
Visibility of a Moving Segment

Mojtaba Nouri Bygi
Computer Engineering Department
Sharif University of Technology

Tehran, Iran
Email: nouribaygi@ce.sharif.edu

Mohammad Ghodsi
Computer Engineering Department
Sharif University of Technology

Tehran, Iran
Email: ghodsi@sharif.edu

Abstract

In this paper we define topological segment visibility, and
show how to compute and maintain it as the observer moves
in the plane. There are n non-intersecting line segment
objects in the plane, and we have a segment observer among
them. As the topological visibility of a line segment has
not been studied before, we first consider static case of the
problem, in which the observer and objects are static, and
then we study dynamic case of the problem, in which the
observer can move among obstacles.

1. Introduction

Visibility is an important topic in computer graphics,
motion planning, and computational geometry. To deal with
the increasing complexity of the scenes considered, some
research has been performed in visibility processing in
order to accelerate the visibility determination, e.g., visibility
graph and visibility complex.
Visibility of a point observer has been studied widely

in computational geometry literature. In visibility compu-
tations, the object which is seen along rays (maximal free
line segments) is determined. As recomputing visibility of
moving object that can be seen along a ray is a time con-
suming task, some solutions are proposed for this problem.
One proposed solution is to classify rays according to their
visibility, that is, after finding the object along a given ray,
we only need to identify the set of rays that contains the
given ray and read the visibility properties of the specified
rays. Such approaches could be called topological visibility
in the sense of only considering the objects seen along a
ray, and not the exact parts of the objects that can be seen.
In this paper we define combinatorial (or topological)

segment visibility, and show how to compute and maintain
it as the segment moves in the plane. Topology deals with
the classification of spaces that are the same up to some
equivalence relation [16].
Assume that there are n line segment objects in the plane,

and we have a line segment observer among them. We say
that the observer sees an object, if and only if there is a
point in the observer that can see the object. This definition

differs from other possible segment-visibility definitions in
that here we just want to know whether an object is visible
from the observer, but the exact portion of the object seen
from the observer is not important. This kind of visibility
definition is mainly practical in global visibility studies, e.g.
[2], [12].
As the topological visibility from a line segment has not

been studied before, we first consider static case of the
problem, in which the observer and objects are static. Then
we study dynamic case of the problem, in which the observer
can move among obstacles.
The rest of the paper is organized as follows. In Section

2 we review important results on viewpoint visibility and
some concepts related to our work. In Section 3 we define
combinatorial visibility for a segment observer and study
both static case and dynamic case, in which the observer
can move among obstacles.

2. Preliminaries

2.1. Point Visibility

Visibility of a point observer has been studied widely in
computer geometry literature. One proposed solution is to
compute regions that have constant visibility (see Fig. 1)
and switch among the regions as the point observer moves.
By moving the observer, the visibility changes only along
some special places, which are called discontinuity lines or
visibility events. So, we can compute an arrangement of these
lines that a scene contains. Usually a visibility graph is used
to store the set of all discontinuity lines [8]. For n input
segments, there would be O(n2) discontinuity lines, and the
number of regions in the arrangement is O(n4).
Two algorithms whose internal structure is derived from

the visibility graph are proposed to solve the problem,
namely, Ghali and Stewart’s algorithm [7], and Rivière’s
algorithm [13] for polygonal scenes. After deriving the
internal structure, Rivière’s algorithm creates another struc-
ture named visibility complex [12], which contains more
information than the visibility graph while still has the same
complexity as it. Ghali and Stewart use a duality concept in
their algorithm to gain more efficiency. Geometric duality

2009 International Conference on Computational Science and Its Applications

978-0-7695-3701-6/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCSA.2009.31

169

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

�

Figure 1. A region with the constant visibility, [10].

is a known tool which has been used in classical projective
geometry for many years. This concept has had a useful role
in solving a number of geometric problems in recent years
(see e.g. [4]). We will describe these two approaches in more
detail.

2.2. Discontinuity Lines

As stated before, visibility changes only along the discon-
tinuity lines. So the algorithm has to specify discontinuity
lines which are considered in it. Some algorithms are based
on all discontinuity lines which are stored in a visibility
graph [7], [13], while there are others algorithms that only
consider a subset of all discontinuity lines [15], where lines
are stored in a map which is updated during the path.
The visibility graph for a scene containing n points and

m discontinuities can be constructed in O(m+n log n) time
and requires O(m) space [5], [9], in which m, the number
of discontinuity lines, is O(n2). The mentioned map is also
constructed in O(n log n) time and requires O(n) space in
the same scene.

2.3. Geometry Duality

Geometric duality is a known tool which has been used in
classical projective geometry for many years. This concept
has had a useful role in solving a number of geometric
problems (see e.g. [4]). In duality transformation we map
a set of more unfamiliar objects like lines and hyperplanes
which are hard to think about, to another set of objects with
which we have more intuition, like points.
For example a duality function D that maps a point (a, b)

into the line ax + by = 1 and vice-versa is such a duality
transformation in which the line and the point are called
dual of each other. The plane containing the original data
is the primal plane while the other plane to which original
data are mapped is called the dual plane.

2.4. Computing a view around a point

In this section we review two algorithms presented for
computing the view around a moving point.

2.4.1. Ghali and Stewart’s Algorithm. As our approach is
related to the Ghali and Stewart algorithm [6], [7], we will
shortly review it in this section. The algorithm consists of
the following steps:
Having n segments in the scene, they first build the

visibility graph of them. For each segment endpoint they
put a node and connect two nodes with an edge if and
only if the line which connects the corresponding endpoints
doesn’t cross any of the segments. A discontinuity line in
this graph is the line that supports two endpoints. Visibility
graph is constructed in O(m + n log n) time and requires
O(m) space, in which m is the number of discontinuities
and is bounded by O(n2) [8].
Next, the given set of discontinuity lines is preprocessed

into a data structure using a duality concept that one can
query it to know whether any of discontinuities has been
crossed. By this duality transformation, each discontinuity
line is mapped to a point and the viewpoint V is also mapped
to a line V ′. The line V ′ generates two separated sets of
points (see Fig. 2).
By moving the viewpoint in the primal plane, its equiv-

alent line in the dual plane is also moving. To know if
the viewpoint in the primal plane crosses a discontinuity
line, we can see if a point in the dual plane changes its
position with respect to the line. To answer this question
quickly, a convex hull for both sets of points in dual plane is
constructed and only its boundary points are checked. Doing
the duality transformation takes O(m log m) time and O(m)
space and deciding whether a discontinuity line is crossed
with the viewpoint using the constructed convex hull takes
O(log m).
The set of visible segments will be unchanged until a

discontinuity line is crossed. After crossing one discontinuity
line, the constructed data structure in previous step must be
updated. It means that one point in the dual plane is moved
from one side of the line to the other and so it must be
removed from one convex hull and added to the other one.
Ghali and Stewart’s algorithm uses the Overmars and van
Leeuwen’s algorithm [11] to maintain a dynamic convex hull
in which an insert/permit operation is done in O(log2 m),
which was the best known algorithm for maintaining the
convex hull at the time, but later improved to O(log m) [3].
When the viewpoint crosses a discontinuity line, the set of
visible segments is not necessarily updated but the convex
hull is updated in order to maintain the description of the
current cell.

2.4.2. Rivière’s method . The algorithm introduced by
Rivière [14] constructs another structure named visibility

170

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

Figure 2. Schematic view of the situation in the primal and dual plane, [15].

complex [12] that has the same complexity as the visibility
graph while containing more information than it. It encodes
all the visibility relations between objects of a scene in the
plane.
In the dual plane, the line V ′ passes through a set of

faces of the visibility complex and the set of crossed edges
represent the current visibility region. The exact boundary
of the visibility region is found by applying a dynamic
envelope to the vertices considered. The visibility complex
of a polygonal scene has a size O(m) and can be computed
in optimal O(m + n logn) time [14].
In case of dynamic maintenance of visibility, we can

decide in O(log v) time if a visibility event occurs and if
so, update the structures in O(log2 v), where v is the size
of the view, i.e. the size of the set of crossed edges in the
visibility complex [13].

3. Segment Visibility

In Section 2 we saw how to maintain the visibility
along a viewpoint trajectory. In this section we will define
combinatorial (or topological) segment visibility, and show
how to compute and maintain it as the segment moves in
the plane. Assume that there are n line segment objects in
the plane, and a line segment observer is among them. We
say that the observer sees an object, if and only if there is
a point in the observer that can see the object (in the sense
of Section 2). This definition differs from other possible
segment-visibility definitions in that here we just want to
know whether an object is visible from the segment observer,
but the exact portion of the object seen from the observer
is not important. This kind of visibility definition is mainly
practical in global visibility studies, e.g. [2], [12]. As the
topological visibility of a line segment has not been studied
before, we first consider static case of the problem, in which
the observer and objects are static. Then we study dynamic
case of the problem, in which the observer can move among
obstacles.

3.1. Static Case

First we consider the static case, in which the observer
AB doesn’t move in the scene along the objects (see Fig.
3). First we build the visibility graph for the given n line
segments. The visibility edges, or discontinuity lines, divide
the plane to some regions with constant visibility. Consider
a view point p with initial location at the segment endpoint
A. We can compute the visibility of A with one of the
algorithms mentioned in Section 2. Here we use the method
of [13] that uses visibility complex of the scene to compute
and maintain the visibility from a viewpoint. Depending on
the method used to find the crossed edges, the view can be
computed in O(v log n) time or O(n log n) time (v is the
size of the view) [13]. We move along the segment toward
the other endpoint B. As long as we are on the same region,
the visibility will not change. When we cross a discontinuity
line, the visibility will change and we need to update the
view. So, after the computation of v0, the initial view around
a point p, and a preprocessing step done in O(v0 log v0)
time, the view along a trajectory can be maintained in
O(log v) time at each change of visibility [13]. So, if the
number of discontinuity lines that intersect the visibility
segment is k, the total time needed to compute the view
of visibility segment will be O((n + k) log n). Considering
the time needed to construct the visibility complex of the
scene, we have the following proposition.

Figure 3. A line segment observer among line segment
objects.

171

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

Proposition 3.1: After the computation of the visibility
complex of a scene that composed of n line segments, and
a preprocessing step done in O(m+n log n) time, where m

is the number of discontinuity lines, the view from a line
segment can be computed in O((n+k) log n), where k is the
number of discontinuity lines that intersect the line segment.

3.2. Dynamic Case

Now we consider the dynamic case of the problem: A
line segment observer s is moving among a set S of n line
segment objects. We want to maintain the visibility of the
observer as it moves. Our approach is to compute the initial
visibility of the observer, as done in Section 3.1, and update
it whenever it changes.
In order to compute the visibility, we need the descriptions

of the set of cells that the observer intersects, and for each
cell, the set of lines bounding the cell in the arrangement of
lines in the primal plane. Since computing the arrangement
is too expensive, we take the following approach, which is
similar to the method of Ghali and Stewart [7]. We compute
the dual of S, the set of discontinuity lines, and the dual of
s, the line segment observer. Let the duals be S′ = D(S)
and ws = D(s). In the dual plane, each discontinuity line
l is mapped to a point pl and the segment s is mapped
to a double wedges ws (see Fig. 4). Notice that segment
endpoints A and B are mapped to two lines lA and lB ,
which are boundaries of ws. The double wedge ws divides
the dual plane and the set of points S′ into four sets S′

1
,

S′

2
, S′

3
and S′

4
, the first two sets are lying outside, and the

other two sets are lying inside the wedge. When the dual of a
discontinuity line is outside the wedge, it means that the line
segment observer does not intersects the discontinuity line,
and if the dual is inside the wedge, the observer intersects
the discontinuity line. This observation helps us to easily see
whether a discontinuity line crosses the observer or not.
Now let us see what happens when the visibility of the

observer changes. As the observer moves in the plane, it
crosses some visibility regions constructed by discontinuity
lines. As long as the number and the order of these crossed
regions do not change, the visibility of the observer will not
change, and vice versa. So we need to show the conditions
in which the crossed regions change.
A change in the set of crossed visibility regions is

happening in two conditions: (i) the observer intersects a
new discontinuity line, and so it enters a new region, or
an already crossed discontinuity line no longer intersects
the observer, and a visibility region will disappear (Fig. 5),
(ii) the order of intersection of two discontinuity lines will
change, and an old region will disappear and a new one will
appear (Fig. 6). It can be easily seen that these two cases
are the only situations that change the crossed regions. So,
we need to consider these cases and update the visibility in
each one.

Figure 6. Event of type 2. The order of intersecting
two discontinuity lines changes. A visibility region dis-
appears and a new one appears.

3.2.1. Event Type 1. As mentioned before, first type of
events occurs in two cases: when the observer intersects a
new discontinuity line, and it enters a new region, or when
an already crossed discontinuity line no longer intersects
the observer, and a visibility region will disappear (Fig. 5).
When the observer intersects a new discontinuity line, it
means that its dual point enters the double wedge. Similarly,
when the observer stops to intersect a discontinuity line, it
means that its dual point leaves the double wedge.
To detect these events, we only need to observe the dual

lines of endpointsA and B. As the endpointsA (respectively
B) gets closer to a line l on the boundary of a cell and
becomes incident to it, the dual line lA = D(A) (respectively
lB = D(B)) becomes incident on the dual of that line pl =
D(l). When A crosses l in the primal plane, the segment
either enters another cell or leaves an already crossing cell.
This is reflected in the dual plane by the point pl crossing
line lA (see Fig. 7). In what follows, we discuss how to
update the structure upon insertion and deletion of points.
As long as the set of crossed discontinuity lines do not

change, no event of type 1 will occur. If a new one is crossed
or stops crossing, the data structure has to be updated. In
the dual plane, these events reflected by a point entering
or removing the wedge. In these cases, the point must be
removed from one convex hull and inserted into anther one
(one of the convex hulls is outside the wedge, and the other
one is inside it). So, we need to maintain the convex hulls
as points are added to or removed from them. To maintain
a dynamic convex hull, a O(log2 n) update were achieved
early on [11], and it was improved to O(log n) in amortized
[3].
The set of visible segments is not always updated when

the segment observer crosses a discontinuity line, although
the convex hulls must be updated to maintain the description
of the current cell.
Consider the two convex hulls outside the wedge. When

inserting a point into a convex hull in the dual plane, the
point will be connected to the two common tangents between
it and the hull. The points from the previous convex hull
boundary that disappear from the new one correspond to
the discontinuities in the primal plane that no longer bound
the current cell in which an endpoint of observer exists.

172

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

Figure 4. The figure on the left shows the arrangement of the discontinuity lines. The set of points shown on the
right is the set of dual points of these lines. When the observer AB moves in the primal plane, its dual wedge ws,
also moves (and possibly rotates) in the dual plane. Intersecting a new discontinuity line (respectively, stopping to
intersect one) in the primal plane is signaled in the dual plane by boundaries of the wedge, lA or lB, intersecting
one of the two convex hulls outside (respectively, inside) the wedge in dual plane.

Figure 5. Events of type 1. In the figure above, the observer will intersect a new discontinuity line. The figure on the
bottom shows that the observer stops intersecting a discontinuity line.

When deleting a point from a hull in the dual plane, an
arbitrary number of points can appear on the hull boundary.
These points correspond to the lines in the primal plane that
bound the new cell which the viewpoint enters [7].
The two convex hulls that we maintain in the dual plane

give us a concise description of the discontinuities in the
primal plane which, when crossed, may require an update
of the visibility cycle. The hulls can be stored in linear space
with respect to the number of discontinuities. For every new
positions of the endpoint A and B, the duals lA and lB are
computed and a test performed to see if any point on either
of the four convex hulls in the dual plane has switched sides.
In general, we have the following proposition:
Proposition 3.2: After a preprocessing step in O(m +

n log n) and computing the initial view of a line segment
observer in O((n + k) log n) time, where m is the number
of discontinuity lines and k is the discontinuities that initially
intersect the line segment, the view from the observer among
n line segment objects can be maintained in O(log n) each

time a visibility change of type 1 occurs.

3.2.2. Event Type 2. In the second type of visibility events,
the order of intersection of two discontinuity lines changes,
and an old region will disappear and a new one will
appear (Fig. 6). Notice that in this case, the set of crossed
discontinuities will not change, and in dual plane, this means
that the partition of points that the wedge has been created
will not change.
Now let us see what happens in the dual plane upon

occurring an event of type 2 (See Fig. 8). As the observer
AB come near to the intersection point of two discontinuity
lines l1 and l2, the lines wpl1 and wpl2 in the dual plane
come closer to each other, where w is the center of the
wedge. At the event time, when AB passes through the
intersection point of l1 and l2, wpl1 and wpl2 will lie on
each other. After the event, the order of crossing these two
discontinuity lines will change, and wpl1 and wpl2 will
switch their polar order according to wedge center. It can
be easily shown that each time two dual points pl1 and pl2

173

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

Figure 7. The figure on the left (respectively, right) shows the configuration in the dual plane before (respectively,
after) a discontinuity line is crossed. In both figures, the solid lines are the duals of the current position of the
observer endpoint A and B with the dashed lines showing the position of the duals after (respectively, before)
crossing. As the discontinuity point P is crossed, P is deleted from one set of points and inserted into another one,
while maintaining the convex hulls of both sets of points.

and wedge center w become collinear, an event of type 2 is
occurred, and vice versa.
Now we show how to handle this kind of event. We claim

that this event can be handled with the algorithms presented
in Section 2 for computing visibility of a moving viewpoint.
Assume that there are m′ = O(m) = O(n2) points inside
the wedge. Consider these m′ points as endpoint objects and
think of wedge center, w, as a moving viewpoint. When two
of these endpoints become collinear with w, we can say that
w has crossed the discontinuity line that passes through these
two points.
With m′ points, there will be m′′ = Θ(m′2) = O(n4)

discontinuity lines (notice that in average, m′, the number of
crossed discontinuities, is very smaller than O(n2)). Using
the algorithms of [13] mentioned in Section 2.4.2, we can
handle events of type 2. As there are m′′ discontinuity
lines, we can compute the visibility complex of the scene in
O(m′′ + m′ log m′) = O(n4 + n2 log n) time and O(m′) =
O(n2) working space. Having the visibility complex of the
scene, each visibility event can be found and handled in
O(log n) time. Each visibility event corresponds to a time
that the wedge center w becomes collinear with two other
points in the wedge, and an event of type 2 is occurred.
Two situations which are not considered yet are when an

event of type 1 occurs, in which a new dual point will be
added to the wedge, or when a point will remove the wedge.
In these cases we must update the visibility complex of the
points inside the wedge. When a new point enters the wedge,
we have to insert this object in our visibility complex. This
is done by computing a view around the point using the
current visibility complex which can be done in O(m′ log n)
where m′ is the number of points inside the wedge, using
the techniques described by Rivière [13]. Similarly, when a
point leaves the wedge, the edges of the visibility complex
corresponding to segments passing through this point must

be removed. This work can be done in O(m′).
In general, this approach leads to the following proposi-

tion:
Proposition 3.3: After a preprocessing step in O(m′2 +

(m′+n) log n) and computing the initial view of a line seg-
ment observer in O((m′+n) log n), where m′ is the number
of discontinuity lines that intersect the segment observer, we
can handle an event of type 1 in O(log n + m′ log n) time
and an event of type 2 in O(log n) time. In other words, if
there are k1 events of type 1 and k2 events of type 2, we
can update the view in O(k1(log n + m′ log n) + k2 log n).
Another approach for handling visibility events of type 2

is to use Kinetic Data Structure [1]. Kinetic Data Structure
(KDS) is a framework for maintaining certain attributes
of a set of objects moving in a continuous manner. For
example, KDS has been used for maintaining the convex
hull of moving objects, or maintaining the closest distance
among moving objects. A KDS mainly consists of two parts:
a description of the needed attributes and some certificates
such that a certificate remains unchanged as long as its at-
tribute does not change. It is assumed that we can efficiently
compute the failure time of each of these certificates. Only
when a certificate fails the KDS must be updated, otherwise
it remains valid.
We claim that to find an event of type 2, we only need to

have an ordered list of points in the wedge according to their
polar angles, with w as their center. It can be easily seen
that when an event of type 2 occurs, for a small time before
the event, two points participating in the events becomes
adjacent to each other in the list. To maintain this ordered
list of points, we need m′ certificates. If the sorted list of
sites is si0 , si1 , . . . , si

m
′
−1
, we need the certificates si0 <

si1 , si1 < si2 , . . . , si
m
′
−2

< si
m
′
−1
.

An event happens if a certificate fails. All the events are
placed in a priority queue, sorted by the time they occur.

174

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

Figure 8. An event of type 2. As the observer AB approaches the intersection of discontinuity lines l1 and l2 (top), in
dual plane, the lines wpl1 and wpl2 come closer to each other (bottom). At the event point (center) where AB passes
through the intersection of l1 and l2, wpl1 and wpl2 will lie on each other. After the event, the order of crossing these
two discontinuity lines will change, and in dual plane, wpl1 and wpl2 will switch their polar order according to wedge
center (right).

When an event happens, we examine the proof (the set
of certificates) and update it. The initial event list can be
built in O(m log m) time, using a suitable event queue. For
each event, we need to update at most two certificates. We
just need to find these certificates in the proof scheme and
replace them with the new ones, which takes O(log n) time.
Upon occurring an event of type 2, we must update the

visibility of the segment observer. This can be done by
finding the corresponding face in the visibility complex of
the segment objects which takes O(log n) time [12].
When an event of type 1 occurs, we need to update our

certificate list. This can be done in O(1), because when a
new point enters the wedge or leave it, it must always be the
first or last point in the ordered list of points (remember that
this point must be adjacent to dual of A or B just before
changing its position with respect to wedge). In general we
have the following proposition.
Proposition 3.4: After a preprocessing step in O(m +

(m′ + n) log n) and computing the initial view of a line
segment observer in O((m′ + n) log n), where m is the
number of discontinuity lines and m′ is the number of those
discontinuities that intersect the line segment, we can find
the next event that changes the visibility of the observer in
O(log n) and update the visibility in O(log n).
According to the criteria of a good KDS [1] we must

evaluate our kinetic model. Similar to other algorithms, a
good KDS should take small space, small initialization cost,
and efficient update time. In KDS, an update may happen
in two cases. One is when a certificate fails and an event
happens. The other is when the motion of an object changes.
In the first case, we need to update the certificate set, and
in the second case we must recompute the failure times
for all the certificates of that object. These requirements

induce the following quality measurements for KDSs [1].
Compactness, the size of the proof, which is O(m′) in
our case. Responsiveness, the time to process an event,
which is O(log n) for processing an event. There are O(1)
certificates need to reschedule and each reschedule takes
O(log n) time. Locality, the number of certificates that a
single object involves in, which is two in our algorithm, as
each object is involved in at most two certificates. The last
quality measurement is efficiency which is the number of
events processed. In our algorithm, all events are exterior
[1] (change both KDS and data structures of algorithm),
and in any case, we have to handle them to maintain the
visibility.

4. Conclusion

In this paper we defined topological visibility for a line
segment observer among line segment objects in the plane.
We proposed algorithms for computing the view in both
static and dynamic cases.
In this work, we created the complete arrangement of all

discontinuity lines. It would be better if one can use a local
approach for the problem and avoid unnecessary computa-
tions. Another interesting problem is to scale upwards and
introduce the problem in three dimensions. In the 3D case,
there are some complications that make this a non-trivial
task.

References

[1] J. Basch, L. J. Guibas, and J. Hershberger. Data structures
for mobile data. In Proc. 8th ACM-SIAM Sympos. Discrete
Algorithms, pages 747–756, 1997.

175

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

[2] J. Bittner and P. Wonka. Visibility in computer graphics.
Journal of Environmental Planning, page 5, 2002.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex hull.
In In Proc. 43rd IEEE Sympos. Found. Comput. Sci, pages
617–626, 2002.

[4] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. In Proc. 24th Annu. IEEE Sympos. Found.
Comput. Sci., pages 217–225, 1983.

[5] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer-Verlag, Berlin, 1997.

[6] S. Ghali and A. J. Stewart. Incremental update of the visibility
map as seen by a moving viewpoint in two dimensions. In
Seventh International Eurographics Workshop on Computer
Animation and Simulation, pages 1–11, Aug. 1996.

[7] S. Ghali and A. J. Stewart. Maintenance of the set of segments
visible from a moving viewpoint in two dimensions. In Proc.
12th Annu. ACM Sympos. Comput. Geom., pages V3–V4,
1996.

[8] S. K. Ghosh and D. M. Mount. An output sensitive algorithm
for computing visibility graphs. Technical Report CS-TR-
1874, Department of Computer Science, University of Mary-
land, July 1987.

[9] J. E. Goodman. Pseudoline arrangements. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry, chapter 5, pages 83–110. CRC Press LLC,
Boca Raton, FL, 1997.

[10] K. Nechvle and P. Tobola. Dynamic visibility in the plane.
In Proc. Seventh Int. Conf. in Central Europe on Computer
Graphics and Visualization, WSCG ’99, pages 187–194, 1999.

[11] M. H. Overmars and J. van Leeuwen. Maintenance of
configurations in the plane. J. Comput. Syst. Sci., 23:166–
204, 1981.

[12] M. Pocchiola and G. Vegter. The visibility complex. Internat.
J. Comput. Geom. Appl., 6(3):279–308, 1996.

[13] S. Rivière. Dynamic visibility in polygonal scenes with
the visibility complex. In Proc. 13th Annu. ACM Sympos.
Comput. Geom., pages 421–423, 1997.

[14] S. Riviére. Visibility computations in 2D polygonal scenes.
PhD thesis, Université Joseph Fourier, Grenoble, France,
1997.

[15] P. Tobola. Local approach to dynamic visibility in the
plane. In Proceedings of the 7-th International Conference
in Central Europe on Computer Graphics, Visualization and
Interactive Digital Media’99, pages 202–208, 1999.

[16] G. Vegter. Computational topology. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computa-
tional Geometry, chapter 32. CRC Press LLC, Boca Raton,
FL, 2th edition, 2004.

176

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 04,2010 at 03:36:47 EDT from IEEE Xplore. Restrictions apply.

