O (n log n) time using the algorithms of
Asano [2], and Suri and O’Rourke [24]. This was later improved to O (n + h log h) by Heffernan and Mitchell [14].

Asano et al. [3] showed that with a preprocessing in O (n2) time and using O (n2) space, VP(q) can be reported in O (n)

time. It is important to note that the query time is always Θ(n) even if |VP(q)| = o(n). Later, Vegter [25] gave the first output
sensitive algorithm which reports VP(q) in O (| VP(q)| log(n/|VP(q)|)) time, by preprocessing the scene in O (n2 log n) time
using O (n2) space. Pocchiola and Vegter [20] then showed that if the boundary polygon of the scene and its holes are con-
vex, VP(q) can be reported in O (| VP(q)| log n) time, using the visibility complex and after a preprocessing in O (n log n + E)

time and O (E) space, where E is the number of edges in the visibility graph of the scene. The visibility graph of a poly-
gon P is a graph with a node for each vertex of P , and an edge for each pair of nodes, if the segment connecting these
vertices completely lies in P .

Zarei and Ghodsi [26] proposed an algorithm that reports VP(q) in O ((1 + min(h, |VP(q)|)) log n + |VP(q)|) query time.
The preprocessing takes O (n3 log n) time and O (n3) space. They achieved this complexity by adding some diagonals to the
polygon to make it simple, and then used the algorithm by Bose et al. [4] for the resulting simple polygon.

Recently, Inkulu and Kapoor [16] used another approach to reduce the preprocessing time while achieving a query time
close to that of [26]. Their method is based on partitioning the polygon into some simple polygons, called corridors, using
the technique used before for computing the shortest paths in polygons with holes. After partitioning the polygon, they use
Aronov et al.’s algorithm [1] or the ray shooting algorithm by Hershberger and Suri [15] to compute the VP in each visible
simple polygon.

Depending on the base algorithm to compute the VP in each corridor, they obtained different preprocessing and query
complexities. If the algorithm by Aronov et al. [1] is used, the preprocessing time and space are O (n2 logn) and O (n2)

respectively, and the query time is O ((1+min(h, |VP(q)|)) log2 n+h +|VP(q)|). If the ray shooting algorithm by Hershberger
and Suri [15] is used, the preprocessing time and space are O (T + E + n log n) and O (min(E,hn) + n) respectively, and the
query time is O (| VP(q)| log n + h). Here, T is the time to triangulate the given polygon, which is O (n + h log1+ε h) for a
small positive constant ε > 0. They showed how the O (h) additive factor can be removed from the query time if we spend
additional O ((min(E,hn))2) space and O (h(min(E,hn))2) preprocessing time.

1.2. Our results

In this paper, we first introduce an algorithm which can be used to report VP(q) in a polygonal scene in optimal time of
O (log n + |VP(q)|), using O (n4 log n) preprocessing time and O (n4) space. The algorithm can be used to report the ordered
visible edges and vertices of the scene around a query point, or the size of VP(q) in optimal time of O (log n). The solution
of the algorithm can also be used for further preprocessing to solve many other problems faster than before (e.g., testing
line segment intersection with the VP).

Because the space used in the preprocessing is high, we have modified our algorithm to obtain a tradeoff between
the space and the query time. With these modifications, using O (m) space and O (m log(

√
m/n)) time in the prepro-

cessing phase, where n2 � m � n4, we can find the combinatorial representation (to be described later) of VP(q) in
O (n2 log(

√
m/n)/

√
m) time. If we need to report VP(q), additional O (| VP(q)|) time is required in the query time.

We can summarize our results as follows:

• An algorithm with logarithmic query time to compute the combinatorial representation of the visibility polygon of a
query point in a polygon with holes.

• An algorithm with the space/query-time tradeoff, to compute the combinatorial representation of the visibility polygon
of a query point in a polygon with holes.

• These algorithms can report the visibility polygon of a query point in additional O (| VP(q)|) time.
• These algorithms have the capability to report other properties of the VP, e.g. the number of edges of VP(q) for a query

point q, without computing the VP, so the computation time of the properties is independent of the size of the VP.
• These algorithms can be combined with other algorithms to efficiently answer more complicated queries, e.g., reporting

segments intersecting the VP of a query point, without first computing the VP (Section 4.3).

1.3. Comparison with previous results

One of the problems with the algorithms mentioned in Section 1.1 for polygonal scenes, is their large query time in worst
cases. For example when h = Θ(n) and |VP(q)| = Θ(n), the query time of the algorithms of Pocchiola and Vegter [20],
Zarei and Ghodsi [26], and Inkulu and Kapoor [16] increases to Θ(n log n) which is the running time of the algorithm
without any preprocessing. For Vegter’s algorithm, we can also generate instances that use more time than the required
time to report VP(q). Another problem with these algorithms, as far as we know, is that they cannot efficiently report
other properties of the VP, like its size, without first computing the VP. For example, in Asano et al. [3], one should first
compute VP(q) to be able to determine its size.

Each of the algorithms for computing the VP is preferred in special cases. For example, if the arrangement of the obsta-
cles in the scene is in such a way that all the scene is approximately visible from the query point, that is if |VP(q)| = Θ(n),
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Table 1
The preprocessing and query time and space usages of different algorithms for computing the VP of a query point.

Preprocessing time Space Query time Reference

O (n2) O (n2) O (n) Asano et al. [3] (1986)
O (n2 log n) O (n2) O (|VP(q)| log(n/|VP(q)|)) Vegter [25] (1990)
O (n logn + E) O (E) O (|VP(q)| logn) Pocchiola and Vegter [20] (1996)
O (n3 log n) O (n3) O ((1 + min(h, |VP(q)|)) log n + |VP(q)|) Zarei and Ghodsi [26] (2008)
O (n2 log n) O (n2) O ((1 + min(h, |VP(q)|)) log2 n + h + |VP(q)|) Inkulu and Kapoor [16] (2009)
O (T + |E| + n log n) O (min(|E|,hn) + n) O (|VP(q)| logn + h) Inkulu and Kapoor [16] (2009)
O (m log(

√
m/n)) O (m) O (n2 log(

√
m/n)/

√
m) This paper*

* In these relations, m is an arbitrary parameter such that n2 � m � n4.

and we need to report VP(q), Asano et al.’s [3] algorithm and ours with m = n2 are the best choices, since the prepro-
cessing/query time are optimal. But if |VP(q)| is much smaller than n, that is |VP(q)| = o(n), the best choice depends on
the preprocessing time and space that we can afford. When we can spend at most quadratic space, we can select either
Pocchiola and Vegter’s [20] or Vegter’s [25] algorithms. If the number of holes is smaller than |VP(q)|/ log n, Inkulu and
Kapoor’s [16] could be a good option too.

In cases that we can use more, but at most O (n3) space, we need to consider the number of holes in the scene, as well.
If h = Θ(n), nothing will be gained using Zarei and Ghodsi’s [26] and Inkulu and Kapoor’s [16] methods compared to other
algorithms. But in cases where h = o(n), it may worth to use these algorithms. Unless the number of holes is much larger
than |VP(q)|, Inkulu and Kapoor’s [16] outperforms Zarei and Ghodsi’s [26].

Our algorithm, compared to Zarei and Ghodsi’s [26] and Inkulu and Kapoor’s [16], guarantees the worst case query time,
whatever the arrangement of obstacles in the scene is. For example, if we use O (n3) space, we achieve O (

√
n log

√
n +

| VP(q)|) query time which is much better in the worst cases. In Table 1, the preprocessing and query times and spaces of
the algorithms for computing the visibility polygon of a query point are summarized.

Recently, Gudmundsson and Morin [12] studied two visibility related problems. The first problem, visibility testing, is to
preprocess a set of segments S and a segment s ∈ S , so that given a query point q, we can quickly determine if s is visible
from q. They showed how to preprocess S using O (k) space, to answer queries in O (msnε/k) time. Here, ms is the number
of critical constraints (to be described in the next section), that intersect s, which is Θ(n2) in the worst case, k is an
arbitrary parameter such that ms � k � m2

s , and ε > 0 is an arbitrary parameter that affects the constant factors in the time
and space complexities.

The second problem studied in [12] is to count the number of visible segments of S from a query point q. They gave
an approximation algorithm with O (Enε/

√
k) query time, using O (knε) space, where E is the number of edges in the

visibility graph of the scene, which is Θ(n2) in the worst case, and k is an arbitrary parameter such that E � k � E2.
The approximation factor of the algorithm is 2.

It can easily be checked that our algorithm can be used for both of these problems, with factor nε removed from the
complexities.

1.4. Paper organization

The rest of this paper is organized as follows. In Section 2, we show how to compute the VP for a query point inside a
polygonal scene in logarithmic time using a preprocessing step. In Section 3, we obtain a tradeoff between space and query
time for this problem. Section 4 describes some of the immediate applications of the new algorithms, and finally, Section 5
summarizes the paper.

2. Logarithmic query time for computing the VP

Let P be a polygonal domain with n vertices and h holes. Also, let S = {s1, . . . , sn} be the set of all edges of P , which
may intersect each other only at their end-points. We denote the complement of the set of holes inside P as free space. Let q
be a query point in the free space. The goal is to efficiently compute VP(q) using as little preprocessing time and space as
possible.

The idea is to partition the free space into a set of disjoint regions, totally covering the space, such that for any point p
inside a region r, the angularly ordered sequence of the visible edges and vertices of the scene around p is fixed. Given a
point p, we call the ordered sequence as combinatorial structure of VP(p) and denote it by VP(p).

By a simple investigation, it can be verified that if p moves inside the free space of P , VP(p) changes only when p
moves across extensions of segments connecting any pairs of visible vertices in the scene. These extensions are called
critical constraints. Formally, for any pair pi and p j of distinct and mutually visible vertices of P , a critical constraint ci j is
the ray emanating from pi in the direction that points away from p j until it hits an edge of the scene. By definition, any
pair of mutually visible vertices results in at most two critical constraints (see Fig. 1). When p crosses ci j , the visibility state
of p j from p changes, that is, if it was invisible, it becomes visible and vice versa. This event also adds an invisible edge to
VP(p) or removes a visible edge from VP(p). The following lemma summarizes this observation, which is an adaptation
of a lemma proved by Aronov et al. [1].
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Fig. 1. Visibility decomposition for a polygonal domain. q1, q2 and q4 have different combinatorial visibilities, while q2 and q3 have similar combinatorial
visibilities.

Lemma 2.1. Let S = {s1, . . . , sn} be a set of segments in the plane and let p and q be two points not on any critical constraints of points
of P . The ordered sequences of the visible edges and vertices of P around p and q, i.e., VP(p) and VP(q), differ iff they are on the
opposite sides of a critical constraint, or a segment si ∈ S.

Let C denote the set of all segments in S and all critical constraints ci j , for 1 � i, j � n, and A(C) denote the arrangement
of lines, rays, and segments in C , i.e., the set of edges and vertices produced by the intersections of the critical constraints
and the segments in S . The arrangement A(C) is called the visibility decomposition of P . Fig. 1 illustrates the visibility
decomposition of a polygon with a hole. In the figure, the combinatorial structure of the visibility polygons of q2 and q3,
denoted by VP(q2) and VP(q3) respectively, are equal, because both q2 and q3 see the following edges and vertices in the
counterclockwise order: (p4 p3, p3, p3 p2, p8, p8 p9, p9, p9 p7, p7, p2 p1, p1, p1 p6, p5, p5 p4, p4).

The complexity of the visibility decomposition is not greater than the complexity of the arrangement of
(n

2

)
lines,

so |A(C)| = O (n4). This implies the following corollary:

Corollary 2.2. In a polygonal scene with complexity of n, the free space can be decomposed into O (n4) regions such that all points in
a region have equal VP ’s. Moreover, for any two points p and q in two adjacent regions, VP(p) can be computed from VP(q) by O (1)

number of changes.

Using the visibility decomposition, we obtain an approach for computing VP(q) for any query point. But before we
proceed and to take advantage of the low change rate in VP between adjacent regions, we construct a tour of size O (n4)

that visits all regions in the visibility decomposition. We build this tour using a depth-first traversal of the regions in the
dual graph of A(C). Because this tour traverses each edge of A(C) at most twice, its size is O (n4). Based on this tour, we
use a persistent data structure, such as a persistent red–black tree and store VP of all regions in this tree.

A persistent red–black tree, or PRBT, introduced by Sarnak and Tarjan [22], is a red–black tree capable of remembering
its earlier versions, i.e., after m updates into a set of n linearly ordered items, any item of the version t of the red–black
tree, for 1 � t � m can be accessed in O (log n) time. In fact, after a sequence of m updates, we will have m roots of m trees,
each shares some nodes with other trees. PRBT can be constructed in O ((m + n) log n) time using O (m + n) space.

We now describe the preprocessing phase of our method. Initially, for an arbitrary region in the tour, VP is computed
from scratch. Because VP is an ordered sequence, it can be stored in PRBT. We keep a pointer to the root of the current
state of the tree as VP of the initial region. For the subsequent regions in the tour, we update PRBT accordingly by simply
inserting or removing a point and/or an edge in the tree and save a pointer to the root of the current version of the tree
as VP of the region. Finally, when all regions in A(C) are visited, we will have, for each region, a pointer to the root of a
red–black tree that determines the order of the visible edges and vertices of P from any point p in that region, i.e., VP(p).
Because the size of VP is always O (n), the height of PRBT is logarithmic.

Constructing A(C) and the tour visiting all the regions takes O (n4) time. Computing VP for the first region needs
O (n log n) time and O (n) space, and the subsequent updates for O (n4) regions need O (n4 log n) time and O (n4) space.
A point location data structure for A(C) is also needed that can be created in O (n4) time and space [5]. Totally, the
preprocessing phase is completed in O (n4 log n) time using O (n4) space.

At the query time, we need to locate the region r containing the query point q, and then find the precomputed VP
for r. Locating r is achieved using the point location data structure. Finally, we return the root of the tree associated with r,
because the root specifies VP completely. Each of these tasks can be accomplished in O (log n) time.

If VP(q) (all vertices and edges of the VP) is to be computed, additional O (| VP(q)|) time is needed. This is done by
examining the vertices and edges of VP(q) and finding the constructed edges and vertices of VP(q). The constructed edges
(respectively, vertices) are edges (respectively, vertices) in VP that are not edges (respectively, vertices) of P (see Fig. 2).

Theorem 2.3. A planar scene consists of n segments can be preprocessed in O (n4 logn) time and O (n4) space, such that for any query
point q, a pointer to a red–black tree which stores VP(q) can be returned in O (log n) time. Furthermore, VP(q) can be reported in
O (log n + |VP(q)|) time.
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Fig. 2. Parts of the VP of a point. Colored region denotes VP(q). The constructed edges and constructed vertices of the VP are marked. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) A set of points P = {p1, p2, p3, p4, p5} and a point q in the primal plane. (b) The dual lines of points of P and q.

It is easy to arrange a scene in such a way that the number of combinatorially different visibility polygons is Θ(n4) (see
e.g., [26]). Therefore, it seems likely that the above result is the best we can achieve for the optimal query time.

3. Space/query-time tradeoff

In Section 2, an algorithm with logarithmic query time for computing the VP is presented that uses O (n4) space and
O (n4 log n) preprocessing time. Asano et al. [3] have shown that in a polygonal scene VP(q) can be computed in O (n) time
by preprocessing the scene in O (n2) time using O (n2) space. In this section, these results are combined and a tradeoff
between the memory usage and the query time for computing the VP is obtained. Before describing the details of our
method, we first review the technique used by Asano et al. [3] and then explain the construction of a regular cutting which
is used to achieve the tradeoff.

3.1. Linear time algorithm for computing the VP

To be able to use the technique used by Asano et al. [3], let us review their method with some modifications. Consider
the duality transform that maps the point p = (px, p y) into the line p∗ : y = pxx − p y and the line l : y = mx + b into the
point l∗ = (m,−b). This transformation preserves incidence and order between points and lines [9], i.e., p ∈ l iff l∗ ∈ p∗
and p lies above l iff l∗ lies above p∗ .

Let P = {p1, . . . , pn} be a polygonal domain with n vertices as before. Let also A(P∗) denote the arrangement of the set
of lines P∗ = {p∗

1, . . . , p∗
n}. For a query point q, the line q∗ can also be inserted in the arrangement in O (n) time [7]. Let rq

denote the vertical upward ray from q and lq be its supporting line. Fig. 3(a) shows a sample set of points and Fig. 3(b)
shows the dual lines of these points.

When rq rotates around q counter-clockwise 180◦ , it touches all the half-plane to the left of q, and l∗q slides on the
line q∗ from −∞ to +∞. Whenever rq reaches a point pi , l∗q lies on p∗ . Thus, the angular order around q of all points pi in
i
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the left half-plane of the vertical line through q is the same as the order of the intersection points between q∗ and the dual
of those points according to x-coordinate. The same statement holds for the right half-plane of the vertical line through q.

Using the analogy between the orders of the points and the orders of the dual lines, we can compute the angular order
of the points in P around q in linear time. Based on these orders, the visible edges and vertices from q can easily be found
in linear time.

Lemma 3.1. (See Asano et al. [3].) Using O (n2) time and O (n2) space for preprocessing the scene to construct A(P∗) (by an algorithm
due to Chazelle et al. [7]), for any query point q, we can find the angular sorted list of pi , 1 � i � n, in O (n) time.

3.2. Regular (1/r)-cutting

Before we describe the algorithm with the space/query-time tradeoff, we explain a concept usually used in algorithms
with a divide-and-conquer approach. Let L be a set of n lines in the plane and r � n be a given parameter. A (1/r)-cutting
for L is a collection of (possibly unbounded) triangles with disjoint interiors, which covers all the plane and the interior of
each triangle intersects at most n/r lines of L. The first (though not optimal) algorithm for constructing a cutting is given
by Clarkson [8]. He showed that a random sample of size r of the lines of L can be used to produce an O (log r/r)-cutting
of size O (r2). Efficient construction of (1/r)-cuttings of optimal size O (r2) can be found in [6] and [10]. The set of triangles
in the cutting together with the collection of lines intersecting each triangle can be found in O (nr) time.

In our algorithm, we need a special type of the cutting, with this additional property: any arbitrary line intersects O (r)
triangles of the cutting. This property is needed to guarantee the worst case query time of our algorithm. We call this
property the regularity of the cutting. In the following, we prove that the algorithm by Matoušek [18], has the regularity
property.

Let us first review the algorithms by Chazelle and Friedman [6] and Matoušek [18]. Chazelle and Friedman [6] gave a
randomized algorithm that computes a (1/r)-cutting in O (nr) expected time. They further showed that using the method
of Raghavan [21] and Spencer [23], they could make the algorithm deterministic, although the running time would be
polynomial time. Matoušek [18] used the algorithm by Chazelle and Friedman [6] as the base, and by a recursive algorithm,
computed a (1/r)-cutting in O (nr) time.

The base algorithm used by Matoušek is as follows. For a set L of n lines, we want to find a (1/r)-cutting Ξ , with
size O (r2). In the first step of the algorithm, we draw a sample R ⊂ L by choosing each line in L with probability r/n.
We then construct the arrangement A(R) of lines of R and the canonical triangulation of the arrangement. The canonical
triangulation or bottom-vertex triangulation of an arrangement is obtained by drawing, for each cell c of the arrangement
of A(R), all the diagonals of c incident to the lowest vertex of c.

Let T (R) denote the canonical triangulation of the arrangement of R . T (R) is too rough to guarantee a cutting factor of
order r. But, we can refine this cutting by applying another level of partitioning. For each triangle t ∈ T (R), which is called
a first-generation triangle, let Lt denote the set of lines in L intersecting t and rt = |Lt |.r/n, i.e., the factor by which |Lt |
exceeds the quantity n/r. For each triangle t ∈ T (R), we compute a (1/rt)-cutting Ξt for Lt , using any weaker method
with rC

t sub-triangles, for some constant C . The union of all second-generation triangles is the resulting cutting Ξ . The
following lemma gives a bound on the number of triangles in Ξ , which is proved in [18].

Lemma 3.2. The expected number of triangles in Ξ is O (r2).

The intuition behind the above lemma is that the expected number of triangles with rt � k decreases exponentially
with k.

Using the above cutting, we now attempt to find the expected number of triangles intersected by any arbitrary line. The
following lemma shows that this value is linear.

Lemma 3.3. For any line l, the expected number of triangles t ∈ Ξ intersected by l is O (n).

Proof. The expected number of lines of R is Θ(r). By the zone theorem [7], the expected number of the first-generation
triangles intersected by l is also Θ(r). Let Tl(R) denote the set of triangles in T (R) intersected by l and Ξl denote the set
of triangles in Ξ intersected by l. We have

|Ξl| =
∑

t∈Tl(R)

rC
t .

Taking expectation from both sides,

E
(|Ξl|

) = E

( ∑
t∈Tl(R)

rC
t

)

= E
(∣∣Tl(R)

∣∣)E
(
rC

t

)

= E
(∣∣Tl(R)

∣∣)E(
∑

t′∈T (R) rC
t′ )

.

E(|T (R)|)
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Fig. 4. (a) In the dual plane, the triangle t , is intersected by q∗ . The dual of some of obstacle segments are also shown. (b) The arrangement of f , g , q and
segments of S in the primal plane. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Since E(
∑

t′∈T (R) rC
t′ ) is the expected number of triangles in Ξ , which is proved to be O (r2) by Matoušek, and E(|T (R)|)

is the expected number of the first generation triangles, which is Θ(r2), we have

E
(|Ξl|

) = E
(∣∣Tl(R)

∣∣)E(
∑

t′∈T (R) rC
t′ )

E(|T (R)|)
= O (r)

O (r2)

Θ(r2)

= O (r),

which proves the claim. �
Intuitively, since the expected number of the second-generation triangles inside each first-generation triangle is O (1)

and l intersects O (r) first-generation triangles, the expected number of the second-generation triangles is O (r), that is
E(|Ξl|) = O (r). Lemma 3.3 shows that the cutting produced by the algorithm of Chazelle and Friedman [6] has the regularity
property. Since the algorithm is used as the base by Matoušek [18] to create the cutting, we can prove the regularity of
his cutting, too. The following lemma states the existence of a regular cutting and is used in the next section to get the
space/query-time tradeoff.

Lemma 3.4. Given a set L of n lines, and a parameter r � n, we can compute a (1/r)-cutting for L of size O (r2) and the set of lines
intersecting each triangle of the cutting in O (nr) time.

3.3. Space/query-time tradeoff for computing the VP

We here show how a tradeoff between the space usage and the query-time for computing the VP can be achieved.
As before, P is a polygon with holes and S is the set of edges of P . Let P∗ denote the set of dual lines of vertices of P
and A(P∗) denote the arrangement of lines of P∗ . Based on the lines of P∗ , we compute a regular (1/r)-cutting as described
in Section 3.2 and denote it by R. By definition, R decomposes the dual plane into O (r2) triangles such that each triangle
is intersected by at most O (n/r) lines of P∗ , and the dual line of any arbitrary point intersects at most O (r) triangles of the
cutting.

Let q∗ be the dual line of a query point q in the plane. The intersection points of q∗ with the edges of the cutting,
break q∗ into O (r) segments. These segments in the primal plane are O (r) disjoint double wedges, centered at q, totally
covering all the plane. Let t be a triangle in the cutting intersected by q∗ (see Fig. 4(a)). Let wt denote the double wedge
whose dual is the intersection of q∗ and t in the dual plane (Fig. 4(b)). Let VP(q, t) denote VP(q) restricted to wt . In order
to compute VP(q), we can compute VP(q, t) for each triangle t intersected by q∗ separately, and join them sequentially.

Let u1, u2 and u3 be the three lines, whose dual points, u∗
1, u∗

2 and u∗
3, are the vertices of t , respectively. The arrangement

of the lines, decomposes the plane into 7 regions, two of which are shaded in Fig. 4(b). Any point in the shaded regions is
either above or below all u1, u2 and u3. Let f denote the union of the two shaded regions and g denote the complement
of f . The dual line of any point in f does not intersect t , because it is either above or below all vertices of t . In contrast,
the dual line of any point in g , which is lighter in the figure, intersects t . An immediate result is that q lies in g . Moreover,
wt is the double wedge, centered at q with the two boundaries tangent to f as shown in Fig. 4(b).

There are two sets of segments in S whose dual double wedges intersect t . The first set contains segments with one or
both end-points in g . We call these segments the closed segments of t , and denote the set by CSt . The second set contains
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segments intersecting g with both end-points in f , i.e., segments with one end-point above u1, u2 and u3, and the other
end-point below u1, u2 and u3. We call these segments the open segments of t , and denote the set by OSt .

Fig. 4(a) shows a triangle t in the dual plane which is intersected by q∗ . In Fig. 4(b), f , g , and a set of segments
intersecting g are shown. The region g contains q and at least one end-point of each closed segment (e.g., s2, s6). In contrast,
f , which is shaded, contains at most one end-point of each closed segment and both end-points of the other segments of S .
If an end-point of a segment lies in a shaded region and the other end-point lies in the other shaded region, that segment
is an open segment (e.g., s5). As can be seen in Fig. 4(a), the double wedges dual to the open segments completely surround
the triangle, while the double wedges dual to the closed segments only intersect parts of the triangle.

By the above observations, and the fact that the segments of S may intersect each other only at their end-points, we
conclude that the segments in OSt play roles of infinite walls for g and partition it into |OSt |+1 subregions. These segments
are drawn by thicker lines in Fig. 4(b). Let Rt = {r1

t , . . . , r|OSt |+1
t } denote the set of subregions. In each region rk

t , a set of
segments CSk

t ⊂ CSt is contained. Since VP(q, t) is limited to the subregion rk
t in which q lies, to compute VP(q, t), we first

find rk
t , and then compute VP(q) restricted to rk

t and the double wedge wt .
If q lies in rk

t ∈ Rt , q can only see a subset of segments in CSk
t and at most two walls of OSt separating rk

t from rk−1
t

and rk+1
t . If in the preprocessing phase, for rk

t we use the method of Section 2 with CSk
t as the set of obstacles, we can

find VP(q, t) restricted to wt in O (log(|CSk
t |)) = O (log(n/r)) time. We need to do the preprocessing with precaution here,

because the size of Rt for each triangle could be linear. To avoid the additional linear space needed in the preprocessing,

which makes our method inefficient for r = ω(n
3
4 ), we only preprocess the non-empty regions of Rt . If we do not preprocess

the empty regions rk
t , i.e., CSk

t = ∅, the preprocessing time and the space will be O ((n/r)4 log(n/r)) and O ((n/r)4), respec-
tively. Whenever a query point q is received, we first find the region rk

t in which q lies. If CSk
t 	= ∅, we use the attached

data structures to compute VP(q, t), otherwise rk
t consists only of at most two walls of rk

t , si, s j ∈ OSt , and we can easily
compute VP(q) restricted to wt in O (1) time.

3.3.1. Details of data structures and query operation
We need to compute three data structures, CSt , Rt and CSk

t , to be able to compute VP(q). The first data structure,
CSt is the set of segments with an end-point in g . Equivalently, CSt is the set of segments with an end-point whose
dual intersects t . The set of lines intersecting each triangle of the cutting R was computed during the construction of R.
Therefore, we compute CSt of size O (n/r), while constructing the cutting in O (nr) time.

In contrast, computing Rt , the set of subregions for each triangle t , of size O (n), takes much space and time and we
cannot explicitly compute it for all the triangles of R. We first compute Rt for unbounded triangles in the cutting, and then
for other triangles, we compute the differences between Rt and Rt′ where t′ is a triangle adjacent to t .

The last data structure, CSk
t , is the set of closed segments of subregion rk

t in Rt . We compute it by considering each
end-point p of each segment si ∈ S and add si to CSk

t for each region rk
t that p lies in.

Storing Rt : We have two methods to store Rt , depending on the type of t . First, note that the segments of OSt and the
regions in Rt are totally ordered. We use this order to store the regions in a data structure.

For unbounded triangles in R, we store a partially sorted list of regions in Rt . The list is maintained this way: we
decompose Rt into O (n/r) collections Rt(i), each of size r, such that any region in collection Rt(i) is to the left of any
region in collection Rt( j), where i < j. The list can be created in O (n log(n/r)) time using O (n) space. Because the number
of unbounded triangles is O (r), we use O (rn log(n/r)) time and O (rn) space for all unbounded triangles. A search in a
partially sorted list takes O (r + log(n/r)) time.

For the other (bounded) triangles of R, we cannot store Rt explicitly, because of the limitations in the space and the
preprocessing time. Therefore, for all (bounded or unbounded) pairs of adjacent triangles t and t′ , we store the differences
of Rt and Rt′ , so that when moving from t to t′ , we are able to find the new position of a point in Rt′ , given its previous
position in Rt . For any two adjacent triangles t and t′ , Mt→t′ is a binary search tree that stores new regions in Rt′ created
by merging or splitting some regions in Rt when moving from t to t′ .

Assume that we know the point p lies in rk
t ∈ Rt and need to find the region rl

t′ ∈ Rt′ that contains p. To find rl
t′ , we

search in Mt→t′ for the region that contains p. If the search is successful, rl
t′ is found, otherwise, we know that the region rk

t
is left unchanged in Rt′ and the same region in Rt′ contains p.

For any pairs of adjacent triangles t and t′ , only closed segments of t and t′ add regions to Mt→t′ . For each si ∈ CSt

such that si ∈ OSt′ , si is a wall in Rt′ , while it is not a wall in Rt , therefore, a split is taken place, when moving from t
to t′ . The region that is split is inserted into Mt′→t and two new regions are inserted into Mt→t′ . The same procedure
should be performed for each segment si ∈ CSt′ such that si ∈ OSt to complete the data structures. Since |Mt→t′ | is not
greater than |CSt | + |CSt′ | = O (n/r), the total complexity of the memory usage and time to construct all Mt→t′ are O (rn)

and O (rn log(n/r)) respectively. The needed time to find rl
t′ from rk

t is also O (log(n/r)).
Storing CSk

t : Let p be an end-point of a segment si ∈ S and t be a triangle intersected by p∗ . We know that si should be
added to CSk

t of the region rk
t containing p. If we do this for all end-points of segments of S , CSk

t are computed for all t ∈R
and all rk

t ∈ Rt .
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For an end-point p of a segment si , we start from an unbounded triangle, t1, that is intersected by p∗ . Using Rt1 , we can
identify rk

t1
that contains p in O (r + log(n/r)) time and add si to CSk

t1
. Next, we move to a neighbour triangle of t1, say t2,

that is also intersected by p∗ . Using Mt1→t2 , rl
t2

that contains p is found in O (log(n/r)) and consequently si is added to CSl
t2

.

The procedure is continued for all such triangles intersected by p∗ and it takes O (r log(n/r)) time to insert si into all CSk
t

for all regions rk
t containing p. We repeat the method for both end-points of all segments of S , and when it is finished,

CSk
t for all non-empty regions rk

t will be computed in O (rn log(n/r)) time.
Query processing: In order to compute VP(q) for a query point q, for all triangles t intersected by q∗ , we find the

region rk
t that contains q, in total O (r log(n/r)) time, using Rt and Mt′→t . Inside each rk

t , we compute VP(q, t) in O (log(n/r))
time, using the data structures attached to rk

t . We compute VP(q) by joining sequentially the bounded visibilities, VP(q, t),
for each triangle t intersected by q∗ . Because the total number of triangles intersected by q∗ is O (r), VP(q) is computed in
O (r log(n/r)) time.

In summary, the total preprocessing time and space are O (n4 log(n/r)/r2) and O (n4/r2), respectively, and the query time
is O (r log(n/r)). If the space complexity is denoted by m, we conclude the following theorem.

Theorem 3.5. A planar polygonal scene with complexity n can be preprocessed into a data structure of size O (m), for n2 � m � n4 , in
O (m log(

√
m/n)) time, such that for any query point q, in O (n2 log(

√
m/n)/

√
m) time VP(q) can be returned. Furthermore, VP(q)

can be reported in O (n2 log(
√

m/n)/
√

m + |VP(q)|) time.

4. Applications

In this section we use the previous results for computing the VP, and apply them to some other related problems.

4.1. Maintaining the VP of a moving point

Let q be a point in a polygonal scene. The problem is to update VP(q) as it moves along a line. We can use the technique
used to compute the VP of a query point, to maintain the VP of a moving point in the plane. In the first case, we create
a data structure of size O (n4) in O (n4 log n) time to decompose the plane into a collection of cells with fixed VP . For a
point q, we can compute VP(q) in O (log n + |VP(q)|) time by first locating the (convex) region r in which q lies and then
reporting VP(q). Now assume that q moves along a line l in the plane. We use a binary search to detect in O (log n) time
the edge of r that is intersected by l and then move q to the adjacent cell r′ which shares that edge with r. When q moves
from r to r′ , only O (1) number of changes are made in VP(q) and they can be applied to VP(q) in O (log n) time. Therefore,
we conclude the following result.

Theorem 4.1. A planar polygonal scene with complexity n can be preprocessed into a data structure of size O (n4), in O (n4 log n)

time, such that for any query point q which moves along a line, VP(q) can be maintained in O (k log n) time, where k is the number
of combinatorial visibility changes in VP(q). Furthermore, the place where the first combinatorial change in VP(q) happens can be
computed in O (log n) time.

We can combine the above result with the technique of the space/query-time tradeoff, to obtain a tradeoff for this prob-
lem too. Consider in the dual plane, the arrangement of lines dual to the end-points of the segments and the corresponding
(1/r)-cutting of the lines. The line q∗ intersects O (r) triangles in the cutting and for each triangle, when q moves and
consequently q∗ rotates, the partial visibility polygon needs to be updated. We maintain a priority queue that stores the
first places where the visibility of q changes for each triangle. These places can be computed and inserted into this priority
queue using Theorem 4.1 in O (r(log(r) + log(n/r))) = O (r log n) time. Using the queue, we find in O (log r) time the first
place where the visibility of q changes.

We should also consider the cases that q∗ leaves triangles, but these events are not important when the vertices of the
cutting are the vertices of the original arrangement, which is the case in our cutting. Therefore, the first time that VP(q)

changes can be detected and the queue can be updated in O (log(r) + log(n/r)) = O (log n) time. This observation leads to
the following tradeoff for maintaining the VP of a moving point.

Theorem 4.2. A planar polygonal scene with complexity n can be preprocessed into a data structure of size O (m), n2 � m � n4 , in

O (m log(
√

m/n)) time, such that for any query point q which moves along a line, VP(q) can be maintained in O ( n2√
m

logn + k log n)

time, where k is the number of combinatorial visibility changes in VP(q).

It is remarkable that the moving path need not to be a straight line; it can be a polygonal path, in which case, the
number of break points is added to the number of combinatorial changes in the above upper bounds.
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4.2. The weak visibility polygon of a query segment

The weak visibility polygon of a segment rs is defined as the union of all the points in the plane, that are visible from
at least one point on the segment. Using the previous result on maintaining the VP of a moving point, the weak visibility
polygon of a query segment can also be computed easily.

Assume that the query point q of the previous section is on r, the left end-point of rs, and moves to the other end-point.
Computing VP(r) needs O (n2 log(

√
m/n)/

√
m + |VP(r)|) time and each change in VP(q) can subsequently be detected and

applied in O (log n) time. Constructing the priority queue that gives the triangle with the first change in the visibility takes
O (n2 log(n2/

√
m)/

√
m) time.

We should only care about those changes that increase the VP of rs. When the motion path of q crosses a critical
constraint of the scene, the visibility increases in only one direction, and in the other direction the visibility decreases. As q
in this problem moves from left to right (assuming rs is not vertical), only those critical constraints should be considered
that increase the visibility when they are crossed from left to right. This way, the number of critical constraints is reduced
and only the useful events are processed during the movement of q.

Whenever q encounters a critical constraint, an increase event in the visibility occurred and the new visible edges and/or
vertices are added to the visible set. This result can be summarized in the following theorem:

Theorem 4.3. A planar polygonal scene with complexity n can be preprocessed into a data structure of size O (m), n2 � m � n4 , in

O (m log(
√

m/n)) time, such that for any query segment rs, VP(rs) can be computed in O ( n2√
m

log n + |VP(rs)| log n) time.

4.3. Weak visibility detection between two query objects

In [19], Nouri et al. studied the problem of detecting the weak visibility between two query objects in a polygonal scene.
Formally, a polygonal scene with total complexity n, should be preprocessed, such that given any two query objects, it can
be determined if the two objects are weakly visible from each other. They proved that using O (n2) space and O (n2+ε)

preprocessing time, for any ε > 0, the queries can be answered in O (n1+ε) time.
They mentioned that the bottleneck of the algorithm is the time needed to compute the VP of a query point, and if it

can be answered in a time less than Θ(n) in the worst case, the total query time will be reduced. Here, we summarize the
result of applying the new technique for computing VP(q) and defer the details to the full version of that paper.

Theorem 4.4. A planar polygonal scene with complexity n can be preprocessed in O (m1+ε) time to build a data structure of size O (m),
where n2 � m � n4 , so that the weak visibility between two query line segments can be determined in O (n2+ε/

√
m) time.

5. Conclusion

In this paper, we studied the problem of computing the VP. We presented a logarithmic query time algorithm, where we
can use O (n4 log n) time and O (n4) space in the preprocessing phase. As the algorithm requires much space, the algorithm
was modified to get a tradeoff between the space usage and the query time. With this tradeoff, the VP of a query point can
be computed in O (n2 log(

√
m/n)/

√
m) time using O (m) space, where n2 � m � n4.

This result may have many applications in other related problems. An interesting future work is to find more applications
for the proposed algorithms. It is also an interesting open problem, whether our algorithms are optimal in terms of space
usage and preprocessing time.
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