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Abstract

This paper considers the problem of computing the weak visibility polygon (WVP) of any query line segment pq (or
WVP(pq)) inside a given simple polygon P. We present an algorithm that preprocesses P and creates a data structure
from which WVP(pq) is efficiently reported in an output sensitive manner.

Our algorithm needs O(n2 log n) time and O(n2) space in the preprocessing phase to report WVP(pq) of any query
line segment pq in time O(|WVP(pq)| + log2 n + κ log2(nκ )), where κ is an input and output sensitive parameter of at
most |WVP(pq)|. We improve the preprocessing time and space of current results for this problem [11, 7] at the expense
of more query time.
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1. Introduction

Two points inside a polygon P are visible to each other
if their connecting segment remains completely inside P.
The visibility polygon (VP) of a point q inside P (or VP(q))
is the set of vertices of P that are visible from q. There have
been many studies on computing VP’s in simple polygons.
In a simple polygon P with n vertices, VP(q) can be re-
ported in time O(log n+ |VP(q)|) by spending O(n3 log n)
time and O(n3) of preprocessing space [2]. This result was
later improved by [1] where the preprocessing time and
space were reduced to O(n2 log n) and O(n2) respectively,
at the expense of more query time of O(log2 n+ |VP(q)|).

The visibility problem has also been considered for line
segments. A point v is said to be weakly visible from a line
segment pq if there exists a point w ∈ pq such that w and
v are visible to each other. The problem of computing the
weak visibility polygon of pq (or WVP(pq)) inside P is to
compute all points of P that are weakly visible from pq. If
P is simple (with no holes), Chazelle and Guibas [3] gave
an O(n log n) time algorithm for this problem. Guibas et
al. [10] showed that this problem can be solved in O(n)
time if a triangulation of P is given along with P. Since
any P can be triangulated in O(n) [4], the algorithm of
Guibas et al. always runs in O(n) time [10]. Another linear
time solution was obtained independently by [13].

The WV problem in the query version has been consid-
ered by few. It was shown in [2] that a simple polygon P
can be preprocessed in O(n3 log n) time and O(n3) space
such that, given an arbitrary query line segment inside P,
O(k log n) time is required to recover k weakly visible ver-
tices. This result was later improved by [1] in which the

Email addresses: nouribygi@ce.sharif.edu (Mojtaba Nouri
Bygi), ghodsi@sharif.edu (Mohammad Ghodsi)

preprocessing time and space were reduced to O(n2 log n)
and O(n2) respectively, at expense of more query time of
O(k log2 n). In a recent work, we presented an algorithm
to report WVP(pq) of any pq in O(log n + |WVP(pq)|)
time by spending O(n3 log n) time and O(n3) space for
preprocessing [11]. Later, Chen and Wang considered the
same problem and, by improving the preprocessing time
of the visibility algorithm of Bose et al. [2], they improved
the preprocessing time to O(n3) [7]. Alternatively, they
showed how to build a data structure of size O(n) in time
O(n) which can answer weak visibility queries in O(k log n)
time [8].

In this paper, we show that WVP of a line segment pq
can be reported in near optimal time of O(|WVP(pq)| +
log2 n+κ log2(n/κ)), after preprocessing the input polygon
in time and space of O(n2 log n) and O(n2) respectively,
where κ is an input and output sensitive parameter of at
most |WVP(pq)|. Compared to the algorithms of [11] and
[7], the storage and preprocessing time has one fewer lin-
ear factor, at expense of more query time. Our approach
is inspired by Aronov et al. algorithm for computing the
visibility polygon of a point [1]. In Section 3, we first
show how to compute the partial weak visibility polygon
PWVP(pq). Then, in Section 4, we use a balanced trian-
gulation to compute and report the final weak visibility
polygon.

2. Preliminaries

In this section, we introduce some basic terminologies
used throughout the paper. For a better introduction to
these terms, we refer the readers to Guibas et al. [10], Bose
et al. [2], and Aronov et al. [1]. For simplicity, we assume
that no three vertices of the polygon are collinear.
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2.1. Visibility decomposition

Let P be a simple polygon with n vertices. Also, let p
and q be two points inside P. The visibility of a point p
is the cyclical sequence of vertices and edges of P that are
visible from p. A visibility decomposition of P is to parti-
tion P into a set of visibility regions, such that, for each
region, any point inside the region has the same visibility,
which we call the visibility of the region. This partition
is induced by the critical constraint edges. A critical con-
straint edge is a line segment inside and limited by the
boundary of P, which passes through two vertices of P,
and is tangent to P at one (or both) of these two vertices.
A line is tangent to P at a vertex v if it passes through v
and is on the same side of P before and after the pass.

In a simple polygon, the visibility of two neighboring
visibility regions which are separated by an edge, differ
only in one vertex. This fact is used to reduce the space
complexity of maintaining the visibility of the regions [2].
This is done by defining the sink regions. A sink is a
region with the smallest visibility compared to all of its
adjacent regions. Therefore, it is sufficient to maintain
the visibility of the sinks, from which the visibility of all
other regions can be computed. By constructing a directed
dual graph over the visibility regions (see Figure 1), one
can maintain the difference between the visibility of the
neighboring regions [2].

Figure 1: The visibility decomposition induced by the critical con-
straint edges and its dual graph . The sink regions are shown in
gray.

In a simple polygon with n vertices, the number of
visibility and sink regions are O(n3) and O(n2), respec-
tively [2].

2.2. A linear time algorithm for computing WVP

Here, we present the O(n) time algorithm of Guibas et
al. for computing WVP(pq) of a line segment pq inside P,
as described in [6]. This algorithm is used in computing the
partial weak visibility polygons in an output sensitive way,
to be explained in Section 3.2. For simplicity, we assume

that pq is a convex edge of P , but we will show that this
can be extended for any line segment in the polygon.

Let SPT(p) denote the shortest path tree in P rooted at
p. The algorithm traverses SPT(p) using a DFS and checks
the turn at each vertex vi in SPT(p). If the path makes a
right turn at vi, then we find the descendant of vi in the
tree with the largest index j (see Figure 2). As there is no
vertex between vj and vj+1, we can compute the intersec-
tion point z of vjvj+1 and vkvi in O(1) time, where vk is
the parent of vi in SPT(p). Finally the counter-clockwise
boundary of P is removed from vi to z by inserting the
segment viz.

Let P ′ denote the remaining portion of P. We follow
the same procedure for q. This time, the algorithm checks
every vertex to see whether the path makes its first left
turn. If so, we will cut the polygon at that vertex in a
similar way. After finishing the procedure, the remaining
portion of P ′ would be the WVP(pq).
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Figure 2: The two phases of the algorithm of computing WVP(pq).
In the left figure, the shortest path from p to vj makes a first right
turn at vi. In the right figure, the shortest path from q to v′j makes

a first left turn at v′i.

3. Computing the partial WVP

Suppose that a simple polygon P is divided by a di-
agonal e into two parts, L and R. Inspired by Aronov
et al. algorithm for computing the visibility polygon of a
point [1], for a query line segment pq ∈ R, we define the
partial weak visibility polygon WVPL(pq) (or PWVPL(pq)
for clarity) to be the polygon WVP(pq)∩L. In other words,
WVPL(pq) is the portion of P that is weakly visible from
pq through e. In this section, we will show how to compute
WVPL(pq). Later in Section 4, we will use this structure
to compute WVP(pq).

We will show how to use the algorithm of Guibas et al.
[10] to compute WVPL(pq). To do this, we preprocess the
polygon so that we can answer the visibility query in an
output sensitive way. The idea is to compute the visibility
decomposition of the polygon and, for each decomposition
cell, compute the potential shortest path tree structures.
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In this paper we study combinatorial segment visibility, and show how to compute and maintain it as the observer moves
in the plane. There are n non-overlapping convex objects in the plane, and we have a segment observer among them. We
first consider static case of the problem, in which the observer and objects are static, and then we study dynamic case of the
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1 Introduction

Visibility of a point observer has been studied widely in
computational geometry. In visibility computations, the ob-
ject which is seen along rays is determined. As recomputing
visibility of moving
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Figure 3: The partial weak visibility polygon of the segment pq is
defined as the part of the sub-polygon L that is weakly visible from
pq.

As the number of visibility regions is O(n3), the prepro-
cessing cost of our approach would be high.

To overcome, we only consider the critical constraint
edges that cut e. The number of such constraint edges is
O(n) and the complexity of the decomposition is reduced
to O(n2). This decomposition can be computed in O(n2)
time. We call this decomposition the partial visibility de-
composition of P with respect to e. The remaining part of
this section shows how to modify the linear algorithm of
Guibas et al. [10] so that WVPL(pq) can be computed in
an output sensitive way. First, we show how to compute
the shortest path trees, and then present our algorithm for
computing WVPL(pq).

3.1. Computing the partial SPTL(p)

We define the partial shortest path tree SPTL(p) to be
the subset of SPT(p) that lead to a leaf node in L. In
other words, SPTL(p) is the union of the shortest paths
from p to all the vertices of L. In this section, we show how
to preprocess the polygon P , so that for any given point
p ∈ R, any part of SPTL(p) can be traversed in an output
sensitive way. The shortest path tree SPTL(p) is composed
of two kinds of edges: the primary edges that connect the
root p to its direct visible vertices, and the secondary edges
that connect two vertices of SPTL(p). Notice that if a
point p crosses a critical constraint and that constraint
does not cut e, then the structure of SPTL(p) would not
change. Therefore, we can have bent primary edges that
connect p to a visible vertex from e (see Figure 4).

For the secondary edges, we define two types of edges:
the 1st type secondary edges (1st type for short) are those
secondary edges that are connected to a primary edge, and
the 2nd type secondary edges are the remaining secondary
edges.

We can compute the primary edges of SPTL by us-
ing Aronov’s output sensitive algorithm of computing the
partial visibility polygon [1]. More precisely, with a pro-
cessing cost of O(n2 log n) time and O(n2) space, giving a
point p in query time, a pointer to the sorted list of the
vertices that are visible to p can be computed in O(log n)
time.
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Figure 4: SPTL for different points of R. Notice that as q and r are
on the same visibility region w.r.t. L, SPTL(q) and SPTL(r) have
the same structure.

It is also necessary to compute the list of the secondary
edges of every vertex of SPTL. Each vertex r in SPTL
have O(n) possible 2nd type edges. Depending on the par-
ent of r, a sub-list of these edges would appear in SPTL.
To store all the possible 2nd type edges of r, we compute
and store this sub-list, or to be precise, the starting and
ending edges of the list, for all the possible parents of r. As
there are O(n) possible parents for a vertex, these calcula-
tions can be performed for all the vertices of the polygon
in total time of O(n2 log n) and the data can be stored
in O(n2) space. Having these data, we can, in the query
time, access the list of the 2nd type edges of any vertex in
constant time.

We build the same structure for the 1st type edges. The
parent of a 1st type edge is the root of the tree. As the
root can be in any of the O(n2) different visibility regions,
computing and storing the starting and ending edges in
the list of 1st type edges of a vertex cost O(n3 log n) time
and O(n3) space.

We can reduce the time and space needed to compute
and store these structures, having this property that two
adjacent regions have only O(1) differences in their 1st
type edges.

Lemma 1. Consider a visibility region V in the polygon
and suppose that the 1st type secondary edges are computed
for a point p in this region. For a neighboring region that
share a common edge with V , these edges can be updated
in constant time.

Proof. When a view point p crosses the border of two
neighboring regions, a vertex becomes visible or invisible
to p [2]. In Figure 5 for example, when p crosses the bor-
der specified by u and v, a 1st type secondary edge of u
becomes a primary edge of p, and the 2nd type edges that
start from v become 1st type secondary edges. It can be
seen that no other vertex is affected by this movement.
Processing these changes can be done in constant time,
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since it includes the following changes: removing a sec-
ondary edge of u (uv), adding a primary edge (pv), and
moving an array pointer (edges of v) from the 2nd type
edges of uv to the 1st type edges of pv. Note that we
know the exact positions of these elements in their cor-
responding lists. Finally, the only edge which involves in
these changes can be identified in the preprocessing time
(the edge corresponding to the crossed critical constraint),
so, the time we spent in the query time would be O(1).

p

u
v

e

Figure 5: When p enters a new visibility region, the combinatorial
structure of SPTL(p) can be maintained in constant time.

Having this fact and using a persistent data structure,
e.g. persistent red-black tree [12], we can reduce the cost of
storing the 1st type edges by a linear factor. A persistent
red-black tree is a red-black tree that can remember all its
intermediate versions. If a set of n linearly ordered items
are stored in the tree and we perform m update into it, any
version t, for 1 ≤ t ≤ m, can be retrieved in time O(log n).
This structure can be constructed in O((m+n) log n) time
by using O(m+ n) space.

Theorem 2. A simple polygon P can be processed into a
data structure with O(n2) space and in O(n2 log n) time
so that for any query point p, the shortest path tree from p
can be reported in O(log n+ k), where k is the size of the
tree that is to be reported.

Proof. First, we use Aronov’s algorithm for computing
the partial visibility polygon of p. For this, O(n2) space
and O(n2 log n) time is needed in the preprocessing phase.
For the secondary edges, O(n2 log n) time and O(n2) space
is needed to compute and store these edges. Also, a point
location structure is built on top of the arrangement.

In the query time, the partial visibility region of p can
be located in O(log n) to have the sorted list of the visible
vertices from p. As the visible vertices from p correspond
to the primary edges of SPTL, we also have the primary
edges of SPTL(p).

For the 1st type edges, a tour is formed to visit all the
cells of the partial visibility decomposition. From Lemma

1, we can start from an arbitrary cell, walk along the tour,
and construct a persistent red-black tree on the 1st type
edges of SPTL of a point in each cell. As there are O(n2)
cells and, each cell has O(n) 1st type edges, the structure
takes O(n2) storage and can be built in O(n2 log n) pre-
processing time. Having this structure, the 1st type edges
of the cell containing p can be retrieved from the persistent
data structure in O(log n) time.

Finally, at each node of the tree, we have the list of
2nd type edges from that node. Therefore, the cost of
traversing SPTL is the number of visited nodes of the tree,
plus the initial O(log n) time. In other words, the query
time is O(log n+k), where k is the number of the traversed
edges of the SPTL.

3.2. Computing WVPL(pq)

Now that we showed how to compute SPTL(p) for any
point p ∈ R in the query time, we can use the linear al-
gorithm presented in Section 2.2 for computing WVP of
a simple polygon and modify it to compute WVPL(pq) in
an output sensitive way. As we can see in Figure 6, the
algorithm can be extended to the cases that pq is not a
polygonal edge.

p

q

e

Figure 6: In computing WVPL(pq) we can assume pq to be a polyg-
onal edge.

The idea is to change the algorithm of Section 2.2 and
make it output sensitive. We store some additional infor-
mation about the vertices of the polygon in the preprocess-
ing time, so that we can somehow merge the two phases
of the algorithm.

We say that a vertex v ∈ L is left critical (LC for short)
with respect to a point q ∈ R, if SP(q, v) makes its first
left turn at v or one of its ancestors. In other words, each
shortest path from p to a non-LC vertex is a convex chain
that makes only clockwise turns at each node. The critical
state of a vertex is whether it is LC or not. If we have the
critical state of all the vertices of L with respect to a point
q, we say that we have the critical information of q. Note
that as we check the right turns at the first phase of the
algorithm, we do not need to store the right turn state of
the vertices in the preprocessing time.

The outline of our algorithm is as follows: Having the
line segment pq, in the first round, we traverse SPTL(p)
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using DFS. At each vertex of SPTL(p), we check whether
this vertex is left critical with respect to q or not, using
the critical information of q. If so, we are sure that the de-
scendants of this vertex are not visible from pq. Therefore,
we postpone its processing to the time it is reached from
q, and check other branches of SPTL(p). Otherwise, we
proceed with the algorithm and check whether SPTL(p)
makes a right turn at this vertex. In the second phase, we
traverse SPTL(q) and perform the normal procedure of
the algorithm, and process the parts of the polygon that
we reached in the first phase.

Remark 1. All the traversed vertices in SPTL(p) and
SPTL(q) are vertices of WVPL(pq).

In the preprocessing phase, we compute the critical
information of a point inside each region, and assign this
information to that region. In the query time and upon
receiving a line segment pq, we find the regions of p and
q. Using the critical information of these two regions, the
above algorithm can be applied to compute WVPL(pq).

As there are O(n2) visibility regions in the partial vis-
ibility decomposition, O(n3) space is needed to store the
critical information of the vertices of L. For each region,
we compute SPTL of a point and, by traversing the tree,
we update the critical information of each vertex with re-
spect to this region. An array of size O(n) is assigned
to each region to store these information. We also build
the structure described in Section 3.1 to compute SPT in
O(n3 log n) time and O(n3) space. In the query time, we
locate the visibility regions of p and q in O(log n) time.
By Remark 1, when we proceed the algorithm in SPTLs
of p and q, we only traverse the vertices of WVPL(pq). Fi-
nally, as the processing time spent in each vertex is O(1),
the total query time is O(log n+ |WVPL(pq)|).

To improve this result, we use the fact that any two
adjacent regions have O(1) differences in their critical in-
formation.

Lemma 3. In the path between neighboring visibility re-
gions, the changes of the critical information can be han-
dled in constant time.

Proof. Suppose that we want to maintain the critical
information of p and p is crossing the critical constraint
defined by uv, where u and v are two reflex vertices of P .
Recall that by critical information, we mean whether the
vertices of P are left critical w.r.t. p or not. As stated in
Section 3.2, we do not store the right turn states of the
vertices of P and the right turns will be checked at the
query time.

The only vertices that are affected directly by this
change are u and v. Depending on the critical states of
u and v w.r.t. p, four situations may occur (see Figure
7). In the first three cases, the critical state of v will not
change. In the forth case, however, the critical state of
v will change. Before the cross, the shortest path makes
a left turn at u, therefore, both u and v are LC w.r.t. p.

p u v p
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v

pp uu v
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(a) (b)

(c) (d)

e e

ee
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0 1
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(a) v is LC but u is not.
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(b) u and v are not LC.
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(c) both u and v are LC.
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(d) u is LC but v is not.

Figure 7: Changes in the critical state of v w.r.t. p, as p moves
between the two regions.
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However, after the cross, v is no longer LC. This means
that the critical state of all the children of v in the SPTL(p)
may change as well.

To handle these cases, we use a lazy updating method
to propagate these changes across the tree. To do this,
we modify the way that we store the critical information
of each vertex w.r.t. p. At each vertex v, we store two
additional values: the critical number, which is the number
of LC vertices we met in the path SP (p, v) from p, and
the debit number, which is the critical number that is to
be propagated in the vertex subtree. It is clear that if a
vertex is LC, it means that its critical number must be
greater than zero (see Figure 8). Also, if a vertex has a
debit number, the critical numbers of all its children must
be added by this debit number. Notice that computing
and storing these numbers along the critical information
will not change the time and space requirements. Also, in
query time, we can update the critical number of a vertex
in O(1) time, while traversing the tree.

p 1

1
1

1
2

0

0
e

Figure 8: The critical number represents the number of the left crit-
ical vertices met from p in SPTe(p).

Having these new data, we must update these numbers
in the third and forth cases in Figure 7. For example, let
us consider the forth case. When v becomes visible to p, it
is no longer LC w.r.t. p. Therefore, the critical number of
v is changed to 0. However, instead of changing the critical
numbers of all the children of v, we set the debit number
of v to -1, indicating that the critical numbers of all the
vertices of its subtree must be subtracted by 1. The actual
propagation of this subtraction will happen at query time,
when SPTL(p) will be traversed. Similarly, If p moves in
the reverse path, i.e., when v becomes invisible to p, we
handle the tree in a same way by adding 1 to the debit
number, and propagating this addition in the query time.

A persistent data structure can be used to reduce the
costs to O(n2 log n) preprocessing time and O(n2) storage.
We form a tour visiting all the cells and construct a per-
sistent red-black tree on the critical information and the
2nd type edges of all the nodes. The structure takes O(n2)
storage and can be built in O(n2 log n) preprocessing time.
In addition, we build a point location structure on top of

the arrangement, which can be done in O(n2) time and
O(n2) space [9].

Theorem 4. Given a polygon P and a diagonal e which
cuts P into two parts, L and R, and using O(n2 log n)
time, we can construct a data structure of size O(n2) so
that, for any query line segment pq ∈ R, the partial weak
visibility polygon WVPL(pq) can be reported in O(log n+
|WVPL(pq)|) time.

3.3. Computing WVPL(pq) for Extended Line Segments

Here, we define the concept of the partial weak visibil-
ity polygon for an extended line segment. Assume that P
is a polygon of size n and P ′ is a sub-polygon of P (see
Figure 9). The size of P ′ is m and it is divided by diagonal
e′ to two sub-polygons L′ and R′. Also, assume that the
line segment pq is on the right side of e′, and is cutting R′.
As pq is not completely inside R′, we call it an extended
line segment for P ′. We can also define the weak visibility
polygon of and extended line segment in a similar way.
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1 Introduction

Visibility of a point observer has been studied widely in
computational geometry. In visibility computations, the ob-
ject which is seen along rays is determined. As recomputing
visibility of moving
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q

Ce(q)e′L′

R′

Figure 1. A line segment observer among
convex objects.
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ei
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Ri

Figure 2. A line segment observer among
convex objects.

Figure 9: We can compute WVPL′ (pq) for an extended line segment
in a sub-polygon of sizem, in time O(logm+k′), with a preprocessing
of time O(m2 logm) and O(m2) space, by preprocessing the main
polygon in O(n) time and space.

It can be shown that by preprocessing the polygon P
in O(n) time and space, for any sub-polygon P ′, we can
preprocess it in time O(m2 logm) and build a data struc-
ture of size O(m2) space, so that we can answer the partial
weak visibility queries for extended line segments in time
O(k′ + logm), where k′ is the size of the output.

As the algorithm of Section 3.2 relies on SPT(p) and
SPT(q), if we manage to compute them in the specified
times, we can compute WVPL′(pq). On the other hand,
computing SPT(p) relies on the Aronov’s algorithm of
computing the partial visibility polygon [1]. This algo-
rithm can be altered to accept an extended point p, which
can be defined in a similar way as the extended line seg-
ments. In other words, if we build a data structure of size
O(n) in time O(n), we can compute the Ce(p) in O(log n)
time, where Ce(p) is the infinite cone with apex p and
delimited by the endpoints of the visible portion of e′.
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The other parts of our algorithm is based on the visibil-
ity decomposition of the sub-polygon L′, which has O(m2)
complexity.

This result will be used in the next section, when we
want to compute the weak visibility polygon of a line seg-
ment.

4. Computing WVP by a balanced triangulation

There is always a diagonal e of a simple polygon that
cuts P into two pieces, each having at most 2n/3 vertices
[5]. We can recursively subdivide and build a balanced
binary tree, where the leaves are triangles and each interior
node i corresponds to a subpolygon Pi and a diagonal ei.
Each diagonal ei divides Pi into two subpolygons, Li and
Ri, which respectively correspond to the left and right
subtrees of i (see Figure 10). We build the data structures
described in Section 3 for Li and Ri with respect to ei.
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1

4

44
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33
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2

Figure 10: A balanced binary triangulation of the polygon is built
so that the the weak visibility polygon can be computed recursively.

To compute WVP(pq), p and q will be located among
the leaf triangles. In the simplest case, both p and q belong
to the same triangle (see Figure 11). First we explain this
situation. We construct PWVPi(pq) for each i from the
leaf to the root. Here, PWVPi(pq) is the partial weak
visibility polygon of pq in Pi with respect to ei. For the
leaf node, it is the corresponding triangle, and for other
nodes, it can be computed inductively. In each step, the
merging of the computed polygons can be done in O(log n)
time.

The space and time needed for building an exterior vis-
ibility decomposition of a simple polygon with m vertices
are O(m2) and O(m2 logm), respectively. Thus, the in-
ductive procedure can be expressed as the following equa-
tions:

S(n) = max
n/3≤m≤2n/3

(S(m) + S(n−m)) + Θ(n2),

T (n) = max
n/3≤m≤2n/3

(S(m) + S(n−m)) + Θ(n2 log n)

Therefore, S(n) = Θ(n2), and T (n) = Θ(n2 log n). With
the same analysis as in [1], we can calculate the query

51
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2

Figure 11: The base case in computing the weak visibility polygon a
query line segment.
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Figure 12: The specified nodes correspond to the computed partial
WVPs in Figure 10.

time. Two point locations can be done in O(log n) time.
As the triangulation is balanced, any path from the root to
a leaf node has O(log n) length. As we showed in Theorem
4, the time needed to compute PWVPi(pq) at step i is
O(log n + |PWV Pi(pq)|). Also, the merging at each step
can be done in O(log n) time. Therefore, the total query
time is O(log n+

∑
i(log n+ |PWV Pi(pq|)), or O(log2 n+

|WV P (pq)|).
The tricky part is when p and q are on different tri-

angles. Assume that at step i, the query line segment
is piqi and it is in the sub-polygon Pi. The sub-polygon
Pi is divided by diagonal ei to two sub-polygons Li and
Ri. If piqi does not intersect ei, without loss of generality,
assume that piqi is located in Ri (see Figure 13a). We
do the normal procedure of the algorithm and compute
PWVPLi(piqi). We continue to recursively compute weak
visibility polygon on Ri. In this case, the time needed by
this step can be expressed as T (ni, piqi) = T (ni/2, piqi) +
O(log ni) + |PWVPLi(piqi)|.

On the other hand, if piqi and ei intersect at point ri,
without loss of generality, assume that pi is in Ri and qi
is in Li (see Figure 13b). We can express WVP(piqi) as
the union of two weak visibility polygons on extended line
segment piqi (see Section 3.3): the weak visibility polygon
of piqi in Ri, and the weak visibility polygon of piqi in Li.
In other words, we must compute two weak visibility sub-
problems. Having these two visibility polygons, the union
of them can be merged in time |WVPPi(piqi)|. According

7



piqi

ei

Li

Ri

(a) This case can be phrased as WVP(piqi) = PWVPLi (piqi) +
WVPRi (piqi).
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Visibility of a point observer has been studied widely in
computational geometry. In visibility computations, the ob-
ject which is seen along rays is determined. As recomputing
visibility of moving
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(b) This can be phrased as WVP(piqi) = WVPRi (piqi) +
WVPLi (piqi).

Figure 13: The induction step can be categorized as one of these
situations.

to the Theorem 4, the query time spent at step i can be
expressed as: T (ni, piqi) = 2T (ni/2, piqi) +O(log ni).

The preprocessing costs of the algorithm is the same
as before. For the query time, a naive analysis leads to
the recursive equation T (n) = 2T (n/2) + O(log n), or
T (n) = O(n). But we show how to express the query time
in terms of the number of times that the line segment cuts
the diagonals, by analyzing the recursion tree of the equa-
tions. If pq intersects the diagonals of the triangulation at
κ steps, we have κ branches in the balanced binary tree
associated with the triangulation. For a constant κ, the
maximum cost will happen if these branches are near the
root. Otherwise, if there is a binary node in the tree and it
has an ancestor node with one child, we can replace these
nodes and move the binary equation upward, and obtain
a new tree that have more processing cost.

Figure 14 depicts this case. As you can see, it consists
of a complete balanced tree with κ nodes, and its height
is log κ. There are also κ paths in the tree with length
log n− log κ = log n

κ . The first part of the tree corresponds
to the equation T (m) = 2T (m/2)+logm. Also, each path
in the second part corresponds to the equation T (m) =
T (m/2) + logm, with the staring value of m = n/κ.

We can expand the recursion tree as the following equa-
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Figure 14: The worst case scenario in computing WVP(pq). It con-
sists of a complete balanced tree with height log κ, and κ paths with
length logn− log κ = log n

κ
.

tions:

T (n) = κ

n/κ∑
i=1

log i+

log2 κ∑
i=0

2i log(n/2i)

= κ log2 n

κ
+ log n

log2 κ∑
i=0

2i −
log2 κ∑
i=0

i2i

By plugging in the geometric sequence summation for-
mula and the following formula

n∑
k=1

kak =
a(1− an)

(1− a)2
− nan+1

1− a

we get

T (n) ≤ κ log2(n/κ) + κ log n− κ log κ

= κ log2(n/κ) + κ log(n/κ)

As each intersection of the query line segment with a
diagonal can be mapped to a unique vertex in WVP(pq),
we have κ ≤ |WVP(pq)|. Therefore, in total, the query
time is O(|WVP(pq)|+ log2 n+ κ log2(n/κ)).

In summary, we have the following theorem:

Theorem 5. A simple polygon P can be processed in time
O(n2 log n) into a data structure of size O(n2) so that,
for any query line segment pq, WVP(pq) can be reported
in time O(|WVP(pq)| + log2 n + κ log2(n/κ)) where κ ≤
|WVP(pq)|.

5. Conclusion

In this paper, we showed how to answer the weak vis-
ibility queries in a simple polygon with n vertices in an
efficient way. In the first part of the paper, we defined the
partial weak visibility polygon WVPe(pq) of a line seg-
ment pq with respect to a diagonal e and presented an
algorithm to report it in time O(log n + |WVPe(pq)|), by
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spending O(n2 log n) time to preprocess the polygon and
maintaining a data structure of size O(n2).

In the second part, we presented a data structure of size
O(n2) which can be computed in time O(n2 log n) so that
the weak visibility polygon WVP(pq) from any query line
segment pq ∈ P can be reported in time O(|WVP(pq)| +
log2 n + κ log2(n/κ)). Here, κ is the number of triangles
that intersect pq in a balanced triangulation of P, and
κ ≤ |WVP(pq)| .
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Appendix A. Analyzing the Term κ log2(n/κ)

The query time of our algorithm is O(|WVP(pq)| +
log2 n + κ log2(n/κ)). κ is the number of intersections of
the query line segment with the diagonals of the balanced
triangulation. Although κ = O(|WVP(pq)|), usually κ is
much smaller than |WVP(pq)|.

For small values of κ, κ log2(n/κ) = O(log2 n), and for
large value of it, κ log2(n/κ) = O(κ) = O(|WVP(pq)|).
The diagram of Figure A.15 gives a sense of the behaviour
of the term κ log2(n/κ). The derivative of this term for a
constant n, in terms of κ, is log2 n+ (−2 log κ− 2) log n+
log2 κ+ 2 log κ. A simple calculation shows that the equa-
tion makes its maximum value at κ = exp−2 n, and the
maximum value is 4κ. As for the higher values of κ,
κ log2(n/κ) decreases, we can say that for κ ≥ exp−2 n,

κ log2(n/κ) = O(κ) = O(|WVP(pq)|). In other words, for
κ ≥ exp−2 n, we can express the processing time of the
algorithm simply as O(|WVP(pq)|+ log2 n).
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Figure A.15: Diagram of κ log2(n/κ) for some values of n. The
horizontal axis is κ and the vertical axis is the value of κ log2(n/κ).
At each curve, the maximum value is achieved at κ = exp−2 n and
the maximum value at this point is 4κ.
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